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Abstract
This thesis is about Construction of Polynomials in Galois fields Using Normal Bases in finite fields.In
this piece of work, we discussed the following in the text; irreducible polynomials, primitive polynomials,
field, Galois field or finite fields, and the order of a finite field. We found the actual construction of
polynomials in GF (2m) with degree less than or equal to m−1 and also illustrated how this construction
can be done using normal bases. Finally, we found the general rule for construction of GF (pm) using
normal bases and even the rule for producing reducible polynomials.

Mathematics Subject Classification: 20D99
Keywords: Irreducible polynomials, Primitive polynomials, Field, Finite fields, Order of a finite field,
Normal Bases.

1 Introduction

1.1 Background Of Study

Normal basis in field theory is a special kind of basis for Galois extensions of finite degree, characterised
as forming a single orbit for the Galois group. Every finite Galois extension of fields has a normal basis.
In algebraic number theory, the study of the more refined question of the existence of a normal integral
basis is part of Galois module theory.

In the case of finite fields, this means that each of the bases elements is related to any one of them
by applying the Frobenius p − th power mapping repeatedly, where p is the characteristic of the field.
Let GF(pm) be a field with pm elements, and γ an element of it such that the n elements are linearly
independent. Then this set forms a normal basis for GF(pm) over GF(p). In addition, let Fq be the finite
field of order q, where q = pm, p is a prime and m is a natural number. Its extension of degree n, Fqm , is
generated algebraically over Fq by a root γ of a (monic) irreducible polynomial f(x) ∈ Fq[x] of degree m,
i.e., Fqm = Fq(γ). The Galois group of Fqm over Fq is cyclic and is generated by the Frobenius mapping

φ(γ) = γq , γ ∈ Fqm .The set of roots of f then comprises the conjugates {γ, γq, · · · , γqm−1} of γ, [5].

Often it is helpful if γ is a generator of the cyclic multiplicative group F ∗qm (of order qm−1), in which case
γ is called a primitive element of Fqm . The conjugates of a primitive element γ of Fqm form the roots of
a (monic irreducible) primitive polynomial f(x) ∈ Fq[x] of degree m.

Alternatively, an element γ that generates Fpm additively could be sought. Though the additive structure
of Fpm is apparently more complicated, viewed as a GF -module (G being the Galois group of Fpm over
Fq), Fpm is cyclic too. The classical expression of this the normal basis theorem is that there exists an
element γ whose conjugates form a basis of Fpm over Fp.

The irreducible polynomial f(x) ∈ Fq[x] of degree m whose roots constitute such a basis is called a normal
basis. Then f is referred to as a normal polynomial over Fq and any of its root is called a normal element.
Now, because of the subtleties of the GF−module structure, it is neither automatic that a normal basis
of Fpm over Fp is a normal basis over an intermediate field Fpd (where d | m) nor vice versa.
There is still less connection between the multiplicative and additive structures of Fpm , a primitive poly-
nomial f(x) ∈ Fp[x] of degree m need not be normal, or a primitive polynomial normal. Nevertheless, for
every extension Fpm/Fp, by Lenstra and Schoof (1987), there exists a polynomial f(x) ∈ Fp[x] of degree
m which is both primitive and normal.
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The construction of normal basis of Fp over Fpm is another challenging area. In view of that, much work
has not been done in construction of irreducible polynomials in F2m [x] using normal bases. In this work,
a computationally simple construction of polynomials using normal bases over F2n is presented and also
to deduce the general rule for constructing polynomials in the field under consideration.

2 Preliminary Definitions And Basic Theorems

In this section we try to define some terms and its supporting theorems and proofs.

2.1 Irreducible Polynomial

2.1.1 Definition

A polynomial f(x) is irreducible in GF(q) if f(x) cannot be factored into a product of lower-degree
polynomials in GF(q)[x], [2].

1. A polynomial may be irreducible in one ring of polynomials, but reducible in another.

2. In fact, every polynomial is reducible in some ring of polynomials. The term irreducible must thus
be used only with respect to a specific ring of polynomials.

3. In GF(2)[x], if f(x) has degree > 1 and has an even number of terms, then it can?t be irreducible.
Because 1 is its root, and hence x+ 1 is one of its factor.

2.1.1 Theorem
Let f be a polynomial over a field (such as the rationals). Then f is irreducible if and only if g = f(ax+b),
a 6= 0, is irreducible. If f is a polynomial over the integers, then f is irreducible if and only if g = f(x+ b)
is irreducible, [3].

