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Schrödinger Equation Using the Modified  
Laplace Decomposition method 

 
 

ABSTRACT: 

In this paper, the Laplace decomposition method (LDM) and some modification are adopted to 
numerically investigate the optic soliton solution of the nonlinear complex Schrödinger equation 
(NLSE). The obtained results demonstrate the reliability and the efficiency of the considered 
method to numerically approximate such initial value problems (IVPs).     
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1. Introduction 

The nonlinear complex Schrödinger equation (NLSE) is an equation which models many physical 
phenomena such as nonlinear optics, water waves, plasma physics, … etc . Particularly, the 
nonlinearity effects in an optic fiber including four-wave mixing, self-phase modulation, second 
harmonic generation, … etc. are modeled by the NLSE [1], [2]. Moreover, the evolution of the 
envelope of modulated nonlinear water wave groups are essentially described by the NLSE.  All 
these mentioned physical phenomena are eventually interpreted by the exact solutions for 
specified values of the NLSE’s parameters. In this paper we consider the Nonlinear Schrödinger 
equation (NLSE) of the form: 
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where ( , )x t is a complex-valued function of real variables ( , )x t , and ,P Q are nonzero real 

parameters. The NLSE (1) admits the optic soliton solution [3]:  
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in which 0PQ  gives the de-focusing case,  is a soliton velocity, 2 2(2 )P k  is  a soliton 

wave number, k is a nonlinear frequency shift and 0 0,   are arbitrary constants. 

Last recent decades, the methods of decomposing have emerged as a powerful technique and as a 
subject of extensive analytical and numerical studies for large and general class of linear and 
nonlinear ordinary differential equations (ODE’s) as well as partial differential equations 
(PDE’s), fractional differential equations, algebraic, integro-differential, differential-delay 
equations [4]–[8]. More precisely, the Adomian decomposition method is knowingly efficient in 
solving initial-value or boundary value problems without unphysical restrictive assumptions such 
as linearization, perturbation and so forth. The method provides the solution in an infinite series 
that is proven to converge rapidly with elegant computable components [4]–[6]. In recent years a 
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large amount of research work concerning the developing of the ADM is investigated see for 
instance [9]–[14].  

 Laplace Decomposition Method (LDM) was introduced by Khuri [7], [8] and has been 
successfully utilized for obtaining solutions of differential equations [15]–[20]. The Powerfulness 
of this method is its consistency of Laplace transform and Adomian polynomials which 
guarantees an accelerative, rapid convergence of series solutions when compared with the ADM 
itself and therefore provides major progress [7], [21], [22]. The main numerical approach in this 
article is implementing the Laplace decomposition method to the NLSE (1) with some proposed 
modification, for this purpose the paper is organized to fully analyze the considered method in 
Section 2. Numerical results are obtained and plentifully discussed via tables, illustrations and 
concluding remarks in Section 3. Finally, in Section 4 a brief conclusion is given. 

2. Methodology of  the used Methods  

2.1 LDM algorithm of the NLSE 

In this section we begin with reducing the nonlinear Schrödinger equation (NLSE) (1) into a 
system of coupled nonlinear equations involving the real and imaginary parts, by introducing the 
following transformation [7], [23] : 

1 2
( , ) ( , ) ( , )x t x t i x t      (3) 

where 
1
( , )x t a and 

2
( , )x t  are real –valued functions. Substituting (3) into (1) we obtain the 

following system of coupled real equations with an initial value problem (IVP), to take the 
following from: 
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Rewriting (4) in the following operator form: 
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 are the linear differential operators, and    2 2
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,M        symbolize the nonlinear operators.  

