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QUANTUM ENERGY OF A PARTICLE IN A FINITE-1 

POTENTIAL WELL BASED UPON GOLDEN METRIC 2 

TENSOR 3 

 4 

 5 

Abstract 6 

In our previous work titled “Riemannian Quantum Theory of a Particle in a Finite-Potential 7 

Well”, we constructed the Riemannian Laplacian operator and used it to obtain the 8 

Riemannian Schrodinger equation for a particle in a finite-potential well. In this work we 9 

solved the golden Riemannian Schrodinger equation analytically to obtain the particle energy. 10 

The solution resulted to two expressions for the energy of a particle in a finite-potential well. 11 

One of the expressions is for the odd energy levels while the other is for the even energy 12 

levels.  13 

Keywords: Energy, Finite-potential, Quantum Theory, Particle, Schrodinger equation.   14 

 15 

1. Introduction 16 

The origin of quantum physics occupies a time period in history that covers a quarter of a 17 

century. Classical or Newtonian mechanics was available in the powerful formulations of 18 

Lagrange and Hamilton by the year 1900. Thus, classical electromagnetic theory was 19 

embodied in the differential equations of Maxwell. Defects were, however, made clear by the 20 

failure of the classical theories to explain some experimental results, notably, the frequency 21 

dependence of the intensity of radiation emitted by a blackbody, the photoelectric effect and 22 

the stability and size of atoms [2]. 23 

 24 
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Quantum Physics came to existence in 1900 when a famous pronouncement was put forward 25 

by Planck to unfold and illustrate the meaning of the observed properties of the radiation 26 

ejected by a blackbody [3]. This phenomenon posed an unsolved problem to theoretical 27 

physicists for several decades. 28 

Principles of thermodynamics and electromagnetism had been applied to the problem but, 29 

these classical methods had failed to give a sensible explanation of the experimental results 30 

[11; 1]. 31 

The quantum hypothesis of Planck and the subsequent interpretation of the idea by Einstein in 32 

1905 gave electromagnetic radiation discrete properties; somewhat similar to those of a 33 

particle. The quantum theory made provision for radiation to have both wave and particle 34 

aspects in a complementary form of coexistences. The theory was extended when matter was 35 

found to have wave characteristics as well as particle properties by de Broglie in 1923 [9]. 36 

These notions continued to evolve until 1925 when the formal apparatus of quantum theory 37 

came into being. 38 

 39 

The discovery of the wave like behavior of an electron created the need for a wave theory 40 

describing the behavior of a particle on the atomic scale. This theory was proposed by 41 

Schrodinger in the year 1926, two years after De Broglie formulated the idea of a particle 42 

wave nature [8]. Schrodinger reasoned that if an electron behaves as a wave, then it should be 43 

possible to mathematically describe the electrons behavior in space time coordinate as a wave. 44 

The Schrodinger proposed theory; yielded the fundamental equation of quantum mechanics 45 

known as the Schrodinger wave equation. This equation has the same central importance to 46 

quantum mechanics as Newton’s law of motion has for classical mechanics [10]. 47 

 48 

2. Theoretical Analysis 49 
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2.1 Derivation of Riemannian Laplacian Operator in Spherical Polar Coordinate 50 

Based upon the Golden Metric Tensor    51 

      Consider a particle of mass, � in a finite-potential well of width, � and depth, ��.  52 

       The Riemannian Laplacian operator [12; 6] is given by 53 

  ∇�� =  
√�  

��  ���.  ���  

���                                     (1) 54 

     where ���  ≡ metric and � = determinant of ��� 55 

The Golden Riemannian metric tensors in spherical polar coordinate [6; 7] are given by 56 

                  �

 = &1 + �)*  f+,

                                                                                   (2) 57 

 58 

                  ��� =  r�  &1 + �)*  f+,

                                                                            (3) 59 

 60 

                 �-- =  r�sin�θ &1 + �)*  f+,
                                                                    (4) 61 

                 �00 =  − &1 + �2*  f+                                                                                   (5) 62 

                 ��� = 0; otherwise                                                                                     (6) 63 

 64 

          and 65 

                 � =  56sin�θ &1 + �)*  f+,�
                                                                       (7) 66 

 67 

               �� =  5�789: &1 + �)*  f+,

                                                                       (8) 68 

            From equation (1) we have: 69 
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  70 

  ∇;� =  
√�  <<=>  ���. �

 <<=>� + 
√�  <<=*  ���. ���  <<=*� +                                                                                                          71 