Proof: We shall show the contrapositive, namely, f is reducible over a area if and most effective if
g = f(ax+ b), a 6= 0, is reducible. Suppose f is reducible. Then f = p(x)q(x) for some polynomials p, q
of advantageous diploma. By substituting ax+b for x, we get that g(x) = f(ax+b) = p(ax+b)q(ax+b),
whence g is reducible. Note that there is no difference here between fields and integers. Suppose g =
f(ax + b) is reducible. Then g = g(x) = f(ax + b) = p(x)q(x) for a few polynomials p, q of effective
degree. By substituting a−1(x − b) for x, we get that f(x) = p(a−1(x − b))q(a−1(x − b)), whence f is
reducible. Note that we used the fact that during a area, a non-zero element has an inverse. Over the
integers, if f(x+ b) is reducible, we can duplicate the argument with a = 1.

2.2 Primitive polynomials

2.2.1 Definition

A primitive polynomial is the minimal polynomial of a primitive element of the extension field GF(pm)
or a polynomial f(x) with coefficients in GF(p) = Z/pZ is a primitive polynomial if its degree is m and

it has a root γ in GF(pm) such that {0, 1, γ, γ2, · · · , γpm−1} is the entire field GF(pm), [1].

1. Given an irreducible polynomial of degree m, to test whether it is primitive, divide it from xn−1

where m < n < pm−1. If no such n gives 0 remainder, then it is primitive. (The case when n = pm−1

is guaranteed to have 0 remainder). If there exists n, m < n < pm−1, such that the remainder is
not 0, then it is not primitive.

2. A primitive polynomial p(x) ∈ GF(p)[x] is always irreducible in GF(p)[x] (by definition), but
irreducible polynomials are not always primitive.

3. All irreducible polynomials in GF(2)[x] of degree 2, 3, 5 are primitive.

2.2.1 Theorem
Any minimal polynomial of a primitive element a ∈ GF (pn) with p ≥ 2 prime and n ≥ 1 is a primitive
polynomial, [3].
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Proof : Let f(x) be the minimal polynomial of the primitive field element a. Recall a field always
contains a primitive element and minimal polynomials exist for each field element. We’ll show x is a gen-
erator of the field. Suppose to the contrary, that xm ≡ 1(modf(x), p) for some m, 1 ≤ m ≤ pm−2. Then
there is an g(x) such that xm − 1 ≡ g(x)f(x)(mod p) Since f is a minimal polynomial of a, it has a as a
root: f(a) ≡ 0 (modf(x), p) so am ≡ 1 (modf(x), p) contradicting the primitivity of a because its order is
not maximal. By Fermat’s theorem for fields, the non-zero field element x satisfies xp

n−1 ≡ 1(modf(x), p)
so x is a generator of the field, and f(x) is a primitive polynomial. �

2.3 Field

2.3.1 Definition

A field is one of the fundamental algebraic structures used in abstract algebra. It is a commutative ring
in which the non-zero elements have an inverse or equivalently a ring whose non-zero elements form an
abelian group,that is, ∀ a, b ∈ R, ab = ba under multiplication, [2].

2.3.1 Theorem
For a prime p and a monic irreducible π(x) in Fp[x] of degree m, the ring Fp[x]/(π(x)) is a field of order
pm, [1].

Proof: The cosets modπ(x) are represented by remainders b0 + b1x+ · · ·+ bn−1x
n−1; bi ∈ Fp; and there

are pm of these. Since the π(x) is irreducible, the ring Fp[x]/(π(x)) is a field using the same proof that
Z/(m) is a field when m is prime. �

2.4 Finite Field or Galois Field

2.4.1 Definition

A field is said to be a Galois field if it contains finite number of elements. As with any field, a finite
field is set on which the operations of multiplication, addition, subtraction and division are defined and
satisfied under certain basic rule, [3]. The most common examples of finite fields are given by the integer
modp when p is a prime number.

2.4.1 Theorem
For every prime power pn, a field of order pn exists, [4].

Proof: Taking our cue from the declaration of Lemma 2.9.1, allow F be a field extension of Fp over which
xp

m−x splits absolutely. General theorems from finite theory guarantee there may be such a field. Inside
F , the roots of xp

m − x form the set S = {t ∈ F : tp
m

= t}. This set has length pm since the polynomial

xp
m − x is separable: (xp

m − x)′ = pmxp
m−1 − 1 = −1 because p = 0 in F , so xp

m − x has no roots in
common with its derivative. It splits completely over F and has degree pm, so it has pm roots in F . We
will display S as a sub-field of F . It contains 1 and is simply closed under multiplication and (for nonzero
solutions) inversion. It remains to expose S is an additive group. Since p = 0 in F , (a + b)p = ap + bp

for all a and b in F (the intermediate terms in (a+ b)p coming from the binomial theorem have integral

coefficients

(
p
k

)
, which are all multiples of p and thus vanish in F). Therefore the pth power map

t 7→ tp on F is additive. The map t 7→ tp
n

is also additive since it’s the n-fold composite of t 7→ tp with
itself and the composition of homomorphisms is a homomorphism. The fixed factors of an additive map
are a group under addition, so S is a group under addition. Therefore S is a field of order pn.

