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         ABSTRACT 

Our goal of this paper is to vouch some fixed point theorems for contractive type maps 

in a CMS over Banach algebra, which unify, extend and generalize most of the existing 

relevant fixed point theorems from Shaoyuan Xu and Stojan Radenovic [20].  
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1. INTRODUCTION  

As a generalization of metric spaces, cone metric spaces were scrutinized by Huang and 

Zhang in 2007(see [1]).  In CMS (cone metric space) 𝑋, 𝑑(𝑢, 𝑣) for 𝑢, 𝑣 ∈ 𝑋 is a vector in 

an ordered Banach space 𝐸, quite apart from that which is a non-negative real number in 

general metric spaces. They presented the version of the Banach contraction principle and 

other fundamental theorems in the setting of cone metric spaces. Afterwards, by omitting the 

assumption of normality in the theorems of [1], Rezapour and Hamlbarani [2] established 

some fixed point theorems, as the generalizations and extensions of the analogous results in 

[1]. Besides, they gave a number of examples to vouch the existence of non-normal cones, 
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which proves that such generalizations are significant. For more details, we refer the reader 

to [2-14]. 

Newly, Liu and Xu [15] familiarized the idea of CMS over Banach algebras (which were 

called CMS over Banach algebras in [15]), replacing Banach spaces by Banach algebras as 

the underlying spaces of CMS. They replaced the Banach space E by a Banach algebra 𝒜 

and familiarized the idea of CMS over Banach algebras. In this manner, they vouched some 

fixed point theorems of generalized Lipschitz mappings with natural and weaker conditions 

on generalized Lipschitz constant ℎ by means of spectral radius.  

2. PRELIMINARIES 

For the sake of reciter, we shall recollect some fundamental concepts and lemmas. We begin 

with the following definition as a recall from [15]. 

Let 𝒜 always is a real Banach algebra. Then ∀ 𝑢, 𝑣, 𝑤 ∈ 𝒜, 𝛼 ∈ ℝ, we have 

1. (𝑢𝑣)𝑤 = 𝑢(𝑣𝑤); 

2. 𝑢(𝑣 + 𝑤) =  𝑢𝑣 + 𝑢𝑤 and (𝑢 + 𝑣)𝑤 = 𝑢𝑤 + 𝑣𝑤; 

3. 𝛼(𝑢𝑣)  =  (𝛼𝑥)𝑦 =  𝑥(𝛼𝑦); 

4. ‖𝑥𝑦‖ ≤ ‖𝑢‖‖𝑣‖. 

We shall assume that a Banach algebra has a multiplicative identity 𝑒 such that 𝑒𝑢 = 𝑢𝑒 =

𝑢, ∀ 𝑢 ∈ 𝒜. An element 𝑢 ∈ 𝒜 is said to be invertible if there is an inverse element 𝑣 ∈ 𝒜 

such that 𝑢𝑣 = 𝑣𝑢 = 𝑒. The inverse of 𝑢 is denoted by 𝑢−1. For more details, we refer the 

reader to [16]. 

The following proposition is given in [16]. 

Proposition 2.1 Let 𝐴 be a Banach algebra with a unit 𝑒, and 𝑢 ∈ 𝒜. If the spectral radius 

𝜌(𝑢) of 𝑢 is less than 1, i.e., 

ρ(𝑢) = lim
𝑛→∞

‖𝑢𝑛‖
1
𝑛 = inf‖𝑢𝑛‖

1
𝑛 < 1, 

then 𝑒 − 𝑢 is invertible. Actually, 
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(𝑒 − 𝑢)−1 = ∑ 𝑢𝑖

∞

𝑖=0

. 

Remark 2.2 From [16] we see that the spectral radius ρ(𝑢) of 𝑢 satisfies ρ(𝑢) ≤ ‖𝑢‖, ∀ 𝑢 ∈

𝒜 for all where 𝒜 is a Banach algebra with a unit 𝑒. 

Remark 2.3 (see [16]) In Proposition 2.1, if the condition ′𝜌(𝑢) < 1′ is replaced by ′‖𝑢‖ <

1′, then the conclusion remains true. 

A subset 𝑃 of 𝒜 is called a cone of 𝐴 if 

1. 𝑃 is nonempty closed and {𝜃, 𝑒} ⊂ 𝑃; 

2. 𝛿𝑃 + 𝜇𝑃 ⊂ 𝑃 for all nonnegative real numbers 𝛿, 𝜇; 

3. 𝑃2 = 𝑃𝑃 ⊂ 𝑃; 

4. 𝑃 ∩ (– 𝑃)  =  {𝜃}, 

where 𝜃 denotes the null of the Banach algebra 𝒜. For a given cone 𝑃 ⊂ 𝒜, we can define 

a partial ordering ≼ with respect to 𝑃 by 𝑢 ≼ 𝑣 if and only if 𝑣 –  𝑢 ∈  𝑃. 𝑢 ≺ 𝑣 will stand 

for 𝑢 ≼ 𝑣 and 𝑢 = 𝑣, while 𝑢 ≪ 𝑣 will stand for 𝑣 − 𝑢 ∈ int𝑃, where int𝑃 denotes the 

interior of 𝑃. If 𝑖𝑛𝑡𝑃 ≠ ∅, then 𝑃 is called a solid cone. 

The cone 𝑃 is called normal if there is a number 𝑀 > 0 such that, ∀ 𝑢, 𝑣 ∈ 𝒜, 𝜃 ≼ 𝑢 ≼ 𝑣 ⇒

‖𝑢‖ ≤ 𝑀‖𝑣‖. The least positive number satisfying the above is called the normal constant 

of 𝑃 [1]. 