√�  <<=?  ���.  �--  <<=?� + 
√�  
<=@  ���. �00 <<=@�     (9) 72 

             If we let  73 

 A = 
√�  <<=>  ���. �

 <<=>�,  74 

 B = 
√�  <<=*  ���. ���  <<=*�,  75 

 C = 
√�  <<=?  ���.  �--  <<=?� and  76 

 D = 
√�  
<=@  ���. �00 <<=@�  77 

Equation (9) reduces to 78 

 ∇;� = A + B + C + D           79 

 (10) 80 

 For A = 
√�  <<=>  ���. �

 <<=>�            81 

 (11) 82 

To obtain A in spherical polar coordinate, we substitute equations (2) and (7) into equation 83 

(11) as follows: 84 

A = 1�� EEF
  G��. �

 EEF
H = 

1
5�789: &1 + 2c�  J+,
  EE5  K5�789: L1 + 2c�  fM,
 . L1 + 2N�  JM EE5 O 
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= 1
5�789: &1 + 2c�  J+,
  EE5  G5�789: EE5H 

 =  

P* &
Q *R* S+T>  <<P  �5�  <<P �     85 

              A = 
P*  &1 + �U*  J+ <<P  �5�  <<P  �                                                86 

 (12) 87 

 88 

For B = 
√�  <<=*  ���. ���  <<=*�         89 

 (13) 90 

To obtain B in spherical polar coordinate, we substitute equations (3) and (7) into equation 91 

(13) as follows: 92 

B = 1�� EEF�  G�� . ���  EEF�  H = 

1
5�789: &1 + 2c�  f+,
  EE:  K5�789: L1 + 2c�  fM,
  . L1 + 2N� JM 15�  EE:O 

 93 

 B = 
P*VWXY  &1 + �U*  J+ <<Y �789: <<Y�                                                    94 

 (14) 95 

For C = 
√�  <<=?  ���.  �--  <<=?�          96 

 (15) 97 

To obtain C in spherical polar coordinate, we substitute equations (4) and (7) into equation 98 

(15) as follows: 99 
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 C = 
√�  <<=?  ��� . �--  <<=?� =  100 

15�789: L1 + 2N� JM EE∅ K5�789: L1 + 2c�  fM,
 . L1 + 2N� JM 15�789�[  EE∅ O 

 C = 
P*VWX*[ &1 + �U* J+ <<∅ � <<∅�                           101 

(16)  102 

         103 

     For D = 
√�  
<=@  ���. �00 <<=@�         104 

 (17) 105 

 To obtain C in spherical polar coordinate, we substitute equations (5) and (7) into    106 

equation (17) as follows: 107 

    D = 
√�  <<=@  ���. �00  <<=@� = 108 

− 15�789: L1 + 2N� JM EEF0 K5�789: L1 + 2c� JM,
 . L1 + 2c� JM,
 EEF0 O 

D = − &1 + �2*  f+,
 <<=@  � <<=@�                                                       109 

 (18) 110 

      Substituting equations (12), (14), (16) and (18) into equation (10), we have thus: 111 

 ∇;� =  
P*  &1 + �U*  J+ <<P  �5�  <<P  � + 
P*VWXY  &1 + �U*  J+ <<Y �789: <<Y�  112 

 + 
P*VWX*[ &1 + �U* J+ <<∅ � <<∅� − &1 + �2*  f+,
 <<=@  � <<=@�               113 

 (19)          114 

Equation (19) is the golden Riemannian Laplacian operator in spherical polar coordinate. 115 

The well-known Laplacian operator is derived based on Euclidean geometry while 116 
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equation (19) is derived based on the Riemannian geometry using the golden metric 117 

tensor. This equation is further applied to the Schrodinger equation in order to obtain the 118 

golden Riemannian Schrodinger equation.  119 

       2.2 Derivation of golden Riemannian Schrodinger equation in Spherical Polar 120 

Coordinate    121 

Consider the well-known Schrodinger equation [4; 5] given by  122 

  \ψ = Hψ = ,ℏ*∇*
�` ψ + Vbrcψ       123 

 (20)  124 

 where \ is energy of the particle, H is Hamiltonian of the system, m is mass of the 125 

particle, ℏ is normalized Planck’s constant, ∇� is Euclidean Laplacian of the system, V is 126 

particle potential and  ψ is wave function. 127 

We replace the Euclidean Laplacian operator with the golden Riemannian Laplacian 128 