2.5 Order of Finite Fields

2.5.1 Definition

The number of elements of a finite field is known as its order. A finite field of order q exists if and most
effective if the order q is a prime power pk (p is a prime number and k is a positive integer).
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2.5.1 Theorem
Any finite field has prime power order, [1].
Proof: For every commutative ring R there is a unique ring homomorphism Z −→ R, given by m 7−→

1 + 1 + · · ·+ 1, if m ≥ 0,

m times

−(1 + 1 + · · ·+ 1), if m < 0.

| m | times
We apply this to the case when R = F is a finite field. The kernel of Z −→ F is nonzero since Z is infinite
and F is finite. Write the kernel as (m) = mZ for an integer m > 0, so Z/(m) embeds as a subring of
F . Any subring of a field is a domain, so m has to be a prime number, say m = p. Therefore there is an
embedding Z/(p) ↪→ F . Viewing F as a vector space over Z/(p), it is finite-dimensional since F is finite.
Letting n = dimZ/(p)(F ) and picking a basis {e1, · · · , en} for F over Z/(p), elements of F can be written
uniquely as c1e1 + · · ·+ cnen, ci ∈ Z/(p): Each coefficient has p choices, so ]F = pn, [4]. �

2.6 Algebraic Extension

2.6.1 Definition

Let E be a finite field extension of F (F is a subfield of E). An element γ ∈ E is said to be al-
gebraic over F if there exist element a1, a2, · · · , an ∈ F , n ≥ 1, not all equal to zero such that
ao + a1γ + a2γ

2 + · · ·+ anγ
n = 0. In other words, an element γ ∈ E is algebraic over F if there exist a

non-constant polynomial q(x) ∈ F [x] such that q(γ) = 0. Otherwise γ is called transcendental over F , [3].

2.6.1 Theorem
Let Fq be a finite field and Fqn a finite extension field. Then Fqn is a simple algebraic extension of Fq

and every primitive element of Fqn can serve as a defining element of Fqn over Fq , [3].
Proof: Let ξ be a primitive element (the generator of the cyclic group F ∗q of Fqn . We clearly have Fq(ξ)
⊆ Fqn . On the other hand, Fq(ξ) contains 0 and all powers of ξ, and so all elements of Fqn . Therefore
Fqn = Fq(ξ). �

2.7 Normal basis

2.7.1 Definition

Let K = Fq and F = Fqm . Then a basis of F over K of the form {γ, γq, · · · , γqm−1}, consisting of a
suitable element γ ∈ F and its conjugates with respect to K, is referred to as a normal bases of F over K.

2.7.1 Theorem
Let N = {β0, β1, · · · , βn−1} be a normal bases of Fqn over Fq. Then an element γ =

∑n−1
i=0 aiβi, where

ai ∈ Fq, is a normal element if and only if the polynomial γ(x) =
∑n−1

i=0 aixi ∈ Fq[x] is relatively prime
to xn − 1, [6].

Proof : Note that


γ
γq

...

γq
n−1

 =


a0 a1 a2 · · · an−1
an−1 a0 a1 · · · an−2

...
...

...
...

a1 a2 a3 · · · a0

 =


β1
β2
...

βn−1

 .

The n elements γ, γq, · · · , γqn−1

are linearly independent if and only if the circulant matrix c[a0, a1, · · · , an−1]

is nonsingular, that is, if and only if the polynomial γ(x) =
∑n−1

i=0 aixi ∈ Fq[x] is relatively prime to xn−1.
�

3 Main Result

3.1 Overview

In this section we present to you how polynomials are constructed in Galois field, and how irreducible
polynomials are constructed in GF (2m) over normal bases.
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3.1.1 Construction Of Polynomial Over GF (pm)

The construction of GF (pm) is basically given as;

Fpm = {a0 + a1x+ a2x
2 + · · ·+ am−1x

m−1 : ai ∈ Fp} = {0, 1, α, α2, · · · , αpm−2}, αpm−1 = 1,

π(α) = 0, is a set of polynomials with coefficient in Fp of degree less than or equal to m− 1.

3.1.2 Multiplication(•) In Fp

In Constructing polynomials in Fp[x], we need an irreducible polynomial with degree π(x) with degree m
in Fp[x] such that Fp[x]modπ(x) produces a polynomial as a remainder which will be of degree less than
or equal to m− 1 and with the choice of π(x), we take π(x) = 0.

For illustration, we first let q = 4 = 22 = pm.
Fpm = {polynomials of degree less than or equal to 1 : ai ∈ Fp} where p = 2 and m = 2.
The possible elements of F4 = {0, 1, α, α2}. Taking an irreducible polynomial of degree two, that is,
π(x) = x2 + x+ 1 and for π(x) = 0 we have x2 + x+ 1 = 0, implying that α2 = x2 = x+ 1. So we have
the construction as;

F4 = {0, 1, x, x+ 1} = {0, 1, α, α2}, where α3 = 1 and α4 = 0.