In the following we always assume that 𝐴 is a Banach algebra with a unit 𝑒, 𝑃 is a solid cone 

in A and ≼ is the partial ordering with respect to 𝑃. 

Definition 2.4 ([1, 15, 17]) Let 𝑋 be a nonempty set. Suppose that the mapping 𝑑𝑐: 𝑋 × 𝑋 →

𝒜 satisfies 

1. 𝜃 ≺ 𝑑𝑐(𝑢, 𝑣), ∀ 𝑢, 𝑣 ∈ 𝑋 and 𝑑𝑐(𝑢, 𝑣) = 𝜃 ⟺ 𝑢 = 𝑣; 

2. 𝑑𝑐(𝑢, 𝑣) = 𝑑𝑐(𝑣, 𝑢), ∀ 𝑢, 𝑣 ∈ 𝑋; 

3. 𝑑𝑐(𝑢, 𝑣) ≼  𝑑𝑐(𝑢, 𝑤) + 𝑑𝑐(𝑤, 𝑣), ∀ 𝑢, 𝑣, 𝑤 ∈ 𝑋. 
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Then 𝑑𝑐 is called a cone metric on 𝑋, and (𝑋, 𝑑𝑐) is called a cone metric space (CMS) over 

Banach algebra 𝒜. 

Definition 2.5  (See [1, 15, 17]) Let (𝑋, 𝑑𝑐) be a CMS over a Banach algebra 𝒜, x ∈ X and 

let {𝑢𝑛}𝑛=0
∞ ⊂ 𝑋  be a sequence. Then: 

(1). {𝑢𝑛}𝑛=0
∞  converges to 𝑢 whenever for each 𝑐 ∈ 𝒜 with 𝑐 ≫ 𝜃 there is a natural 

number 𝑁 such that 𝑑𝑐(𝑢𝑛, 𝑢) ≪ 𝑐 for all 𝑛 ≥ 𝑁. We write lim
𝑛→∞

𝑢𝑛 = 𝑢 or 𝑢𝑛 →

𝑢 (𝑛 → ∞). 

(2). {𝑢𝑛}𝑛=0
∞  is a Cauchy sequence whenever for each 𝑐 ∈ 𝒜 with 𝑐 ≫ 𝜃 there is a natural 

number 𝑁 such that 𝑑𝑐(𝑢𝑛, 𝑢𝑚) ≪ 𝑐 for all 𝑛, 𝑚 ≥ 𝑁. 

(3). (𝑋, 𝑑𝑐)  is a complete CMS if every Cauchy sequence is convergent. 

(4). Now, we shall appeal to the following lemmas in the sequel. 

Lemma 2.6 (See [18]) If 𝐸 is a real Banach space with a cone 𝑃 and if 𝑏 ≼ 𝜇𝑏 with 𝑏 ∈ 𝑃 

and 1 ≤ 𝑏 < 1, then = 𝜃 . 

Lemma 2.7 (See [9]) If 𝐸 is a real Banach space with a solid cone P and if 𝜃 ≼ 𝑥 ≪ 𝑐 for 

each 𝜃 ≪ 𝑐, then 𝑥 = 𝜃 . 

Lemma 2.8 (See [9]) If 𝐸 is a real Banach space with a solid cone 𝑃 and {𝑥𝑛} ⊂  𝑃 is a 

sequence with ‖𝑥𝑛‖ → 0 (𝑛 → ∞) then for any 𝜃 ≪ 𝑐, there exists 𝑁 ∈ ℕ such that, for any 

𝑛 > 𝑁, we have 𝑥𝑛 ≪ 𝑐, i.e. 𝑥𝑛 is a c-sequence 

Finally, let us recall the concept of generalized Lipschitz mapping defining on the cone 

metric spaces over Banach algebras, which is introduced in [15].  

Definition 2.9 (See [15]) Let (𝑋, 𝑑𝑐) be a CMS over a Banach algebra 𝒜. A mapping 𝑇: 𝑋 →

𝑋 is called a generalized Lipschitz mapping if there exists a vector ℎ ∈ 𝑃 with 𝜌(ℎ) < 1 and 

for all 𝑢, 𝑣 ∈ 𝑋, one has 𝑑𝑐(𝑇𝑢, 𝑇𝑣) ≼ ℎ𝑑𝑐(𝑢, 𝑣)  

Remark 2.10 In Definition 2.9, we only suppose the spectral radius of ℎ is less than 1, while 

‖ℎ‖ < 1 is not assumed. Generally speaking, it is meaningful since by Remark 2.2, the 

condition 𝜌(ℎ) < 1  is weaker than that ‖ℎ‖ < 1. 
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Remark 2.11 (see [16]) If 𝜌(𝑢) < 1, then ‖𝑢‖𝑛 → 0 (𝑛 → ∞). 

Lemma 2.12 ([16]) Let 𝒜 be a Banach algebra with a unit 𝑒, ℎ, 𝑘 ∈ 𝒜. If ℎ commutes with 𝑘, then  

𝜌(ℎ + 𝑘) ≤  𝜌(ℎ) + 𝜌(𝑘), 

𝜌(ℎ𝑘)  ≤  𝜌(ℎ)𝜌(𝑘). 

Lemma 2.13 ([16]) If 𝐸 is a real Banach space with a solid cone 𝑃 

(1). If  𝑎1, 𝑎2, 𝑎3 ∈ 𝐸 and 𝑎1 ≼ 𝑎2 ≪ 𝑎3, then 𝑎1 ≪ 𝑎3. 

(2). If 𝑎1 ∈ 𝑃 and 𝑎1 ≪ 𝑎3 for each 𝑎3 ≫ 𝜃 , then 𝑎1 = 𝜃. 