operator in equation (19); that is:  129 

                    \ψ = Hψ = ,ℏ*∇d*�` ψ + Vbrcψ    130 

 (21) 131 

 Substituting the expression for the Riemannian Laplacian operator, ∇;�  into equation (21), 132 

we obtain 133 

 134 

 Hψ = − ℏ*
�`  G 
P*  &1 + �SU*  + <<P  &5� <<P + + 
P*VWXY  &1 + �SU*  + <<Y &789: <<Y + +135 


P*VWX*Y  &1 + �SU*  + <<∅  & <<∅+ − &1 + �2* f+,
 <<=@ & <<=@+� ψb 5, fc + � ψb 5, fc   136 

 (22) 137 
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 Expanding equation (22) and considering that � = �� which is the depth of the potential well, 138 

we obtain 139 

 8ℏ L <<Y ψb5, :, g, F�cM = − ℏ*h`P L <<P ψb5, :, g, F�cM − ℏ*h�` i <*
<P* ψb5, :, g, F�cj −140 

ℏ*hU�VY�`P*VWXY L <<Y ψb5, :, g, F�cM − ℏ*h�`P* i <*
<Y* ψb5, :, g, F�cj −141 

ℏ*h�`P*VWXY* i <*
<k* ψb5, :, g, F�cj − ℏ*

�`h i <*
<b=lc* ψb5, :, g, F�cj + ��  ψb 5, fc  142 

         (23) 143 

 where m = &1 + �U*  J+         144 

 (24) 145 

 Equation (23) is the golden Riemannian Schrodinger equation in spherical polar coordinates.  146 

 Using the method of separation of variables, we seek to express the wave function, ψ as 147 

 148 

 ψ = nb5cΦbgcΘb:cexp b− Wstℏ c       149 

 (25) 150 

 151 

Putting equation (25) into (23) yields 152 

− ;bPcubkcvbYcsw=xyz{ℏ = − ℏ*hL ||};bPcMubkcvbYc
`Pw=xyz{ℏ − 
�

ℏ*hi |*|}*;bPcjubkcvbYc
`w=xyz{ℏ −153 


�
ℏ*h 2~�bYc;bPcubkcL ||[vbYcM

`P*��� bYcw=xyz{ℏ − 
�
ℏ*h;bPcubkci |*|[*vbYcj

`P*w=xyz{ℏ −154 
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�
ℏ*h;bPci |*|�*ubkcjvbYc

`P* ��� Y*w=xyz{ℏ − 
� ;bPcubkcvbYcW*s*
`hw=xyz{ℏ + �l;bPcubkcvbYcw=xyz{ℏ  155 

 (26) 156 

Dividing equation (26) by (25) and bringing the like terms together we have 157 

 158 

\ = − ℏ*hL ||};bPcM
;bPc`P − 
�

ℏ*hi |*|}*;bPcj
;bPc` − 
�

ℏ*h 2~�bYcL ||[vbYcM
vbYc`P* ���bYc −159 


�
ℏ*hi |*|[*vbYcj

vbYc`P* − 
�
ℏ*hi |*|�*ubkcj
ubkc`P* ��� Y* + 
� s*

`h + ��     160 

   (27) 161 

 Rearranging equation (27) we have 162 

− 
�
ℏ*hi |*|}*;bPcj

;bPc` − ℏ*hL ||};bPcM
;bPc`P + 
� s*

`h + �� − \ =163 

− 
�
ℏ*h 2~�bYcL ||[vbYcM

vbYc`P* ���bYc − 
�
ℏ*hi |*|[*vbYcj

vbYc`P* − 
�
ℏ*hi |*|�*ubkcj
ubkc`P* ��� Y*    164 

    (28) 165 

Equating the left hand side of equation (28) to −��
 implies that 166 
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 167 