Let also consider the case when q = 8 = 23 = pm.
Fpm = {polynomials of degree less than or equal to 2 : ai ∈ Fp} where p = 2,m = 3.
The possible elements of F8 = {0, 1, α, α2, α3, α4, α5, α6} where α7 = 1 and α8 = 0. Choosing an irre-
ducible polynomial of degree three, ie. π(x) = x3 + x + 1, for π(x) = 0, implying that x3 = x + 1, we
have;

α = x α5 = x2 + x+ 1
α2 = x2 α6 = x2 + 1
α3 = x+ 1 α7 = 1
α4 = x2 + x α8 = 0

∴ F8 = {0, 1, x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1} = {0, 1, α, α2, α3, α4, α5, α6} where α7 = 1 in F8.

Let q = 16 = 24 = pm.
Fpm = {polynomials of degree less than or equal to 3 : ai ∈ Fp} where p = 2,m = 4.
The possible elements of F ∗16 = {1, α, α2, α3, α4, α5, α6, α7, α8, α9, α10, α11, α12, α13, α14, α15}. Choosing
an irreducible polynomial of degree four, ie. π(x) = x4 + x+ 1, for π(x) = 0, implying that x4 = x+ 1,
we have;

α = x α6 = x3 + x2 α11 = x3 + x2 + x
α2 = x2 α7 = x3 + x+ 1 α12 = x3 + x2 + 1
α3 = x3 α8 = x2 + 1 α13 = x3 + x2 + 1
α4 = x+ 1 α9 = x3 + x α14 = x3 + 1
α5 = x2 + x α10 = x2 + x+ 1 α15 = 1

∴ F ∗16 = {1, x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1, x3, x3 + 1, x3 + x, x3 + x2, x3 + x+ 1, x3 + x2 + x, x3 +
x2 + x+ 1, x3 + x2 + 1} = {1, α, α2, α3, α4, α5, α6, α7, α8, α9, α10, α11, α12, α13, α14, α15} where α15 = 1 in
F ∗16 and each element has a multiplicative inverse.

3.1.3 General Rule for Producing Reducible Polynomials

The general rule below can be used to produce reducible polynomials which is a product of irreducible
polynomials where at least one is a primitive polynomial which we used in constructing of Galois field
above using normal bases.

Let consider GF (8), we have (x3 + x2 + 1)(x+ 1) = x4 + x2 + x+ 1

= x8/2 + x8/4 + x+ 1 8/2∑
i=2j

x8/i

+ x+ 1 =

(
4∑

i=2j

x8/i

)
+ x+ 1 : f or j = 1, and 2
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Therefore we finally have the general rule for constructing reducible polynomial as;

f(x) =

 q/2∑
i=2j

xq/i

+ x+ 1

where j = 1, 2, 3, · · · , q is the order of GF (pm), that is GF (2m) = GF (q) and
(∑q/2

i=2j x
q/i
)

is zero when

q ≤ 2.

3.1.4 Multiplication In F2m Using Normal Bases

Here, we first consider multiplication in F4 to see how the construction is done using normal bases. Let
q = 4 = 22 = pm. Then GF (4) = GF (22) = F2(j)/(j2 + j + 1) which is a second degree polynomial.
From j2 + j + 1 we have j2 + j = 1 and j2 = j + 1, implying that j2, j are the bases of GF (4). We know
that the polynomial for GF (4) is x2 + x + 1. Therefore we have the normal bases as j = (0 1) and
j2 = j.j = (1 0).
For j3 = j.j2 = j(j + 1) = j2 + j , adding these bases, we have
j3 = (1 0) + (0 1) = (1 1).

We further consider q = 8 = 23 = pm.
The GF (8) = GF (23) = F2(j)/(j3+j2+1) which is a polynomial of degree three. From α(j) = j3+j2+1,
for α(j) = 0, we have j3 = j2 + 1. But the reducible polynomial for GF (8) is x4 + x2 + x+ 1 = 0.
We have, x4 + x2 + x + 1 = 0 = (x3 + x2 + 1)(x + 1) showing that x3 + x2 + 1 is the irreducible poly-
nomial because its degree is equal to m of GF (8). So, we multiply through the equation by j to have
j3.j = j(j2 + 1).
Then, j4 = j3 + j but j3 = j2 + 1, connoting that, j4 = j2 + j+ 1, hence the bases of GF (8) are j, j2, j4.
The normal bases for GF (8) are as follow;
j = (0 0 1) , j = (0 1 0) , j = (1 0 0) since j4 + j2 + j = 1 in GF (8).
But we know that, j4 = j3 + j.
j3 = j4 + j, so adding these bases, we have
j3 = (1 0 0) + (0 0 1) = (1 0 1).