Lemma 2.14 ([20]) Let 𝑃 be a solid cone in a Banach algebra 𝒜. Suppose that ℎ ∈ 𝑃 and {𝑥𝑛} ⊂

 𝑃 is a c-sequence. Then {ℎ𝑥𝑛} is a c-sequence. 

Proposition 2.15 (See [20]) Let 𝑃 be a solid cone in a Banach space 𝒜 and let {𝑢𝑛}, {𝑣𝑛} ⊂ 𝑋 be 

sequences. If {𝑢𝑛} and {𝑣𝑛} are c-sequences and 𝛾, 𝛿 > 0 then {𝛾𝑢𝑛 + 𝛿𝑢𝑛} is a c-sequence. 

Proposition 2.16 (See [20]) Let 𝑃 be a solid cone in a Banach algebra 𝒜. and let {𝑢𝑛} ⊂  𝑃 is a 

sequence.. Then the following conditions are equivalent: 

(1). {𝑢𝑛} is a c-sequence. 

(2). For each 𝑐 ≫ 𝜃 there exists 𝑛0 ∈ ℕ such that 𝑢𝑛 ≺ 𝑐 for 𝑛 ≥ 𝑛0. 

(3). For each 𝑐 ≫ 𝜃 there exists 𝑛1 ∈ ℕ such that 𝑢𝑛 ≼ 𝑐 for 𝑛 ≥ 𝑛0. 

Lemma 2.17 ([16]) Let 𝐴 be a Banach algebra with a unit 𝑒, ℎ ∈ 𝐴, then lim
𝑛→∞

‖ℎ𝑛‖
1

𝑛 exists and the 

spectral radius 𝜌(ℎ) satisfies 

𝜌(ℎ) = lim
𝑛→∞

‖ℎ𝑛‖
1
𝑛 = inf‖ℎ𝑛‖

1
𝑛 

If 𝜌(ℎ) < |𝜔|, then (𝜔𝑒 – ℎ) is invertible in 𝐴; moreover, 

(𝜔𝑒 – ℎ) −1 = ∑
ℎ 𝑖

𝜔𝑖+1

∞

𝑖=0
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where 𝜔 is a complex constant. 

Lemma 2.18 ([16]) Let 𝐴 be a Banach algebra with a unit 𝑒 and ℎ ∈ 𝐴. If 𝜔 is a complex 

constant and 𝜌(ℎ) < |𝜔|, then 

𝜌((𝜔𝑒 – ℎ) −1) ≤
1

|𝜔| –  𝜌(ℎ)
 

Lemma 2.19 ([16])  Let 𝒜 be a Banach algebra with a unit 𝑒 and 𝑃 be a solid cone in 𝒜. Let 

ℎ ∈ 𝒜 and 𝑢𝑛 = ℎ𝑛. If 𝜌(ℎ) < 1, then {𝑢𝑛} is a c-sequence. 

Lemma 2.20 ([22]). Let 𝑇 and 𝑆 be weakly compatible self-maps of a set 𝑋. If 𝑇 and 𝑆 have a 

unique point of coincidence 𝑤 = 𝑇𝑢 = 𝑆𝑢, then 𝑤 is the unique common fixed point of 𝑇 and 𝑆. 

3. MAIN RESULTS 

Theorem 3.1 Let (𝑋, 𝑑𝑐) be a cone metric space over Banach algebra 𝐴 and 𝑃 be a solid cone in 𝐴. 

Let ℎ𝑖 ∈ 𝑃 (𝑖 =  1, . . . . , 5) be generalized Lipschitz constants with 𝜌(ℎ1) + 𝜌(ℎ2 + ℎ3 + ℎ4 +

ℎ5) < 1. Suppose that ℎ1 commutes with ℎ2 + ℎ3 + ℎ4 + ℎ5 and the mappings 𝑇, 𝑆 ∶ 𝑋 → 𝑋 

satisfy that 

                             𝑑𝑐(𝑇𝑢, 𝑇𝑣) ≼ ℎ1𝑑𝑐(𝑆𝑢, 𝑆𝑣) + ℎ2𝑑𝑐(𝑇𝑢, 𝑆𝑢) + ℎ3𝑑𝑐(𝑇𝑣, 𝑆𝑣) 

                                                 +ℎ4𝑑𝑐(𝑆𝑢, 𝑇𝑣) + ℎ5𝑑𝑐(𝑇𝑢, 𝑆𝑣)                                                (3.1)  

for all 𝑢, 𝑣 ∈ 𝑋. If the range of 𝑆 contains the range of 𝑇 and 𝑆(𝑋) is a complete subspace, then 

𝑇and 𝑆 have a unique point of coincidence in 𝑋. Moreover, if 𝑇and 𝑆 are weakly compatible, then 

𝑇and 𝑆 have a unique common fixed point. 

Proof. Suppose 𝑢0 ∈ 𝑋 be an arbitrary point. Since 𝑇(𝑋) ⊂ 𝑆(𝑋), ∃ 𝑢1 ∈ 𝑋 such that 𝑇𝑢0  = 𝑆𝑢1. 