− 
�
ℏ*hi |*|}*;bPcj

;bPc` − ℏ*hL ||};bPcM
;bPc`P + 
� s*

`h + �� − \ = −��
  168 

 (29) 169 

Multiplying through equation (29) by − �`;bPcℏ*h  170 

�*
�P* nb5c + �L ||};bPcM

P − ;bPcs*
ℏ*h* − �`;bPc�lℏ*h + �`;bPcsℏ*h = �`;bPc�*

ℏ*h        171 

(30) 172 

 173 

Rearranging equation (30) we have 174 

�*
�P* nb5c + �i ||};bPcj

P − ;bPcs*
ℏ*h* − �`;bPc�lℏ*h + �`;bPcsℏ*h − �`;bPc�*

ℏ*h = 0   (31) 175 

Equation (31) becomes 176 

�*
�P* nb5c + �P L ��P nb5cM − 
ℏ*h &s*

h + 2��� − 2�\ + 2���+ nb5c = 0  (32) 177 

 178 

From equation (32) 179 

 180 

�*;�P* + �P �;�P − 
ℏ*h &s*
h + 2��� − 2�\ + 2���+ n = 0   (33) 181 

 182 

Let n = �� + �
5 + ��5� + �-5- + ⋯ + ��5�    (34) 183 
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  184 

Thus, 185 

 186 

 n = ∑ ��5����0        (35) 187 

 188 

 n� = ∑ ��5�−1���
       (36) 189 

 190 

 n�� = ∑ ��5�−2����       (37) 191 

Substituting equations (35) to (37) into (33) we have 192 

 193 

∑ kbk − 1c��5�−2 + 25−1���� ∑ k��5�−1 − ����
 ∑ ��5����0 = 0  (38) 194 

Where � = 
ℏ*h &s*
h + 2��� − 2�\ + 2���+     (39) 195 

This implies that 196 

 197 

∑ kbk − 1c��5�,� +���� ∑ 2k��5�,� −���
 ∑ ���5����0 = 0  (40) 198 

 199 

Shifting the first term of equation (40) yields 200 

 201 

∑ bk + 2cbk + 1c��5� +���0 ∑ 2bk+2c��Q�5� −���0 ∑ ���5����0 = 0 (41) 202 

  203 

∑ �bk + 2cbk + 1c + 2bk + 2c���Q�5����0 − ∑ ���5����0 = 0  (42) 204 

 205 

�bk + 2cbk + 1c + 2bk + 2c���Q� − ��� = 0    (43) 206 
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 207 

It implies that  208 

 209 

�bk + 2cbk + 3c���Q� − ��� = 0      (44) 210 

 211 

and  212 

 213 

��Q� = ���b�Q�cb�Q-c      ; k = 0,1,2,3 …      (45) 214 

 215 

From equation (45) we have 216 

 217 

�� = ��l-!   ; � = 0        (46) 218 

 219 

�- = ��>-×6   ; � = 1        (47) 220 

 221 

�6 = �*�l�!   ; � = 2        (48) 222 

 223 

�� = �*�>�×�×6×-   ; � = 3        (49) 224 

 225 
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�� = �?�l�!   ; � = 4        (50) 226 

 227 

�� = �?�>�×�×�×�×6×-   ; � = 5       (51) 228 

 229 

Substituting equations (46) to (51) into (34) we have 230 

 231 

n = �� + �
5 + �� 3! 5� + ��13×4 5- + �2� 5! 56 + �2�16×5×4×3 5� + �3� 7! 5� +232 

          �3�18×7×6×5×4×3 5� + ⋯       (52) 233 

 234 

n = L�� + �� 3! 5� + �2� 5! 56 + �3� 7! 5�M + L�
5 + ��13×4 5- + �2�16×5×4×3 5� +235 

           �3�18×7×6×5×4×3 5�++…       (53) 236 

 237 

Therefore,  238 

 239 

nb5c = U>P exp¤−√�¥5 + U*P√� exp¤√�¥5      (54) 240 

 241 

Substituting for � we have 242 
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nb5c = U>P exp �− 
ℏ*h &s*
h + 2��� − 2�\ + 2���+�>* 5 + U*

G >ℏ*¦Lz*¦ Q�`�l,�`sQ�`�*MH>*P      243 

               exp � 
ℏ*h &s*
h + 2��� − 2�\ + 2���+�>* 5     (55) 244 

   245 

Solving equation (55) for E, we obtain 246 

 247 

\ = 
P §�m5 + i��m�5� + ¨9 L;bPcPQ�;bPc*P*QU>*,U**
U>*QU** M� ℏ�m� − 2���m5� −248 