Also, j5 = j.j4 but j4 = j2 + j + 1
j5 = j.(j2 + j + 1) = j3 + j2 + j. We have the addition as;
j5 = (1 0 1) + (0 1 0) + (0 0 1)
J5 = (1 1 0)

For j6 = j2.j4 = j2(j2 + j + 1) = j4 + j3 + j2, adding the bases, we have
j6 = (1 0 0) + (1 0 1) + (0 1 0)
j6 = (0 1 1)

For j8 = j4.j4 = j4(j2 + j + 1) = j6 + j5 + j4

j8 = (0 1 1) + (1 1 0) + (1 0 0)
j8 = (0 0 1).

Next, let consider the case when q = 16 = 24 = pm. The GF(16) =GF(24) is a polynomial of degree 4.
π(j) = 1 + j2 + j4 + j8 and squaring π(j), π(j)2 = (1 + j + j2 + j4 + j8)2 = (1 + j2 + j4 + j8+16).
Therefore we have the bases j, j2, j4, j8, hence j, j2, j4, j8 = 1 1 1 1, implying that j is the root of
the polynomial x8 + x4 + x2 + x+ 1 = 0 which is the reducing polynomial for GF(16). We factorize the
polynomial x8 + x4 + x2 + x+ 1 = (x4 + x3 + 1)(x4 + x3 + x2 + x+ 1) into two irreducible polynomials.
This, thus, gives two choices for the construction.
The normal bases for GF(16) are as follow;
j = (0 0 0 1), j2 = (0 0 1 0), j4 = (0 1 0 0) and j8 = (1 0 0 0) since j + j2 + j4 + j8 = (1 1 1 1). So
considering the irreducible polynomial x4 + x3 + 1. j3 = j.j2 but from the irreducible polynomial, we
have j3 = j4 + 1 and j4 = j3 + 1. But we know that j4 = j8 + j2 + j + 1.
j3 + 1 = j8 + j2 + j + 1 + 1⇒ j3 = j8 + j2 + j
= (1 0 0 0) + (0 0 1 0) + (0 0 0 1)
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j3 = (1 0 1 1)

for j5 = j.j4 = j(j3 + 1) = j4 + j
= (0 1 0 0) + (0 0 0 1)
j5 = (0 1 0 1)

for j9 = j.j8 = j(j4 + j2 + j + 1) = j5 + j3 + j2 + j
j9 = (0 1 0 1) + (1 0 1 1) + (0 0 1 0) + (0 0 0 1) = (1 1 0 1)

for j6 = j2.j4 = j2(j3 + 1) = j5 + j2

= (0 1 0 1) + (0 0 1 0)
j6 = (0 1 1 1)

for j10 = j2.j8 = j2(j4 + j2 + j + 1) = j6 + j4 + j3 + j2

= (0 1 1 1) + (0 0 1 0) + (1 0 1 1) + (0 1 0 0)
j10 = (1 0 1 0)

for j12 = j4.j8 = j4(j4 + j2 + j + 1) = j8 + j6 + j5 + j4

= (1 0 0 0) + (0 1 1 1) + (0 1 0 1) + (0 1 0 0)
j12 = (1 1 1 0)

for j16 = j8.j8 = j8(j4 + j2 + j + 1) = j12 + j10 + j9 + j8

= (1 1 1 0) + (1 0 1 0) + (1 1 0 1) + (1 0 0 0)
j16 = (0 0 0 1)

We again illustrate the multiplication of the normal bases using x4 + x3 + x2 + x + 1. j = (0 0 0 1),
j2 = (0 0 1 0), j4 = (0 1 0 0) and j8 = (1 0 0 0).
For j3 = j.j2 but from the irreducible polynomial, j3 = j4 + j2 + j + 1 and 1 = j4 + j3 + j2 + j. Also,
1 = j8 + j4 + j2 + j
Then j4 + j3 + j2 + j = j8 + j4 + j2 + j
j3 = j8

j3 = (1 0 0 0)

for j5 = j.j4

= j(j3 + j2 + j + 1)
= j4 + j3 + j2 + j = (0 1 0 0) + (1 0 0 0) + (0 0 1 0) + (0 0 0 1)
j5 = (1 1 1 1)

for j6 = j2.j4 = j2(j3 + j2 + j + 1) = j5 + j4 + j3 + j2

= (1 1 1 1) + (0 1 0 0) + (1 0 0 0) + (0 0 1 0)
j6 = (0 0 0 1)

for j9 = j.j8; But j8 = j4 + j2 + j + 1
j9 = j(j4 + j2 + j + 1) = j5 + j3 + j2 + j
= (1 1 1 1) + (1 0 0 0) + (0 0 1 0) + (0 0 0 1)
j9 = (0 1 0 0)