By induction, a sequence {𝑇𝑢𝑛} can be chosen such that 𝑇𝑢𝑛 = 𝑆𝑢𝑛+1 (𝑛 =  0,1,2, … . . ). Thus, 

by (3.1), for any natural number 𝑛, on the one hand, we obtain 

         𝑑𝑐(𝑆𝑢𝑛+1, 𝑆𝑢𝑛) = 𝑑𝑐( 𝑇𝑢𝑛, 𝑇𝑢𝑛−1) 

                                   ≼ ℎ1𝑑𝑐(𝑆𝑢𝑛, 𝑆𝑢𝑛−1) + ℎ2𝑑𝑐(𝑇𝑢𝑛, 𝑆𝑢𝑛) + ℎ3𝑑𝑐(𝑇𝑢𝑛−1, 𝑆𝑢𝑛−1) 

                                   +ℎ4𝑑𝑐(𝑆𝑢𝑛, 𝑇𝑢𝑛−1) + ℎ5𝑑𝑐(𝑇𝑢𝑛, 𝑆𝑢𝑛−1) 
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                                  = ℎ1𝑑𝑐(𝑆𝑢𝑛, 𝑆𝑢𝑛−1) + ℎ2𝑑𝑐(𝑆𝑢𝑛+1, 𝑆𝑢𝑛) + ℎ3𝑑𝑐(𝑆𝑢𝑛, 𝑆𝑢𝑛−1) 

                                   +ℎ4𝑑𝑐(𝑆𝑢𝑛, 𝑆𝑢𝑛) + ℎ5𝑑𝑐(𝑆𝑢𝑛+1, 𝑆𝑢𝑛−1) 

                                   ≼ (ℎ1 + ℎ3 + ℎ5)𝑑𝑐(𝑆𝑢𝑛, 𝑆𝑢𝑛−1) + (ℎ2 + ℎ5)𝑑𝑐(𝑆𝑢𝑛+1, 𝑆𝑢𝑛)                    

This ⟹ 

                          (𝑒 − ℎ2 − ℎ5)𝑑𝑐(𝑆𝑢𝑛+1, 𝑆𝑢𝑛) ≼ (ℎ1 + ℎ3 + ℎ5)𝑑𝑐(𝑆𝑢𝑛, 𝑆𝑢𝑛−1)                        (3.2) 

For another thing,  

           𝑑𝑐(𝑆𝑢𝑛, 𝑆𝑢𝑛+1) = 𝑑𝑐(𝑇𝑢𝑛−1, 𝑇𝑢𝑛 ) 

                                     ≼ ℎ1𝑑𝑐(𝑆𝑢𝑛−1, 𝑆𝑢𝑛) + ℎ2𝑑𝑐(𝑇𝑢𝑛−1, 𝑆𝑢𝑛−1) + ℎ3𝑑𝑐(𝑇𝑢𝑛, 𝑆𝑢𝑛) 

                                     +ℎ4𝑑𝑐(𝑆𝑢𝑛−1, 𝑇𝑢𝑛) + ℎ5𝑑𝑐(𝑇𝑢𝑛−1, 𝑆𝑢𝑛) 

                                     ≼ ℎ1𝑑𝑐(𝑆𝑢𝑛−1, 𝑆𝑢𝑛) + ℎ2𝑑𝑐(𝑆𝑢𝑛, 𝑆𝑢𝑛−1) + ℎ3𝑑𝑐(𝑆𝑢𝑛+1, 𝑆𝑢𝑛) 

                                   +ℎ4𝑑𝑐(𝑆𝑢𝑛−1, 𝑆𝑢𝑛+1) + ℎ5𝑑𝑐(𝑆𝑢𝑛, 𝑆𝑢𝑛) 

                                   ≼ (ℎ1 + ℎ2 + ℎ4)𝑑𝑐(𝑆𝑢𝑛−1, 𝑆𝑢𝑛) + (ℎ3 + ℎ4)𝑑𝑐(𝑆𝑢𝑛, 𝑆𝑢𝑛+1) 

This ⟹ 

                       (𝑒 − ℎ3 − ℎ4)𝑑𝑐(𝑆𝑢𝑛, 𝑆𝑢𝑛+1) ≼ (ℎ1 + ℎ2 + ℎ4)𝑑𝑐(𝑆𝑢𝑛−1, 𝑆𝑢𝑛)                       (3.3) 

Add up (3.2) and (3.3) produces that 

 (2𝑒 − ℎ2 − ℎ3 − ℎ4 − ℎ5)𝑑𝑐(𝑆𝑢𝑛, 𝑆𝑢𝑛+1) ≼ (2ℎ1 + ℎ2 + ℎ3 + ℎ4 + ℎ5)𝑑𝑐(𝑆𝑢𝑛−1, 𝑆𝑢𝑛)   (3.4) 

 Taking 𝑘 = ℎ2 + ℎ3 + ℎ4 + ℎ5, (3.4) yields that              

                               (2𝑒 − ℎ)𝑑𝑐(𝑆𝑢𝑛, 𝑆𝑢𝑛+1) ≼ (2ℎ1 + ℎ)𝑑𝑐(𝑆𝑢𝑛−1, 𝑆𝑢𝑛)                                  (3.5)

    

Because  
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𝜌(ℎ) ≤ 𝜌(ℎ1) + 𝜌(ℎ) < 1 

leads to 𝜌(ℎ) < 1 < 2, then from Lemma 2.17, it concludes that 2𝑒 − ℎ is invertible. Furthermore, 

(2𝑒 − ℎ )−1 = ∑
ℎ𝑖

2𝑖+1

∞

𝑖=0

 

In both sides of (2.5), multiplying by (2𝑒 − ℎ )−1, we attain at 

                        𝑑𝑐(𝑆𝑢𝑛, 𝑆𝑢𝑛+1) ≼ (2𝑒 − ℎ )−1(2ℎ1 + ℎ)𝑑𝑐(𝑆𝑢𝑛−1, 𝑆𝑢𝑛)                                  (3.6) 