2���m5�M>*©          249 

 (56) 250 

 251 

Also equating the right hand side of equation (28) to −��  implies that 252 

 253 

− ℏ*h 2~� Y�vbYc`P* ��� Y L ��Y Θb:cM − ℏ*h�vbYc`P* i �*
�Y* Θb:cj −254 

ℏ*h�ubkc`P* ��� Y* i �*
�k* Φbgcj = −��

      (57) 255 

 256 

Multiplying through equation (57) by − �`P*
ℏ*h , we obtain 257 

 258 
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2~�bYcL ||[vbYcM
vbYc ���bYc + |*|[*vbYcvbYc + i |*|�*ubkcj

ubkc ��� Y* = �`P*�*
ℏ*h    259 

 (58) 260 

 261 

Rearranging we have 262 

 263 

2~�bYcL ||[vbYcM
vbYc ���bYc + |*|[*vbYcvbYc + i |*|�*ubkcj

ubkc ��� Y* − �`P*�*
ℏ*h = 0   264 

 (59) 265 

 266 

Equivalently 267 

 268 

2~�bYcL ||[vbYcM
vbYc ���bYc + |*|[*vbYcvbYc − �`P*�*

ℏ*h = − i |*|�*ubkcj
ubkc ��� Y*   269 

 (60) 270 

 271 

Equating the left hand side of equation (61) to – � implies that 272 

2~�bYcL ||[vbYcM
vbYc ���bYc + |*|[*vbYcvbYc − �`P*�*

ℏ*h = −�    273 

 (61) 274 

 275 

Multiplying through equation (61) by Θb:c gives 276 

 277 
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2~�bYcL ||[vbYcM
���bYc + �*

�Y* Θb:c − �vbYc`P*�*
ℏ*h = −Θb:c�  278 

 (62) 279 

 280 

From equation (62) we have 281 

 282 

�*v�Y* + 2~� Y��� Y �v�Y + i� − 
ℏ*h b2�5���cj Θ = 0    283 

 (63) 284 

 285 

Let « =  � − 1ℏ2m L2�52�2M       286 

 (64) 287 

 288 

Equation (64) becomes 289 

 290 

�*v�Y* + 2~� Y��� Y �v�Y +  «Θ = 0       291 

 (65) 292 

Using same method of obtaining equation (56) we have 293 

  294 

Θb:c = N
 �1 − ¬�! ­� − ¬6! b6 − «c­6 − ¬�! b20 − «cb6 − «c­�� + N� �­ +295 


-! b2 − «c­- + 
�! b12 − «cb2 − «c­� + 
�! b30 − «cb12 − «cb2 − «c«­��296 

 (66) 297 
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Equating the right hand side of equation (60) to – � implies that 298 

− |*|�*ubkc
ubkc ��� Y* = −�        (67) 299 

 300 

Multiplying through by Φbgc sin :� we have 301 

 302 

�*
�k* Φbgc − Φbgcbsin :�c� = 0      (68) 303 

 304 

From equation (68) 305 

 306 

�*u�k* − Φsin�:� = 0        (69) 307 

 308 

This implies that 309 

 310 

�*u�k* − �sin�:Φ = 0        (70) 311 

 312 

The characteristic equation is given by 313 

 314 

�� − �sin�: = 0        (71) 315 

and 316 

  317 

� = ±√�789�: = ±√�789:      (72) 318 
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Hence, 319 

Φbgc = N
 exp¤√�b789:cg¥ + N� exp¤−√�b789:cg¥   (73) 320 

Seeking the solution for equation (73) as 321 

 322 


P ¯&,�`¤,�*Qs,�l¥hQs*
ℏ*h* +
 �° 5± = 9²     (74) 323 

 324 

&− 
ℏ*h* 2�b−�� + \ − ��cm + \�+>* − 9² = 0   (75) 325 

 326 

Solving for \ from equation (75) yields 327 

 328 

¯\ = m� + �m�ℏ�9²� + m��� − 2m��� − 2��m�,\ = m� − �m�ℏ�9²� + m��� − 2m��� − 2��m� ±   (76) 329 

 330 

From equation (76) we have two sets of values for the energy which are identified as 331 

 332 

\
 = m� + �m�ℏ�9²� + m��� − 2m��� − 2��m�    (77) 333 

 334 

and 335 

\� = m� − �m�ℏ�9²� + m��� − 2m��� − 2��m�    (78) 336 

Substituting the expression for m from equation (24) into equations (77) and (78) we have 337 

\
 = L1 + 2N� JM � + 
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³&1 + �U* J+� ℏ�9²� + &1 + �U* J+� �� − 2 &1 + �U* J+ ��� − 2�� &1 + �U* J+ �338 