for j10 = j2.j8 = j2(j4 + j2 + j + 1) = j6 + j4 + j3 + j2

= (1 0 0 1) + (0 1 0 0) + (1 0 0 0) + (0 0 1 0)
j10 = (1 1 1 1)

for j12 = j4.j8 = j4(j4 + j2 + j + 1) = j8 + j6 + j5 + j4

= (1 0 0 0) + (0 0 0 1) + (1 1 1 1) + (0 1 0 0)
j12 = (0 1 0 0)
for j16 = j8.j8 = j8(j4 + j2 + j + 1) = (j12 + j10 + j9 + j8)
= (0 0 1 0) + (1 1 1 1) + (0 1 0 0) + (1 0 0 0)
j16 = (0 0 0 1)
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We consider also the case of q = 32 = 25 = pm which is a polynomial of degree five. The bases associated
with GF(32) are j, j2, j4, j8, j16. Therefore the polynomial is x16 + x8 + x4 + x2 + x + 1. We factorize
and get the associated irreducible polynomials
x16 +x8 +x4 +x2 +x+1 = (x+1)(x5 +x4 +x2 +x+1)(x5 +x4 +x3 +x+1)(x5 +x4 +x3 +x2 +1) where
(x5+x4+x2+x+1), (x5+x4+x3+x+1), (x5+x4+x3+x2+1) are the irreducible polynomials and these
gives us three options. The normal bases for using x5 + x4 + x2 + x+ 1 is as follows; j = (0 0 0 0 1),j2 =
(0 0 0 1 0), j4 = (0 0 1 0 0),j8 = (0 1 0 0 0),j16 = (1 0 0 0 0). Since α = j+ j2 + j4 + j8 + j16 = (1 1 1 1).
j3 = j.j2, but from the irreducible polynomial, we have j5 = j4 + j2 + j+ 1 also j+ j2 + j4 + j8 + j16 = 1
j6 = j.j5 = j(j4 + j2 + j + 1) = j5 + j3 + j2 + j
= j4 + j2 + j + 1 + j3 + j2 + j
j6 = j4 + j3 + 1

j7 = j.j6 = j5 + j4 + j
= j4 + j2 + j + 1 + j4 + j
j7 = j2 + 1 = j2 + j + j2 + j4 + j8 + j16 = j + j4 + j8 + j16

j8 = j.j7 = j3 + j
j3 = j8 + j = (0 1 0 0 0) + (0 0 0 0 1)
j3 = (0 1 0 0 1)

We know that from above, j5 = j4 + j2 + j + 1 and 1 = j + j2 + j4 + j8 + j16

Then, j5 = j4 + j2 + j + j + j2 + j4 + j8 + j16

= j8 + j16

= (0 1 0 0 0) + (1 0 0 0 1)
j5 = (1 1 0 0 0)

We also know that j6 = j4 + j3 + 1, therefore, j6 = j4 + j3 + j16 + j8 + j4 + j2 + j
= j16 + j8 + j3 + j2 + j
= (1 0 0 0 0) + (0 1 0 0 0) + (0 1 0 0 1) + (0 0 0 1 0) + (0 0 0 0 1)
j6 = (1 0 0 1 0)

For j.j8 = j9 = j(j3 + j) = j4 + j2

j9 = (0 0 1 0 0) + (0 0 0 1 0)
j9 = (0 0 1 1 0)

For j.j8 = j9 = j(j3 + j) = j4 + j2

j9 = (0 0 1 0 0) + (0 0 0 1 0)
j9 = (0 0 1 1 0)

For j10 = j2.j8 = j2(j3 + j) = j5 + j3

= (1 1 0 0 0) + (0 1 0 0 1)
j10 = (1 0 0 0 1)

For j12 = j4.j8 = j4(j3 + j) = j7 + j5

But j7 = j16 + j8 + j4 + j
j12 = j16 + j8 + j5 + j4 + j
= (1 0 0 0 0) + (0 1 0 0 0) + (1 1 0 0 0) + (0 0 1 0 0) + (0 0 0 0 1)
j12 = (0 0 1 0 1)

For j17 = j.j16 but = (j8)2 = (j3 + j)2 = j7 + j5

Then, j17 = j(j3 + j)2 = j(j6 + j2) = (j7 + j3)
j17 = j + j4 + j8 + j16 + j3 but j3 = j8 + j
= j + j4 + j8 + j16 + j8 + j
= j16 + j4

= (1 0 0 0 0) + (0 0 1 0 0)
j17 = (1 0 1 0 0)

For j18 = j2.j16 = j2(j6 + j2) = j8 + j4

= (0 1 0 0 0) + (0 0 1 0 0)
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j18 = (0 1 1 0 0)

For j20 = j16.j4 = j4(j6 + j2) = j10 + j6

= (1 0 0 0 1) + (1 0 0 1 0)
j20 = (0 0 0 1 1)