Taking (2𝑒 − ℎ )−1(2ℎ1 + ℎ) = 𝑘, by (3.6), we reach 

  𝑑𝑐(𝑆𝑢𝑛, 𝑆𝑢𝑛+1) ≼ 𝑘𝑑𝑐(𝑆𝑢𝑛−1, 𝑆𝑢𝑛) ≼ . . . . . . . ≼ 𝑘𝑛𝑑𝑐(𝑆𝑢0, 𝑆𝑢1) = 𝑘𝑛𝑑𝑐(𝑆𝑢0, 𝑇𝑢0)              (3.7) 

Because ℎ1 commutes with ℎ, it follows that 

                       (2𝑒 − ℎ )−1(2ℎ1 + ℎ) = ∑
ℎ𝑖

2𝑖+1
∞
𝑖=0 (2ℎ1 + ℎ) 

                                                            = 2 (∑
ℎ𝑖

2𝑖+1
∞
𝑖=0 ) ℎ1 + (∑

ℎ𝑖

2𝑖+1
∞
𝑖=0 ) ℎ 

                                                            = 2ℎ1 (∑
ℎ𝑖

2𝑖+1
∞
𝑖=0 ) + ∑

ℎ𝑖+1

2𝑖+1
∞
𝑖=0  

                                                             = 2ℎ1 (∑
ℎ𝑖

2𝑖+1
∞
𝑖=0 ) + ℎ (∑

ℎ𝑖

2𝑖+1
∞
𝑖=0 ) 

                                                             = (2ℎ1 + ℎ) ∑
ℎ𝑖

2𝑖+1
∞
𝑖=0  

                                                             = (2ℎ1 + ℎ)(2𝑒 − ℎ )−1  

To say that (2𝑒 − ℎ )−1 commutes with (2ℎ1 + ℎ). By Lemma 2.12 and Lemma 2.18, we avail 

                𝜌(𝑘) = 𝜌((2𝑒 − ℎ )−1(2ℎ1 + ℎ)) 

                                                          ≤ 𝜌((2𝑒 − ℎ )−1)𝜌(2ℎ1 + ℎ) 
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                                                          ≤
1

2−𝜌(ℎ)
[2𝜌(ℎ1) + 𝜌(ℎ)] < 1                                            

which vouches that 𝑒 − 𝑘 is invertible and ‖𝑘𝑚‖ → 0 (𝑚 → ∞). Hence, for any 𝑚 ≥ 1;  𝑝 ≥ 1 

and 𝑘 ∈  𝑃 with 𝜌(𝑘) < 1, we obtain that 

    𝑑𝑐(𝑆𝑢𝑚, 𝑆𝑢𝑚+𝑝) ≼ 𝑑𝑐(𝑆𝑢𝑚, 𝑆𝑢𝑚+1) + 𝑑(𝑆𝑢𝑚+1, 𝑆𝑢𝑚+𝑝) 

                               ≼ 𝑑𝑐(𝑆𝑢𝑚, 𝑆𝑢𝑚+1) + 𝑑𝑐(𝑆𝑢𝑚+1, 𝑆𝑢𝑚+2) + 𝑑𝑐(𝑆𝑢𝑚+2, 𝑆𝑢𝑚+𝑝) 

                               ≼ 𝑑𝑐(𝑆𝑢𝑚, 𝑆𝑢𝑚+1) + 𝑑𝑐(𝑆𝑢𝑚+1, 𝑆𝑢𝑚+2)+. . . . +𝑑𝑐(𝑆𝑢𝑚+𝑝−1, 𝑆𝑢𝑚+𝑝) 

                               ≼ 𝑘𝑚𝑑𝑐(𝑆𝑢0, 𝑇𝑢0) + 𝑘𝑚+1𝑑𝑐(𝑆𝑢0, 𝑇𝑢0)+. . . . +𝑘𝑚+𝑝−1𝑑𝑐(𝑆𝑢0, 𝑇𝑢0) 

                               = 𝑘𝑚[𝑒 + 𝑘+. . . . +𝑘𝑝−1]𝑑𝑐(𝑆𝑢0, 𝑇𝑢0) 

                               ≼ 𝑘𝑚(𝑒 − 𝑘)−1𝑑𝑐(𝑆𝑢0, 𝑇𝑢0)                                                                         (3.8) 

With advantage of Lemma 2.19 and Lemma 2.14, we obtain {𝑆𝑢𝑛} is a Cauchy sequence. Since 

𝑆(𝑋) is complete, ∃  𝑧 ∈ 𝑆(𝑋) such that 𝑆𝑢𝑛 → 𝑧 (𝑛 → ∞). Thus ∃ 𝑤 ∈ 𝑋 such that 𝑆𝑤 = 𝑧. We 

shall certify 𝑇𝑤 = 𝑧. In order to finish this, for one thing, 

        𝑑𝑐(𝑆𝑢𝑛, 𝑇𝑤) = 𝑑𝑐(𝑇𝑢𝑛−1, 𝑇𝑤) 

                            ≼ ℎ1𝑑𝑐(𝑆𝑢𝑛−1, 𝑆𝑤) + ℎ2𝑑𝑐(𝑇𝑢𝑛−1, 𝑆𝑢𝑛−1) + ℎ3𝑑𝑐(𝑇𝑤, 𝑆𝑤) 

                               +ℎ4𝑑𝑐(𝑆𝑢𝑛−1, 𝑇𝑤) + ℎ5𝑑𝑐(𝑇𝑢𝑛−1, 𝑆𝑤) 

                            = ℎ1𝑑𝑐(𝑆𝑢𝑛−1, 𝑧) + ℎ2𝑑𝑐(𝑆𝑢𝑛, 𝑆𝑢𝑛−1) + ℎ3𝑑𝑐(𝑇𝑤, 𝑧) 

                               +ℎ4𝑑𝑐(𝑆𝑢𝑛−1, 𝑇𝑤) + ℎ5𝑑𝑐(𝑆𝑢𝑛, 𝑧) 