           339 

 (79)  340 

and  341 

\� = L1 + 2N� JM � − 

³&1 + �U* J+� ℏ�9²� + &1 + �U* J+� �� − 2 &1 + �U* J+ ��� − 2�� &1 + �U* J+ �342 

           343 

 (80) 344 

Further simplification and expansion of equations (79) and (80) gives 345 

 346 

\X bS�P ��� Xc = � + �S`U* + &9²�ℏ� − 6X´*ℏ*SU* + 6X´*ℏ*S*
Uµ + �� −347 

6`*SU* + 6`*S*
Uµ − 2��� + 6`�*SU* − 2��� + 6�l`SU* +>*

   348 

  (81) 349 

and 350 
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\X bS�P w¶wX Xc = � + �S`U* − &9²�ℏ� − 6X´*ℏ*SU* + 6X´*ℏ*S*
Uµ + �� −351 

6`*SU* + 6`*S*
Uµ − 2��� + 6`�*SU* − 2��� + 6�l`SU* +>*

  352 

 (82) 353 

where n is energy level of the particle in a finite potential well, m is the mass of the particle, c 354 

is speed of light, �� is depth of the well, J is gravitational scalar potential, ℏ is normalized 355 

Planck’s constant ² and � are constants. 356 

 3. Discussion 357 

Equation (81) and (82) are the solutions to the golden Riemannian Schrodinger equation. 358 

They represent the quantum energies of the particle in a finite-potential well. Equation (81) 359 

represents the energy at odd energy levels and equation (82) represents the energy at even 360 

energy levels.    361 

 This can also be applied to all entities of non-zero rest mass such as: infinite potential well,      362 

rectangular potential well, simple harmonic oscillator etc. 363 

 364 

 4. Remarks and Conclusion 365 

We have in this article, shown how to formulated and constructed the Riemannian Laplacian 366 

operator and the golden Riemannian Schrodinger equation. We have solved the golden 367 

Riemannian Schrodinger equation analytically and obtained the expressions for the quantum 368 

energies for both odd and even states.    369 

 370 

 371 

UNDER PEER REVIEW



21 

 

References 372 

[1] Anchaver, R. S. (2003). Introduction to Non-Relativistic Quantum Mechanics. Nigeria, 373 

ISBN: 978-056-139-0, 1-3 374 

[2] Brumel, R. (2005). Analytical Solution of the Finite Quantum Square-Well Problem. 375 

Journal of Physics. 38, 673-678 376 

[3] Hewitt, P. G. (2002). Conceptual Physics. 9
th

 Edition, World Student Series, Brad 377 

Lewis/Stone Publishers, 630-631  378 

[4] Howusu, S.X.K. (2003a). Riemannian Revolution in Physics and Mathematics. Jos 379 

University Press Ltd, Jos, 1-200 380 

[5] Howusu, S. X. K. (2003b). The Natural Philosophy of Quantum Mechanics. 2
nd

 Edition, 381 

Jos University Press Ltd., Jos, ISBN: 978-166-073-2, 20-25 382 

[6] Howusu, S. X. K. (2009). The Metric Tensors for gravitational Fields and The 383 

Mathematical Principle of Riemannian Theoretical Physics. 1st Edition, Jos University 384 

Press Ltd., Jos, ISBN: 978-166-639-0, 121-122 385 

[7] Howusu, S. X. K. (2011). The Golden Metric Tensor in Orthogonal Curvilinear Co-386 

ordinates. 1st Edition, Jos University Press Ltd., Jos, ISBN: 978-166-294-8, 5-6 387 

[8] Jones, E. & Childers, R. (1983). Contemporary College Physics. 3
rd

 Edition, McGraw 388 

Hill, New York, 889 389 

[9] Luca, N. (2015). The Hydrogen Atom: A Review on the Birth of Modern Quantum 390 

Mechanics. 1-3 391 

[10] Lumbi, W. L. & Ewa, I. I. (2013). General Relativistic Equation of Motion for a Photon 392 

Moving Round a Time Varying Spherical Distribution of Mass. Advances in Natural 393 

Science, 6(3), 23-25.  394 

[11] Ronald, C. B. (2007). Inverse Quantum Mechanics of the Hydrogen Atom: A General 395 

Solution. Adv. Studies Theor. Phys. 1(8), 381-393 396 

UNDER PEER REVIEW



22 

 

[12] Spiegel, M. R. (1974). Theory and Problems of Vector Analysis and Introduction to 397 

Tensor Analysis. 1
st
 Edition, McGraw Hill, New York, 166-217 398 

UNDER PEER REVIEW