For j24 = j16.j8 = j8(j6 + j2) = j14 + j10

but j14 = j7.j7 = (j2 + 1)2 = j4 + 1 = j16 + j8 + j4 + j + j4 + j2

= j16 + j8 + j
Hence, j24 = j16 + j10 + j8 + j2 + j
= (1 0 0 0 1) + (1 0 0 0 0) + (0 1 0 0 0) + (0 0 0 1 0) + (0 0 0 0 1)
j24 = (0 1 0 1 0)

For j32 = (j16)2 = (j6 + j2)2 = j12 + j4

= (0 0 1 0 1) + (0 0 1 0 0)
j32 = (0 0 0 0 1)

For the irreducible polynomial x5 + x4 + x3 + x + 1, we have j = (0 0 0 0 1),j2 = (0 0 0 1 0), j4 =
(0 0 1 0 1),j8 = (0 1 0 0 0),j16 = (1 0 0 0 0) and 1 = j + j2 + j4 + j8 + j16. For j3 = j2.j, but from the
polynomial, j5 = j4 + j3 + j + 1
j6 = j.j5 = j(j4 + j3 + j + 1) = j5 + j4 + j2 + j
= j4 + j3 + j + 1 + j4 + j2 + j
j6 = j3 + j2 + 1

j7 = j.j6 = j4 + j3 + j

j8 = j.j7 = j5 + j4 + j2 = j4 + j3 + j + 1 + j4 + j2

j8 = j3 + j2 + j + 1 = j3 + j2 + j + j + j2 + j4 + j8 + j16

j8 = j16 + j8 + j4 + j3

Then, j3 = j8 + j8 + j16 + j4

j3 = j16 + j8 + j4 = (1 0 0 0 0) + (0 0 1 0 0)
j3 = (1 0 1 0 0)

We know that j5 = j4 + j3 + j + 1 = j4 + j3 + j + j + j2 + j4 + j8 + j16

= j16 + j8 + j3 + j2 = (1 0 1 0 0) + (1 0 0 0 0) + (0 1 0 0 0) + (0 0 0 1 0)
j3 = (0 0 1 1 0)

We also know that j6 = j3 + j2 + 1 = j3 + j2 + j + j + j2 + j4 + j8 + j16 = j16 + j8 + j4 + j3 + j
= (1 0 0 0 0) + (0 1 0 0 0) + (0 0 1 0 0) + (1 0 1 0 0) + (0 0 0 0 1)
j6 = (0 1 0 0 1)

For j9 = j8.j = j(j3 + j2 + j + 1) = j4 + j3 + j2 + j
= (0 0 1 0 0) + (1 0 1 0 0) + (0 0 0 1 0) + (0 0 0 0 1)
j9 = (1 0 0 1 1)

For j10 = j2.j8 = j2(j3 + j2 + j + 1) = j5 + j4 + j3 + j(2)
= (0 1 1 1 0) + (0 0 1 0 0) + (1 0 1 0 0) + (0 0 0 1 0)
j10 = (1 1 1 0 0)

For j12 = j4.j8 = j4(j3 + j2 + j + 1) = j7 + j6 + j5 + j4

but j7 = j4 + j3 + j
Then, j12 = j4 + j3 + j + j6 + j5 + j(4) = j6 + j5 + j3 + j
= (1 0 1 0 0) + (0 0 0 0 1) + (0 1 0 0 1) + (0 1 1 1 0)
j12 = (1 0 0 1 0)

For j17 = j.j16 = j.(j8)2 = j(j3 + j2 + j + 1)2 = j.(j6 + j4 + j2 + 1) = j7 + j5 + j3 + j
but j7 = j4 + j3 + j
Then, j17 = j4 + j3 + j + j5 + j3 + j = j5 + j4
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= (0 1 1 1 0) + (0 0 1 0 0)
j17 = (0 1 0 1 0)

For j18 = j2.j16 = j2(j3 + j2 + j + 1)2 = j2(j6 + j4 + j2 + 1) = j8 + j6 + j4 + j2

= (0 1 0 0 0) + (0 1 0 0 1) + (0 0 1 0 0) + (0 0 0 1 0)
j18 = (0 0 1 1 1)

For j20 = j4.j16 = j4(j3 + j2 + j + 1)2 = j4(j6 + j4 + j2 + 1) = j10 + j8 + j6 + j4

= (1 1 1 0 0) + (0 1 0 0 0) + (0 1 0 0 1) + (0 0 1 0 0)
j20 = (1 1 0 0 1)

For j24 = j8.j16 = j8(j6 + j4 + j2 + 1) = j14 + j12 + j10 + j8

but j14 = (j7)2 = (j4 + j3 + j)2 = j8 + j6 + j2

Hence, j24 = j8 + j6 + j2 + j12 + j10 + j8

= j12 + j10 + j6 + j2

= (1 0 0 1 0) + (1 1 1 0 0) + (0 1 0 0 1) + (0 0 0 1 0)
j24 = (0 0 1 0 1)