                             ≼ ℎ1𝑑𝑐(𝑆𝑢𝑛−1, 𝑧) + ℎ2[𝑑𝑐(𝑆𝑢𝑛, 𝑧) + 𝑑𝑐(𝑧, 𝑆𝑢𝑛−1)] 

                                +ℎ3[𝑑𝑐(𝑇𝑤, 𝑆𝑢𝑛) + 𝑑𝑐(𝑆𝑢𝑛, 𝑧)] 

                                +ℎ4[𝑑𝑐(𝑆𝑢𝑛−1, 𝑧) + 𝑑𝑐(𝑧, 𝑆𝑢𝑛) + 𝑑𝑐(𝑆𝑢𝑛, 𝑇𝑤)] 
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                                +ℎ5𝑑𝑐(𝑆𝑢𝑛, 𝑧) 

This ⟹ 

                  (𝑒 − ℎ3 − ℎ4)𝑑𝑐(𝑆𝑢𝑛, 𝑇𝑤) ≼ (ℎ1 + ℎ2 + ℎ4)𝑑𝑐(𝑆𝑢𝑛−1, 𝑧) 

                                                              +(ℎ2 + ℎ3 + ℎ4 + ℎ5)𝑑𝑐(𝑆𝑢𝑛, 𝑧)                                   (3.9) 

On the other hand, we obtain  

          𝑑𝑐(𝑆𝑢𝑛, 𝑇𝑤) = 𝑑𝑐(𝑇𝑢𝑛−1, 𝑇𝑤) = 𝑑𝑐(𝑇𝑤, 𝑇𝑢𝑛−1) 

                                ≼ ℎ1𝑑𝑐(𝑆𝑤, 𝑆𝑢𝑛−1) + ℎ2𝑑𝑐(𝑇𝑤, 𝑆𝑤) + ℎ3𝑑𝑐(𝑇𝑢𝑛−1, 𝑆𝑢𝑛−1) 

                                +ℎ4𝑑𝑐(𝑆𝑤, 𝑇𝑢𝑛−1) + ℎ5𝑑𝑐(𝑇𝑤, 𝑆𝑢𝑛−1) 

                                = ℎ1𝑑𝑐(𝑧, 𝑆𝑢𝑛−1) + ℎ2𝑑𝑐(𝑇𝑤, 𝑧) + ℎ3𝑑𝑐(𝑆𝑢𝑛, 𝑆𝑢𝑛−1) 

                                  +ℎ4𝑑𝑐(𝑧, 𝑆𝑢𝑛) + ℎ5𝑑𝑐(𝑇𝑤, 𝑆𝑢𝑛−1) 

                                  ≼ ℎ1𝑑𝑐(𝑧, 𝑆𝑢𝑛−1) + ℎ2[𝑑𝑐(𝑇𝑤, 𝑆𝑢𝑛) + 𝑑𝑐(𝑆𝑢𝑛, 𝑧)] 

                                  +ℎ3[𝑑𝑐(𝑆𝑢𝑛, 𝑧) + 𝑑𝑐(𝑧, 𝑆𝑢𝑛−1)] + ℎ4𝑑𝑐(𝑧, 𝑆𝑢𝑛) 

                                  +ℎ5[𝑑𝑐(𝑇𝑤, 𝑆𝑢𝑛) + 𝑑𝑐(𝑆𝑢𝑛, 𝑧) + 𝑑𝑐(𝑧, 𝑆𝑢𝑛−1)] 

This ⟹ 

          (𝑒 − ℎ2 − ℎ5)𝑑𝑐(𝑆𝑢𝑛, 𝑇𝑤) ≼ (ℎ1 + ℎ3 + ℎ5)𝑑𝑐(𝑆𝑢𝑛−1, 𝑧) 

                                                                  +(ℎ2 + ℎ3 + ℎ4 + ℎ5)𝑑𝑐(𝑆𝑢𝑛, 𝑧)                             (3.10) 

Combine (3.9) and (3.10), it follows that 

(2𝑒 − ℎ2 − ℎ3 − ℎ4 − ℎ5)𝑑𝑐(𝑆𝑢𝑛, 𝑇𝑤) ≼ (2ℎ1 + ℎ2 + ℎ3 + ℎ4 + ℎ5)𝑑𝑐(𝑆𝑢𝑛−1, 𝑧) 

                                                                  +2(ℎ2 + ℎ3 + ℎ4 + ℎ5)𝑑𝑐(𝑆𝑢𝑛, 𝑧)                             

                        ⟹ (2𝑒 − ℎ)𝑑𝑐(𝑆𝑢𝑛, 𝑇𝑤) ≼ (2ℎ1 + ℎ)𝑑𝑐(𝑆𝑢𝑛−1, 𝑧) + 2ℎ𝑑𝑐(𝑆𝑢𝑛, 𝑧)                             
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Because 

                                      𝜌(ℎ) ≤ 𝜌(ℎ1) + 𝜌(ℎ) < 1                                                 (3.11) 

thus by Lemma 2.17, it concludes that 2𝑒 − ℎ is invertible. As a result, it follows immediately 

from (2.9) that 

   𝑑𝑐(𝑆𝑢𝑛, 𝑇𝑤) ≼ ((2𝑒 − ℎ))
−1

[(2ℎ1 + ℎ)𝑑𝑐(𝑆𝑢𝑛−1, 𝑧) + 2ℎ𝑑𝑐(𝑆𝑢𝑛, 𝑧)] 

Since {𝑑𝑐(𝑆𝑢𝑛−1, 𝑧)} and {𝑑𝑐(𝑆𝑢𝑛−1, 𝑧)} are c-sequences, then by Lemma 2.14, we acquire that 

{𝑑𝑐(𝑆𝑢𝑛, 𝑇𝑤)} is a c-sequence, thus 𝑆𝑢𝑛 → 𝑇𝑤 (𝑛 → ∞). Hence 𝑇𝑤 = 𝑆𝑤 = 𝑧. In the following 

we shall show  𝑇 and 𝑆 have a unique point of coincidence. 

