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Modeling Nonlinear Partial Differential Equations and Construction of 

Solitary Waves Solutions in an Inductive Electrical Line 

Abstract: In this paper, we apply Kirchhoff laws to the networks of a nonlinear inductive electrical line to 

model new partial differential equations with higher-order of nonlinearity which govern the dynamics of 

solitary waves on the given line, the construction of solitary wave solutions of these equations by effective 

methods has permitted us to realize that solitary wave of type Kink and type Pulse can easily propagate 

in the line when certain conditions we have presented are respected.  

Keywords: inductive electrical line, modeling, construction, soliton solution, solitary wave, Nonlinear 

Partial Differential Equation, Kink, Pulse. 

1. Introduction 

Solitary waves, have evolved from the level of a simple water wave to the displacement of solitons in 

optical fibers [1]. From a solitary wave which is defined as a wave capable of displacing on longer distances 

without changing its shape and its velocity, we have borne in mind the fact that if one of such signals is 

used in engineering of information through an inductive electrical line, it will resist best on different 

dissipation factors. In this effect, we have decided to render two definitions of nonlinear magnetic flux 

linkage of inductors constituting networks of an inductive electrical transmission line. Then, we have 

applied them to model new nonlinear partial differential equations, which govern the dynamics of solitary 

waves in the said line. In order to construct exact solitary wave solutions of every nonlinear partial 

differential equation obtained, we rely first on methods presented in [2-15]. Furthermore, we have 

decided to adopt the new Bogning-Djeumem Tchaho-Kofane method [16-21] reason being that it 

facilitates the construction of a solitary wave solution by identification of the basic hyperbolic function 

coefficients of nonlinear partial differential equations in a direct and effective manner. Having solved the 

equations, we have come up with solitary wave solutions of type Kink and type Pulse. The work presented 

in this paper is partitioned as follows: In the part 2, we present a general modeling of a nonlinear inductive 

electrical line; In part 3, we construct solitary wave solutions of type Kink; In part 4, we construct solitary 

wave solutions of type Pulse and we present at the end the conclusion in part 5. 

2. General modeling of a nonlinear inductive electrical line 

Let us consider an electrical line constituting a good number of identical networks shown in figure 1 where 

G  is the conductance of the resistor and R  the resistance of another resistor, connected in a series 

branch with an inductor whose the magnetic flux linkage ( )ni changes in nonlinear manner in terms of 

the current ni  flowing through that inductor. By applying Kirchhoff’s laws to the circuit shown in figure 1, 

we obtain the following equations 
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Where n  is a positive integer that numbers each network of the line, ni  and 1ni   indicate respectively the 

current that flows through the inductor network order n  and the inductor network order 1n , nu  and 

1nu   indicate respectively the voltage across resistors with conductance G of the network order n  and 

the network order 1n . n  Indicates the nonlinear magnetic flux linkage of the inductor network order

n . considering equation (1), equation (2) become 
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The substitution of 1n n nGu i i   of equation (2) obtained during the previous order in equation (3), one 

obtains the differential equation below 
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To obtain the continuum model, the left hand side of equation (4) has to be approximated to a spatial 

partial derivative with respect to x nh  which represents the distance measured from the beginning of 

the line. h  represents the distance that separates two consecutive nodes and which is equivalent to the 

spatial sampling derivatives period. We obtain as such spatial partial derivatives using Taylor expansion 

of 1ni   and 1ni   closely to ni  by considering the terms till fourth order in the following manner 
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Equation (7) and (4) permits us to derive the result as follows 
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Finally, we obtain the continuum model of the nonlinear inductive electrical line presented in figure1 by 

the nonlinear partial differential equation below 
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Let’s find out the solitary wave solutions of equation (9).    

