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ABSTRACT  9 
 10 
This paper presents the one-dimensional, positive temperature coefficient (PTC) thermistor 
equation, using the hyperbolic-tangent function as an approximation to the electrical 
conductivity of the device. The hyperbolic-tangent function describes the qualitative 
behaviour of the evolving solution of the thermistor in the entire domain. The steady state 
solution using the new approximation yielded a distribution of device temperature over the 
spatial dimension and all the phases of temperature distribution of the device without having 
to look for a moving boundary. The analysis of the steady state solution and the numerical 
solution of the unsteady state is presented in the paper. 
 11 
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1. INTRODUCTION  15 
 16 
Thermistors are thermo-electric devices made from ceramic materials. The electrical 17 
conductivity of the device varies strongly with temperature; this effect has enabled 18 
thermistors to be used as switching devices in many electronic circuits. The study of the 19 
thermistor problems in heat and current flow has a long history of applications in several 20 
areas of electronics and its related industries [1]. There are generally two kinds of 21 
thermistors; one is the positive temperature coefficient (PTC) thermistor in which the 22 
electrical conductivity decreases with increasing temperature, and the other is the  negative 23 
temperature coefficient thermistor  for which the  electrical conductivity increases with 24 
increasing temperature [2]. 25 
 26 
The current flows through the PTC thermistor heating it to above a critical temperature, at 27 
which its conductivity decreases substantially. This leads to a steady state where the heat 28 
generated is balanced by the heat lost to the surroundings. For the device to be useful, the 29 
steady state current need to be much less than the original current.  30 
Mathematical problems related to the heat and current flow in the thermistor under the title 31 
‘‘the thermistor problem’’ have been studied by several authors. The aspects of modeling, 32 
existence, uniqueness, and behaviour of solutions have also been presented [4, 5, 6, and 7]. 33 
Wood and Kutluay [8] gave an approximate functional solution for the one-dimensional 34 
thermistor problem with a step function electrical conductivity, using the heat balance 35 
integral method. They showed that the solution exhibits all the correct physical 36 
characteristics and that the simple model also exhibits a possible mechanism by which the 37 
observed cracking of the thermistor might be initiated. Bahadir [9] solved the PTC thermistor 38 
problem numerically by finite element method using quadratic splines as shape functions 39 
and also obtained the steady state solutions. The result obtained was compared with 40 
analytical solution and found to exhibit correct physical characteristics of the PTC thermistor.  41 



 

 

Kutluay[8] gave the description of the three phases of steady state solutions obtainable 42 
assuming monotonicity of the temperature profile such that the point 0x  will always be 43 

the hottest and the first point to reach the critical temperature 1cU above which   drops. 44 

Due to the decrease in , the rate of heat loss at 1x will ultimately equal the internal heat 45 

generation and a steady-state will be reached [7, 8].  46 
 47 
1.1. Mathematical Approximation of the Electrical Conductivity 48 

Traditionally, the step function was used as an approximation for the electrical conductivity 49 
though it does not completely reflect its qualitative behavior. This has necessitated the 50 
search for a more representative approximation of the PTC conductivity characteristics for 51 
use in solving the PTC thermistor problem. Many researchers have therefore sought to find 52 
an approximate representation for the electrical conductivity. 53 
Fowler et al [10] represented the variation of   with u  (electrical conductivity) as an 54 
exponential function which is continuous but with discontinuous derivatives at 1u and55 

2u . 56 
Kutluay et al [11] observed from the step function conductivity that the electrical conductivity 57 
in the warm phase drops sharply from 1 at the temperature 10 u   to   at the 58 

temperature 1u and that the decrease can cause oscillation in the predicted temperature 59 
when the finite difference methods are applied to the problem. In order to avoid unwanted 60 
oscillations in the numerical solution, they presented a modification to the electrical 61 
conductivity depending on the location of the interface unknown a priori.  62 
Kutluay and Wood [12] introduced a slightly more realistic model for the electrical 63 
conductivity ( )(u ) whose value decreases linearly from 1 at the critical temperature 64 

1critu  to   at a temperature 1  which is mathematically equivalent to a ramp function. 65 

In the limit as  approaches zero the ramp model approaches the step model. In other 66 
words, its behaviour is a ‘‘mushy’’ form of the step function conductivity. In their analysis, 67 
they concluded that the ramp function is also not particularly a good model for electrical 68 
conductivity since it is of course a stretched form of the step one.  69 
 70 
This paper presents a solution of the PTC thermistor problem using a hyperbolic-tangent 71 
approximation of the device conductivity which is a good representation of its qualitative 72 
behavior. The exact steady state solution of the problem, using this new approximation is 73 
presented as well as the numerical solution using the method of lines.  74 
 75 
In the rest of the paper, a recollection of the PTC thermistor model is presented in section 76 
two of the paper. The steady state solution of the problem, using the method of asymptotic 77 
expansion and the numerical solution using the method of lines are shown. 78 
  79 
 80 
2. MATERIAL AND METHODS  81 
 82 
2.1.The Problem Statement 83 