If ∃ 𝑤′ ≠ 𝑤 such that 𝑇𝑤′ = 𝑆𝑤′. Then we obtain 

              𝑑𝑐(𝑆𝑤′, 𝑆𝑤) = 𝑑𝑐(𝑇𝑤′, 𝑇𝑤) 

                                ≼ ℎ1𝑑𝑐(𝑆𝑤′, 𝑆𝑤) + ℎ2𝑑𝑐(𝑇𝑤′, 𝑆𝑤′) + ℎ3𝑑𝑐(𝑇𝑤, 𝑆𝑤) 

                                 +ℎ4𝑑𝑐(𝑆𝑤′, 𝑇𝑤) + ℎ5𝑑𝑐(𝑇𝑤′, 𝑆𝑤) 

                                = (ℎ1 + ℎ4 + ℎ5)𝑑𝑐(𝑆𝑤′, 𝑆𝑤) 

Set 𝛾 = ℎ1 + ℎ4 + ℎ5,  then it follows that 

                             𝑑𝑐(𝑆𝑤′, 𝑆𝑤) ≼ 𝛾𝑑𝑐(𝑆𝑤′, 𝑆𝑤) ≼. . . . . .  ≼ 𝛾𝑛𝑑𝑐(𝑆𝑤′, 𝑆𝑤)                                (3.12) 

Because of 

𝜌(ℎ) ≤ 𝜌(ℎ1) + 𝜌(ℎ) < 1 

it follows that 𝜌(ℎ1) + 𝜌(ℎ) < 1.  Since ℎ1 commutes with ℎ, then by Lemma 2.12, 

𝜌(ℎ1 + ℎ) ≤ 𝜌(ℎ1) + 𝜌(ℎ) < 1 
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Accordingly, by Lemma 2.19, we speculate that {(ℎ1 + ℎ)𝑛} is a c-sequence. Noticing that 𝛾 ≼

ℎ1 + ℎ leads to  𝛾𝑛 ≼ (ℎ1 + ℎ)𝑛, we claim that {𝛾𝑛} is a 𝑐-sequence. Consequently, in view of 

(3.12), it is easy to see 𝑑𝑐(𝑆𝑤′, 𝑆𝑤) = 𝜃 that is, 𝑆𝑤′ = 𝑆𝑤. 

Finally, if (𝑇, 𝑆) is weakly compatible, then by using Lemma 2.20, we claim that 𝑇 and 𝑆 have a 

unique common fixed point. 

Corollary 3.2 Let (𝑋, 𝑑) be a cone metric space over Banach algebra 𝒜 and let 𝑃 be the underlying 

solid cone with ℎ ∈ 𝑃 where 𝜌(𝑘) < 1. Suppose he mappings 𝑇, 𝑆 ∶ 𝑋 → 𝑋 satisfy generalized 

Lipschitz condition: 

                                              𝑑𝑐(𝑇𝑢, 𝑇𝑣) ≼ ℎ𝑑𝑐(𝑆𝑢, 𝑆𝑣)                                                         (3.13)  

for all 𝑢, 𝑣 ∈ 𝑋. If the range of 𝑆 contains the range of 𝑇 and 𝑆(𝑋) is a complete subspace, then 

𝑇and 𝑆 have a unique point of coincidence in 𝑋. Moreover, if 𝑇and 𝑆 are weakly compatible, then 

𝑇and 𝑆 have a unique common fixed point. 

Proof. Choose ℎ1 = ℎ and ℎ2 = ℎ3 = ℎ4 = ℎ5 = 0 in Theorem 3.1, we complete the proof. 

Corollary 3.3 Let (𝑋, 𝑑) be a cone metric space over Banach algebra 𝒜 and let 𝑃 be the underlying 

solid cone with ℎ ∈ 𝑃 where 𝜌(𝑘) < 1. Suppose he mappings 𝑇, 𝑆 ∶ 𝑋 → 𝑋 satisfy generalized 

Lipschitz condition: 

                                         𝑑𝑐(𝑇𝑢, 𝑇𝑣) ≼ ℎ [𝑑𝑐(𝑇𝑢, 𝑆𝑣) + 𝑑𝑐(𝑇𝑣, 𝑆𝑢)]                                    (3.14)  

for all 𝑢, 𝑣 ∈ 𝑋. If the range of 𝑆 contains the range of 𝑇 and 𝑆(𝑋) is a complete subspace, then 

𝑇and 𝑆 have a unique point of coincidence in 𝑋. Moreover, if 𝑇and 𝑆 are weakly compatible, then 

𝑇and 𝑆 have a unique common fixed point. 

Proof. Choose ℎ4 = ℎ5 = ℎ and ℎ1 = ℎ2 = ℎ3 = 0 in Theorem 3.1, the proof is valid. 