Applying the Laplace Transform on both sides of the system in (6), and using the Laplace 
properties with the initial conditions, we get: 

     

     

1 2 1 2

2 1 1 2

1 1
( , ) ( ) ,

1 1
( , ) ( ) ,

xx

xx

x s F x P L Q N
s s

x s G x P L Q M
s s

   

   

  

  

L L

L L

 (7) 



 

3 
 

The method assumes that the unknown functions
1 2
( , ), ( , )x s x s   are expressed as infinite 

series in the form: 
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And the nonlinear operators are expressed in terms of an infinite series of the well-known 
Adomian polynomials (see for example [4], [24] ) given by: 
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Listing below a few components of Adomian polynomials: 
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Using (8) and (9) into (7), we have: 
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According to (for example [4], [7], [8] ), comparing both sides of (12) by applying the inverse 
Laplace transform, we obtain the subsequent components to take the following recursive relation:  
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Obviously, the practical solution will be the n-term approximations of the infinite series (8). Thus 
the solution of (3) is given by: 
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2.2 The Modified Laplace decomposition method (LDM) algorithm of the NLSE 

The methodology of the LDM is implemented to the NLSE itself (1), along with Wazwaz 
modification [11], [12] in which the zero components are split into two parts. According to it once 
we rewrite (1) in operator form, we proceed as follows: 
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Identifying the recursive relation by comparing both sides of (18), then applying the inverse 
Laplace transform with its properties and using the given initial conditions we get: 
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The approximation is successfully obtained as the truncated series decomposition is given by: 
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where 
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2
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Q


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3. Numerical results and discussion 

In the present numerical computations and for the numerical study purposes, we will use the 3-
term approximation (14), (20), due to the massive components of the series solution  . We have 

assumed the involved parameters are given by 0 0
1, 1, 2, 2k P Q          , the 

interval of spatial coordinate x   is [ 20,20]  and maximum value of time is taken as 0.1t  sec. 

3.1 LDM results 

The module of the exact solution  ( , )x t  and the corresponding module of the numerical 

solution ( , )LDM x t  with the help of three-term approximations of the decomposition series 

solution are shown in Figure 1.  Although we have used a low-order approximation which is led 
to high accuracy without loss of generality, this is totally achieved in Table 1 which exhibits the 

absolute errors ( , ) ( , )LDMx t x t   in constructions of the approximated  ( , )LDM x t . 
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(a)      (b)    

Figure 1. The plot of surface: (a) Exact module ( , )x t  of the equation  (2). (b) Numerical 

module of LDM ( , )
LDM

x t  of the equation (14). 

 
Table 1. The Error Module ( , ) ( , )

LDM
x t x t   

 t  
x      0.0001 0.001 0.01 0.1 

-20 1.5987×10-14 1.5625×10-10 1.5625×10-6 0.015564 
-15 1.5543×10-14 1.5625×10-10 1.5625×10-6 0.015564 
-10 1.5321×10-14 1.5625×10-10 1.5625×10-6 0.015564 
-5 2.1538×10-14 1.6266×10-10 1.5691×10-6 0.015573 
0 3.0733×10-12 2.9236×10-9 1.4213×10-6 0.01396 
5 1.5321×10-14 1.5625×10-10 1.5625×10-6 0.015564 

10 1.5765×10-14 1.5625×10-10 1.5625×10-6 0.015564 
15 1.5765×10-14 1.5625×10-10 1.5625×10-6 0.015564 
20 1.5543×10-14 1.5625×10-10 1.5625×10-6 0.015564 

 
The calculated errors indicate a very good approximation with the actual solution by using three 
terms only and the error grows higher as the time value increases. 

Figure 1 (a) illustrates the 3 dimensional absolute error module for values of time [0,0.1] which 

its peak appears at 0.1t  . Whereas, Figure 1(b), focuses on the peak of the surface where the 

absolute error module is seen at 0.1sect  where it has been magnified when [ 5,5]x  . The 

exact solution ( , )x t  of the equation (1), the numerical solution  module ( , )LDM x t  of the 

equation (14) and the absolute error of the module ( , ) ( , )LDMx t x t   are compiled in 

Table 2. 

(a)      (b)
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Figure 2. The plots of : (a) The error module ( , ) ( , )LDMx t x t  . (b) The peak of the 

Error Module Curve when 0.1t  . 
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Table 2. The numerical results of the exact module (1), approximated module (14) and the  

module error . 