The typical thermistor model is an initial-boundary-value problem comprising of coupled non-84 
linear differential equations for heat and current flow. The dimensionless temperature of the 85 
PTC thermistor ),( txu  satisfies the following heat equation [13, 14] 86 
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And the initial condition 91 
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   93 
in which   is a positive heat transfer coefficient and   is the ratio of electric heating to heat 94 

diffusion. 95 
The electric potential ),( tx in the device is governed by  96 
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Subject to the boundary condition 98 
0,0),0(  tt , 0,0),1(  tt      (6) 99 

and the initial condition  100 
10,)0,(  xxx         (7) 101 

In the traditional solution of the thermistor problem, )(u , the electrical conductivity is 102 

approximated by  103 









1

101
)(

u

u
u


        (8) 104 

which is mathematically equivalent to a step function and with a typical value 510  105 

However, the conductivity of a physical PTC device does not display the step-wise 106 
discontinuity exhibited by the approximation equation (8). 107 

  108 
 109 
Figure 1.Typical variation of Resistance with       Figure 2.Typical variation of conductivity 110 
Temperature for a PTC thermistor.                       with Temperature for a PTC thermistor. 111 
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The typical Resistance/Temperature characteristic is shown in figure 1 [15].From this we 114 
obtain a proportional conductivity/resistance characteristics as shown in figure (2) 115 
 Following the disparity in the qualitative behavior of )(u in the physical PTC 116 

characteristics and the approximation in equation (8), many researchers began to search for 117 
a more appropriate representation for the electrical conductivity. 118 
 119 
2.2. A NEW APPROXIMATION OF THE ELCTRICAL CONDUCTIVITY 120 

In this paper, we present a new approximation to the electrical conductivity as given below 121 
20)(tanh)()(  uuku     (9) 122 

This is a hyperbolic tangent function where 2 is the initial conductivity,   is the final 123 

conductivity,  is the normalised critical temperature, u is the normalised temperature and 124 

k controls the slope. This approximation is so generic that by adjusting the slope it can be 125 
made to approximate the step function. For example taking 500k , we have a step function 126 

approximation. 127 
Consider an initial conductivity 12  , a critical temperature 1u and 100k , the 128 

hyperbolic tangent approximation can be written as 129 
20)1(100tan)5.0(5.0)(  uuu    (10) 130 

A graph of a typical conductivity variation with temperature (normalized) alongside that of the 131 
hyperbolic tangent approximation is presented in figure (3). 132 

 133 
Figure 3.  Graph of typical Conductivity variation with Temperature and that of the 134 
new approximation.  135 
 136 
This electrical conductivity given by the hyperbolic tangent function is defined for the full 137 
range 20  u and covers the traditional points of discontinuities, assumed in most 138 
reported studies. 139 
However our new approximation, when evaluated at 1u gives 1)( u , which in related 140 

literature, corresponds to the cold phase; and when evaluated at 1u  gives  )(u , 141 

which is traditionally referred to as the hot phase. In the same manner, the warm phase may 142 
be characterised by values of u near unity. 143 
The exact solution of the electric potential problem (5), (6) and (7) is easily found to be  144 

xtx ),(  ( 10  x and 0t ) and the thermistor problem is reduced to a heat 145 

conduction description 146 
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supplemented by boundary conditions (2) and (3) and the initial condition (4). 148 
 149 
2.3. EXACT STEADY-STATE SOLUTIONS 150 

At steady-state the time derivative in the model equation vanishes, we obtain the steady 151 
state solution for each phase as follows. For the cold and hot phases the steady state 152 
solution is obtained by standard analytical methods and results obtained are same with [7]. 153 
 154 
2.3.1. Cold phase ( ൏ ݐ   ሻ    155࢚

In this phase 
c

UtxU  ),(0 and  1)( U , so the steady state equation is  156 
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 157 

subject to boundary conditions (2) and (3) and the solution is 158 
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 (13) 160 
Enforcing the condition 1)0( u ,we have  161 
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2.3.2. Hot Phase (ࢁሺ࢞, ሻ࢚  ሻࢁሺ࣌ and ࢉࢁ  ൌ  ሻ.  164ࢾ

The steady state equation is  165 
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subject to boundary conditions (2) and (3) and the solution is  167 
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Enforcing the condition 1)1( u , we have  169 
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 171 
2.3.3. Warm phase 172 