3. Construction of solitary wave solution of type Kink of partial differential equation (9). 

We define the nonlinear magnetic flux linkage of inductors on the analytical shape as follows: 

           4 2 2 2

1 2 3 0( ( , )) ( , ) ( , ) ln( ( , ) )i x t B i x t B i x t B i x t B     .                                                                  (10) 

With 0( , )i x t B . 1B  ; 2B and 3B  are non-nil real numbers which will be chosen conveniently. By 

substituting the flux ( ( , ))i x t  of (10) in equation (9) we obtain the nonlinear partial differential equation 

written as 
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 Let us use Bogning-Djeumen Tchaho-Kofane method [16-21] to come out with the solution of equation 

(12) under the analytical shape below 

            ( , ) tanh( )i x t a kx vt                                                                                                                                    (13) 

Where a , k  and v  are non-nil real numbers to be determined. Replacing ( , )i x t given by (13) in equation 

(12) we yield the following equation 
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Equation (14) is valid if and only if each of its basic hyperbolic function coefficients is nil. This permits us 

to obtain the following set of fours equations 
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Solving the set of equation (15) has permitted us to obtain the following results: 
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Replacing 1m  , 2m  , 3m  , 4m  , 5m  , 6m  , 7m  , 8m  and 9m by their different expressions in (16), we obtain 

the solution of the nonlinear partial differential equation (11) which models the dynamic of solitary waves 

of type Kink in the inductive line as follow 
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4. Construction of solitary wave solution of type Pulse relative to nonlinear partial 

differential equation (9) 

We define the nonlinear magnetic flux linkage of inductors with analytical shape as given: 
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With 0 ( , )B i x t . 1B  ; 2B  and 3B  are non-nil real numbers whose conditions of choice will be 

established. A substituting of ( ( , ))i x t  of (18) in differential equation (9) permits us to obtain the 

nonlinear partial differential equation bellow 
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Finding out the result of equation (19) on the analytical shape: 

                ( , ) sechi x t a kx vt                                                                                                                           (20) 

Where a , k  and v  are non-nil real numbers to be determined. Substituting ( , )i x t  of (20) in 

differential equation (19), we obtain the equation as follows 
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We realize that to be able to transform the hyperbolic functions of (21) to the basic hyperbolic functions 

as recommended by the new Bogning-Djeumen  Tchaho-Kofane [16-21] we must consider 0B a  such 

that  
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  The right-hand side of (22)  has enables us to rearrange (21) as 
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Equation (23) is valid if each coefficient of its basic hyperbolic function is equal to zero. This enables us 

to obtain the set of three equations as follows 
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The result of the set of nonlinear equation (24) enables us to realize that solitary waves of type Pulse are 

easily displaced in the nonlinear inductive line with analytical shape given below: 
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5. Conclusion 

At the end of this work, where we have modeled and constructed solitary wave solution by two different 

nonlinear partial derivative equations of an inductive electrical line; it is therefore important to point out 

that the results obtained will first of all enable us in the domain of physics and telecommunication of 

engineering, the manufacturing of new transmission lines as inductive electrical lines whose magnetic flux 

linkage of inductors varies one in a nonlinear shape defined in (10) and varies for the other in a nonlinear 

shape defined in (18). In addition, these results will permit us to ameliorate the quality of signals that will 

be displaced in those new lines. In fact, those signals are solitary waves of type Pulse obtained in (25) and 

type Kink obtained in (17) which by their definitions, displace on a very long distance maintaining their 

shape; their speed and resist best on different dissipation factors. Finally, in a typical mathematics domain, 

the results obtained has permitted us to define in (11) and (19) two new nonlinear partial derivative 
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equations which have respectively for exact solutions solitary wave (17) and (25). This augments the field 

of mathematical knowledge. In order to inquire ideas concerning the stability of obtained solitary wave, 

it seems for us to study later their modulational instability before carrying out the practical survey where 

we will experiment the applicability and the perfection of these new inductive electrical lines. 
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                Figure 1: presentation of a nonlinear inductive electrical line.    
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