For j32 = (j16)2 = (j6 + j4 + j2 + 1)2 = j12 + j8 + j4 + 1 = j12 + j8 + j4 + j + j2 + j4 + j8 + j16

= j16 + j12 + j2 + j
= (1 0 0 0 0) + (1 0 0 1 0) + (0 0 0 1 0) + (0 0 0 0 1)
j32 = (0 0 0 0 1)

For the irreducible polynomial x5 + x4 + x3 + x2 + 1, we have the normal bases as:
j2.j = j3, but from the polynomial, j5 = j4 + j3 + j2 + j + 1
j6 = j.j5 = j5 + j4 + j3 + j = j4 + j3 + j2 + 1 + j4 + j3 + j
j6 = j2 + j + 1

j7 = j.j6 = j(j2 + j + 1) = j2 + j2 + j
j8 = j.j7 = j4 + j3 + j2

= j3 = j8 + j4 + j2

= (1 0 0 0 0) + (0 1 0 0 0) + (0 0 1 0 0)
j3 = (0 1 1 1 0)

j5 = j4 + j3 + j2 + 1 = j4 + j3 + j2 + j16 + j8 + j4 + j2 + j
= j16 + j8 + j3

= (1 0 0 0 0) + (0 1 0 0 0) + (0 1 1 1 0)
j5 = (1 0 1 1 1)

j6 = j2 + j + 1 = j2 + j + j + j2 + j4 + j8 + j16 = j16 + j8 + j4

= (1 0 0 0 0) + (0 1 0 0 0) + (0 0 1 0 0)
j6 = (1 1 1 0 0)

j9 = j.j8 = j(j4 + j3 + j2) = j5 + j4 + j3

= (1 0 1 1 1) + (0 0 1 0 0) + (0 1 1 1 0)
j9 = (1 1 1 0 1)

j10 = j2.j8 = j2(j4 + j3 + j2) = j6 + j5 + j4

= (1 1 1 0 0) + (1 0 1 1 1) + (0 0 1 0 0)
j10 = (0 1 1 1 1)

j12 = j4.j8 = j4(j4 + j3 + j2) = j8 + j7 + j6 = j8 + j6 + j3 + j2 + j
= (0 1 0 0 0) + (1 1 1 0 0) + (0 1 1 1 0) + (0 0 0 1 0) + (0 0 0 0 1)
j12 = (1 1 0 0 1)

j17 = j.j16 = j(j8)2 = j(j8 + j6 + j4) = j9 + j7 + j5 = j9 + j5 + j3 + j2 + j
= (1 1 1 0 1) + (1 0 1 1 1) + (0 1 1 1 0) + (0 0 0 1 0) + (0 0 0 0 1)
j17 = (0 0 1 1 1)
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j18 = j2.j16 = j2(j8 + j6 + j4) = j10 + j8 + j6

= (0 1 1 1 1) + (0 1 0 0 0) + (1 1 1 0 0)
j18 = (1 1 0 1 1)

j20 = j4.j16 = j4(j8 + j6 + j4) = j12 + j10 + j8

= (1 1 0 0 1) + (0 1 1 1 1) + (0 1 0 0 0)
j20 = (1 1 1 1 0)

j24 = j8.j6 = j8(j8 + j6 + j4) = j16 + j14 + j12

but j14 = (j7)2 = (j3.j2 + j)2 = (j6 + j4 + j2)
Hence, j24 = j16 + j12 + j6 + j4 + j2

= (1 0 0 0 0) + (1 1 0 0 1) + (1 1 1 0 0) + (0 0 1 0 0) + (0 0 0 1 0)
j24 = (1 0 0 1 1)

j32 = (j16)2 = (j8 + j6 + j4)2 = j16 + j12 + j8

= (1 0 0 0 0) + (1 1 0 0 1) + (0 1 0 0 0)
j32 = (0 0 0 0 1)

3.1.5 General Construction Of GF (pm) Using Normal Bases

We postulate the general rule for constructing Galois field using the normal bases expressed above.

For all Γ, β ∈ GF (pm), we uniquely express them as;

β =

m−1∑
k=0

bkj
pk

, and Γ =

m−1∑
i=0

aij
pi

, ∀ai, bk ∈ F2

Let

Z = Γ • β

Z =

(
m−1∑
i=0

aij
pi

)
•

(
m−1∑
k=0

bkj
pk

)

Z =

m−1∑
i=0

m−1∑
k=0

(
aibkj

pi

• jp
k
)

4 Conclusion

In conclusion, polynomials from Galois fields using normal bases have been constructed as well as the
general rule for constructing polynomials in finite fields with normal bases in the field under consideration.
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