The electrical conductivity is described by  173 
)1(100tan)5.0(5.0)(  uu  and the steady state equation is given by 174 
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we write (18) as 178 
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where )5.0(    182 

We now solve (19) by the method of asymptotic expansion [16].  183 
Assume a solution of the form 184 
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So that (22) can be written as  194 
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In polynomial form this can be written as 199 
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Applying the boundary conditions and simplifying, we have 202 
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Substituting (27) we have 204 
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Enforcing the condition )0(1)1( uu  , we have 206 
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 208 
2.4. NUMERICAL SOLUTION (METHOD OF LINES) 209 

The method of lines is regarded as a special finite difference method but more effective with 210 
respect to accuracy and computational time than the regular finite difference method. The 211 
method of lines (MOL) involves discretising the spatial domain and thus replacing the partial 212 
differential equation with a vector system of ordinary differential equations(ODEs), for which 213 
efficient and effective integrating packages have been developed [17,18,19]. The MATLAB 214 
package has strong vector and matrix handling capabilities, a good set of ODE solvers, and 215 
an extensive functionality which can be used to implement the MOL [19]. MOL has the 216 
merits of both the finite difference method and analytical method. Results on stability of the 217 
method are given by [20, 21]. 218 
 219 
We apply finite difference method to discretise the spatial domain ]1,0(x of equation (11). 220 

 Using the usual central difference approximation for
2

2

x

u



 , we have 221 

)(
)(

2 2
2

11
2

2
xO

x

uu

x

u iuii 







 

      222 
Substituting in (11) gives 223 
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The second order approximation for xu is given as 225 
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Applying this to the boundary condition (2) we have 227 

11   ii uu  1i       (31) 228 

And to the boundary conditions (3) we have 229 
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  231 
substituting(31) and (32) in (30) gives a system of approximating ordinary differential 232 
equations. 233 
For the warm phase, the system can be written as  234 
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 238 
2.5. Stability Analysis 239 

We apply the indirect method of Lyapunov to determine the local stability of the system. 240 
According to Lyapunov, if the linearization of the system exists, its stability determines the 241 
local stability of the original system [21]. 242 
 243 
Theorem1. (Lyapunov’s indirect method) 244 

Let 0x be an equilibrium point for the nonlinear system )(xfx , where nRDf :  is 245 

continuously differentiable and D  is a neighborhood of the origin. Let the Jacobian matrix 246 
A  at 0x  be: 247 

0



xx

f
A . Let nii ,,1,   be the eigenvalues of A . Then, 248 

1. The origin is asymptotically stable if 0)Re( i for all eigenvalue of A . 249 

2. The origin is unstable if 0)Re( i  for any of the eigenvalues of A [23]. 250 

Evaluating the eigenvalues of the linearized equation for 2000 , 2.0   and 05.0x , 251 

shows that all eigenvalues are real and negative; hence the solution is stable. 252 
 253 
This system of ordinary differential equations (ODEs) is then integrated using the Matlab 254 
integrator ode15s which is a stiff integrator since the ordinary differential equations in the 255 
system are sufficiently stiff. The values of   and   used are chosen to satisfy inequalities 256 

(14), (17) and (29) obtained from exact steady state solution.   257 
 258 

 259 

3. Results 260 

Results obtained are shown in table 1. 261 
 262 
 263 
 264 
 265 
 266 
 267 
 268 
 269 
 270 
 271 



 

 

Table 1   272 
 273 
Table of exact solution and numerical solutions by method of lines 274 
 275 
 276 

 
 
x  

 

COLD PHASE WARM PHASE HOT PHASE 

)( xu
(Exact) 

)( xu
(Numerical)

)( xu
(Exact) 

)( xu
(Numerical) 

)( xu
(Exact) 

)( xu
(Numerical) 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.5500 
0.5495 
0.5480 
0.5455 
0.5420 
0.5375 
0.5320 
0.5255 
0.5180 
0.5095 
0.5000 

0.550000 
0.549500 
0.548000 
0.545500 
0.542000 
0.537500 
0.532000 
0.525500 
0.518000 
0.509500 
0.500000 

1.1 
1.099 
1.096 
1.091 
1.084 
1.075 
1.064 
1.051 
1.036 
1.019 
1.000 

1.105563 
1.105102 
1.03707 

1.101377 
1.097925 
1.093381 
1.087693 
1.080428 
1.071730 
1.061253 
1.048011 

5.500 
5.495 
5.480 
5.455 
5.420 
5.375 
5.320 
5.255 
5.180 
5.095 
5.000 

5.50000 
5.49500 
5.48000 
5.45500 
5.42000 
5.37500 
5.32000 
5.25500 
5.18000 
5.09500 
5.00000 