Corollary 3.4 Let (𝑋, 𝑑𝑐) be a cone metric space over Banach algebra 𝒜 and let 𝑃 be the 

underlying solid cone with ℎ ∈ 𝑃 where 𝜌(𝑘) < 1. Suppose he mappings 𝑇, 𝑆 ∶ 𝑋 → 𝑋 satisfy 

generalized Lipschitz condition: 

                                         𝑑𝑐(𝑇𝑢, 𝑇𝑣) ≼ ℎ [𝑑𝑐(𝑇𝑢, 𝑆𝑢) + 𝑑𝑐(𝑇𝑣, 𝑆𝑣)]                                   (3.15)  
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for all 𝑢, 𝑣 ∈ 𝑋. If the range of 𝑆 contains the range of 𝑇 and 𝑆(𝑋) is a complete subspace, then 

𝑇and 𝑆 have a unique point of coincidence in 𝑋. Moreover, if 𝑇and 𝑆 are weakly compatible, then 

𝑇and 𝑆 have a unique common fixed point. 

Proof. Choose ℎ2 = ℎ3 = ℎ and ℎ1 = ℎ4 = ℎ5 = 0 in Theorem 3.1, the claim holds. 

Corollary 3.5 Let (𝑋, 𝑑𝑐) be a complete cone metric space over Banach algebra 𝒜 and 𝑃 be a 

solid cone in 𝒜. Let ℎ𝑖 ∈ 𝑃 (𝑖 =  1, . . . . , 5) be generalized Lipschitz constants with 𝜌(ℎ1) +

𝜌(ℎ2 + ℎ3 + ℎ4 + ℎ5) < 1. Suppose that ℎ1 commutes with ℎ2 + ℎ3 + ℎ4 + ℎ5 and the mapping 

𝑇: 𝑋 → 𝑋 satisfies that 

                                         𝑑𝑐(𝑇𝑢, 𝑇𝑣) ≼ ℎ1𝑑𝑐(𝑢, 𝑣) + ℎ2𝑑𝑐(𝑇𝑢, 𝑢) + ℎ3𝑑𝑐(𝑇𝑣, 𝑣) 

                                                             +ℎ4𝑑𝑐(𝑢, 𝑇𝑣) + ℎ5𝑑𝑐(𝑇𝑢, 𝑣)                                       (3.16)  

for all 𝑢, 𝑣 ∈ 𝑋. then 𝑇 has a unique fixed point in 𝑋.  

Proof. Taking 𝑆 = 𝐼𝑋 (Identity mapping) in Theorem 3.1, the proof is valid. 

Remark 3.6 

1. If we take 𝑆 = 𝐼𝑋 and choose ℎ1 = ℎ and ℎ2 = ℎ3 = ℎ4 = ℎ5 = 0  in Theorem 3.1, we get 

Theorem 3.1 of Shaoyuan Xu and Stojan Radenovic [20]. 

2. If we take 𝑆 = 𝐼𝑋 and choose ℎ4 = ℎ5 = ℎ and ℎ1 = ℎ2 = ℎ3 = 0  in Theorem 3.1, we 

have Theorem 3.2 of Shaoyuan Xu and Stojan Radenovic [20]. 

3. If we take 𝑆 = 𝐼𝑋 and choose ℎ1 = ℎ4 = ℎ5 = 0  and  ℎ2 = ℎ3 = ℎ in Theorem 3.1, we 

obtain Theorem 3.3 of Shaoyuan Xu and Stojan Radenovic [20]. 

4. If we take 𝑆 = 𝐼𝑋 in Corollary 3.2, we obtain Theorem 3.1 of Shaoyuan Xu and Stojan 

Radenovic [20]. 

5. If we take 𝑆 = 𝐼𝑋 in Corollary 3.3, we get Theorem 3.2 of Shaoyuan Xu and Stojan 

Radenovic [20]. 

6. If we take 𝑆 = 𝐼𝑋 in Corollary 3.4, we get Theorem 3.3 of Shaoyuan Xu and Stojan 

Radenovic [20]. 

7. Choose ℎ1 = ℎ and ℎ2 = ℎ3 = ℎ4 = ℎ5 = 0  in Corollary 3.5, we have Theorem 3.1 of 

Shaoyuan Xu and Stojan Radenovic [20]. 

8. Choose ℎ4 = ℎ5 = ℎ and ℎ1 = ℎ2 = ℎ3 = 0  in Corollary 3.5, we get Theorem 3.2 of 

Shaoyuan Xu and Stojan Radenovic [20]. 
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9. Choose ℎ1 = ℎ4 = ℎ5 = 0  and  ℎ2 = ℎ3 = ℎ in Corollary 3.5, we obtain Theorem 3.3 of 

Shaoyuan Xu and Stojan Radenovic [20]. 

Example 3.7 Let 𝑋 = [0,1] and 𝒜 be the set of all real valued functions on 𝑋 which also have 

continuous derivatives on 𝑋 with the norm‖𝑢‖ =  ‖𝑢‖∞  +  ‖𝑢′‖∞ and the usual multiplication. 

Let 𝑃 =  {𝑢 ∈ 𝒜, 𝑢(𝑡) ≥ 0, 𝑡 ∈ 𝑋}. It is clear that 𝑃 is a nonnormal cone and 𝒜 is a Banach 

algebra with a unit 𝑒 =  1. Define a mapping 𝑑𝑐: 𝑋 × 𝑋 → 𝒜 by 𝑑𝑐(𝑢, 𝑣) = |𝑢 − 𝑣|𝑒𝑡. We make 

a conclusion that (X; d) is a complete cone b-metric space over Banach algebra 𝒜. Now define 

the mappings 𝑇, 𝑆: 𝑋 → 𝑋 by 𝑇𝑢 =
𝑢

8
 and 𝑆𝑢 =

𝑢

2
. Choose ℎ1 =

1+𝑡

8
, ℎ2 =

1+𝑡

12
, ℎ3 =

1+𝑡

16
, ℎ4 =

ℎ5 = 0. Simple calculations show that all conditions of Theorem 2.9 are satisfied. Therefore, 0 is 

the unique common fixed point of 𝑇 and 𝑆.   
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