3.2 Modified LDM results 

In this subsection the achieved approximations using modified LDM will be discussed.  The 
interpretation of Figure 3 indicates to the accuracy of modified LDM decreases considerably as 
the time interval extends which is certainly due to the complexity of the split and the massive 
components of the solution series (20) and the data results in Table 3 of the absolute error 

( , ) ( , )mLDMx t x t   module prove it. 

(a)      (b)    

Figure 3. The plot of surface of: (a) Exact module ( , )x t of the equation (2). (b) Numerical 

module of mLDM ( , )
mLDM

x t  of the equation (20). 

 

Table 3. The Error Module ( , ) ( , )
mLDM

x t x t   

 t    

x       0.0001 0.001 0.01 0.1 

-20  7.9802×10-8  7.9869×10-6  0.00080531  0.085765 

-15  5.6377×10-8  5.6468×10-6  0.00057374  0.066362 

-10  6.6538×10-8  6.6335×10-6 0.00064101  0.020131 

-5  1.6119×10-8  1.6089×10-6  0.00015788  0.012966 

0  3.9583×10-9  3.67×10-7  8.8355×10-6  0.017336 

5  8.6222×10-8  8.6189×10-6  0.00085836  0.080951 

10  7.5549×10-8  7.5638×10-6  0.00076522  0.084397 

15  3.4809×10-8  3.4498×10-6  0.00031235  0.017082 

20  1.0024×10-8  1.0022×10-6  0.00010004  0.0097977 

x ( , )x t  ( , )
LDM

x t  ( , ) ( , )
LDM

x t x t   

-5  1.9999  2.0155  0.015573 
-4  1.9985  2.0142  0.015705 
-3  1.9746  1.9925  0.017932 
-2  1.609  1.6589  0.049846 
-1  0.58801  0.55563  0.032376 
0  1.875  1.889  0.01396 
1  1.9924  2.0079  0.015487 
2  1.9995  2.0151  0.01556 
3  2.  2.0155  0.015564 
4  2.  2.0156  0.015564 
5  2.  2.0156  0.015564 



 

8 
 

At the end, as a completion of our numerical study a representation of the peak of the error 
surface at time 0.1t   as a two dimensional graph where the approximation and the exact 

solution meet and diverse. 

 

(a)      (b) 
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Figure 4. The plots of : (a) The error module ( , ) ( , )mLDMx t x t  . (b) The peak of the 

Error Module Curve when 0.1t  . 

 

 

Table 4. The numerical results of the exact module (1), approximated module (20) and the  
module error . 

x ( , )x t  ( , )
LDM

x t  ( , ) ( , )
LDM

x t x t   

-5  1.9999 2.0129 0.012966 
-4  1.9985  2.0526  0.05414 
-3  1.9746  2.0165  0.04196 
-2  1.609 1.7139 0.10489
-1  0.58801  0.79691  0.2089 
0  1.875  1.8577  0.017336 
1  1.9924 2.0136 0.021197 
2  1.9995  2.0853  0.085782 
3  2.  1.9495  0.050521 
4  2.  2.04  0.039992 
5  2.  2.081  0.080951 
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Remark: 

Obviously, any good numerical schemes should have satisfactory long time numerical behavior 
which is mostly accomplished by increasing the number of iterations which may be costly in time 
or try different split in the modified LDM. Despite some studies (see for example [19], [25]) have 
proposed different splits, more components of the decomposition series have to be calculated.     

4. Conclusion  

In this work, the LDM and modified version of it have been successfully implemented to 
approximate a optic soliton solution of the nonlinear complex Schrödinger equation (NLSE) with 
an initial value problem (IVP). A transformation has been presented so that a system of coupled 
real partial differential equations is obtained and to be numerically solved in order to approximate 
the NLSE solution. On the other hand, based on Wazwaz’s modification [11] the solution of the 
NLSE is examined.  The obtained results are investigated via illustrations and tables. Therefore, it 
is predictable, that the LDM is an effective technique to investigate numerical solutions of 
nonlinear complex problems. Additionally, the considered methods are converging very rapidly 
with fewer terms of the series solution. 
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