 277 
 278 

4. CONCLUSION 279 

We have presented a mathematical model of the PTC thermistor problem with a new 280 
conductivity which is a hyperbolic-tangent approximation and describes the qualitative 281 
behaviour of the evolving solution of the thermistor in the entire domain. Result obtained for 282 
all the phases of temperature evolution shows that our approximation is a better 283 
representation for the electrical conductivity of the PTC thermistor. Moreover, for numerical 284 
techniques the absence of a discontinuity will improve stability and convergence properties, 285 
the new electrical conductivity is therefore a good improvement over the step function 286 
conductivity and the modified electrical conductivity in that it describes the conductivity and 287 
takes care of the discontinuities. We have also shown that the method of lines is a good 288 
method for solving the problem since results obtained are in good agreement with exact 289 
steady state solutions. In addition we showed that the solutions obtained by the method of 290 
lines are stable solutions. 291 
 292 
REFERENCES 293 
 294 

1. Kutluay S, and Esen A (2005): Numerical solutions of the thermistor problem by 295 
spline finite elements. Applied Mathematics and Computation 162, 475–489 296 

2. Cata S A Numerical solution of the thermistor problem Applied Mathematics and 297 
Computation 152 (2004) 743–757 298 

3. Zho S and Westbrook D R (1997): Numerical solutions of the thermistor equation. 299 
Journal of Computational and Applied Mathematics 79, 101-118 300 

4. Wiedmann J, (1997): “The thermistor problem” Nonlinear Differential. Equations and 301 
Applications 4, 133–148. 302 

5. Cimatti G (1989): Remark on existence and uniqueness for the thermistor problem 303 
under mixed boundary conditions; Q. Appl. Maths. 47 117–121. 304 

6. Howison S.D, Rodrigues J.F and Shillor M (1993): Stationary solutions to the 305 
thermistor problem; J. Math. Anal. Appl. 174, 573–588. 306 

7. Antontsev, S and Chipot, M (1994).The thermistor problem: existence, smoothness 307 
uniqueness, blowup. SIAM Journal on Mathematical Analysis, 25(4):1128-1156. 308 



 

 

8. Wood A S and Kutluay S (1995): A heat balance integral model of the thermistor; Int. 309 
Journal of Heat Mass Transfer Vol. 38 No 10 Pp 1831 – 1840. 310 

9. Bahadir A.R (2002): Steady State Solution of the PTC thermistor problem using a 311 
quadrqtic spline element method; Mathematical Problems in Engineering Vol. 8(2), 312 
pp 101 – 109 313 

10.  Fowler A.C, Frgaard and Howson S.D (1992) Temperature surges in current limiting 314 
circuit devices. SIAM Journal of Applied Mathematics Vol. 52, issue 4, 998 -1011 315 

11. Kutluay S, Wood A S, and Esen A (2006): A heat balance integral solution of the 316 
thermistor problem with a modified electrical conductivity; Applied Mathematical 317 
Modelling 30,  386–394 318 

12. Kutluay S, and Wood A S A (2004): Numerical solutions of the thermistor 319 
problemwith ramp electrical conductivity Applied Mathematics and Computation 148, 320 
145–162 321 

13. Kutluay S, and Esen A (2005): Numerical solutions of the thermistor problem by 322 
spline finite elements. Applied Mathematics and Computation 162, 475–489 323 

14. Kutluay S, and Esen A (2005): Finite element approach to the PTC thermistor 324 
problem. Applied Mathematics and Computation 163, 147–167 325 

15. Vishay BComponents (2009): PTCCL..H…BE, 30 V – 60 V PTC thermistors for 326 
overload Protection. http:www.vishay.com/docs/29085/29805.pdf 327 

16. Hinch E J (1991): Perturbation Methods, Cambrodge Texts in Applied Mathematics, 328 
Cambridge University Press. 329 

17. Lee H S, Matthews CJ, Braddock R D, Sander G.C and Gandola F (2004): A 330 
MATLAB method of lines template for transport equations; Environmental Modelling 331 
& Software 19, 603–614 332 

18. Schiesser W E and Griffiths G W (2009): A Compendium of Partial differential 333 
Equation Models: Method of lines Analysis with MATLAB, Cambridge University 334 
Press, New York 335 

19. Ashino R,Nagase M and Vaillancourt R (2000): Behind and Beyond Matlab: 336 
Computers and Mathematics with applications, 40; 491 – 512 337 

20. Reddy S C and Trefethen L N (1990): Lax stability of fully discrete spectral methods 338 
via stability regions and pseudo-eigenvalues; Computer methods and application in 339 
Mechanics and Engineering 80, 147 – 164. 340 

21. Reddy S C and Trefethen L N (1992): Stability of the method of lines; Numerical 341 
Mathematics 62, 235 – 267. 342 

 343 

0                    0                    


