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(Kink; Kink; kink; Kink) and (Pulse; pulse; Pulse; pulse) Solutions of a
Set of four Equations Modeled in a Nonlinear Hybrid Electrical Line
with crosslink capacitor

Abstract: The physics system that helps us in the study of this paper is a nonlinear hybrid electrical line
with crosslink capacitor. Meaning it is composed of two different nonlinear hybrid parts Linked by
capacitors with identical constant capacitance. We apply Kirchhoff laws to the circuits of the line to obtain
new set of four nonlinear partial differential equations which describe the simultaneous dynamics of four
solitary waves. Furthermore, we apply efficient mathematical methods based on the identification of
coefficients of basic hyperbolic functions to construct exact solutions of those set of four nonlinear partial
differential equations. The obtained results have enabled us to discover that, one of the two nonlinear
hybrid electrical line with crosslink capacitor that we have modeled accepts the simultaneous
displacement of a set of four solitary waves of type (Pulse; Pulse; Pulse; Pulse), while the other accepts
the simultaneous displacement of a set of four solitary waves of type (Kink; Kink; Kink; Kink) when certain
conditions we have established are respected. We ameliorate the quality of the signals by changing the
sinusoidal waves that are displacing in hybrid electrical lines with crosslink capacitor to solitary waves
which are displacing in the new nonlinear hybrid electrical lines; we therefore facilitate the choice of the
type of line relative to the type of signal that we want to transmit.

Keywords: Hybrid electrical line, crosslink capacitor, construction, solitons solution, solitary wave,
Nonlinear Partial Differential Equation, Kink, Pulse

1. Introduction

The signal that is displaced in electrical lines where the parameters of its components are constant is a
sinusoidal wave whose amplitude decreases exponentially and loses a lot of energy contrary to solitary
wave signal which conserves its velocity, its shape and does not loses energy during its displacement. If
solitons could be displaced in electrical lines, they will resist better on dissipation factors; for this reason
we have decided to search on what means we could modify the component parameters of a hybrid
electrical line with crosslink capacitor so that it accepts the displacement of solitary waves. We therefore
define analytically the nonlinear flux linkage of inductors and the nonlinear charge of capacitors
constituting the two parts linked by capacitors in the line. The use of these definitions and the application
of Kirchhoff laws to the circuit of nonlinear hybrid electrical line with crosslink capacitor has enabled us
to model a set of four nonlinear partial differential equations which describe the dynamics of solitary
waves in the line. To construct exact solitary wave solution of each set of four nonlinear partial differential
equations, we have used the mathematical methods presented in [1-14] and particularly the Bogning-
Djeumen Tchaho-Kofane method [15-20]. For one of the set of four nonlinear partial differential equations
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we have obtained a solution which is a set of four solitary waves of type (Pulse; Pulse; Pulse; Pulse) and
for the other we have obtained a solution which is a set of four solitary waves of type (Kink; Kink; Kink;
Kink). Our work is developed in the following order: in section two, we model a nonlinear hybrid electrical
line with crosslink capacitor; in section three we find the solitary wave solution of type (Kink; Kink; Kink;
Kink); in section four we find the solitary wave solution of type (Pulse; Pulse; Pulse; Pulse). We conclude
our work in section 5.

2. General modeling of nonlinear hybrid electrical line with crosslink capacitor.

Let us consider a nonlinear hybrid electrical line shown in figure 1. The line is constituted by a good
number of identical networks numbered by the positive integer n. The network number n is constituted

by a capacitor with capacitance C, which link the two nonlinear hybrid parts; two capacitors in which
each of the charge ;' and , changes respectively in nonlinear manner in terms of the voltage u,' and
U, across each capacitor; two inductors in which each of the magnetic flux ¢ and ¢, changes

respectively in nonlinear manner in terms of the current ij' and i, that flow through each inductor.

Applying Kirchhoff’s laws to the circuit shown in figure 1, we obtain the following equations:

n n-! a !
u —u; l:——g (1)
n a1 Od)
u; —u;" = _8_'[2 (2)
o(u'—u; n
iln_i{Hl:CO ( 1 2)+aQ1 (3)

ot ot

o(u -u7) oq
a o a

(4)

To obtain the continuum model, the left hand side of each equation (1); (2); (3) et (4) has to be
approximated to a spatial partial derivative with respect to X =nh which represents the distance
measured from the beginning of the line. h represent the distance that separates two consecutive nodes

and which is equivalent to the spatial sampling derivatives period. Using respectively Taylor expansion of
u ™ ug ;i and i) closely to Uy'; Uy ;i and iy by considering the terms till fourth order we

obtain the set of four partial differential equations in the following manner:
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h* o'y h®o%u) h*o% | oul o4
or Aeh T A A T A2 —h - =0
24 0Ox 6 Ox 2 OX ox ot
h*o'u) h®o%u) h*o%u) ou) o)
Py R e L - =0
24 0Ox 6 Ox 2 0OX ox ot
4 A4:n 3 A3:n 2 A2:n in olu’ =u’ n
LA L i Y (W-v) o,
24 0Ox 6 OX 2 OX OX ot ot
4 A4:n 3 A3:n 2 A2:n n olu’ =uf n
h ot h % Nt ok (W) oy
24 0Ox 6 OX 2 OX OX ot ot
Finally, we obtain the continuum model of the nonlinear hybrid electrical line with crosslink capacitor
presented in figurel by the set of four nonlinear partial differential equations below:

(5)

h* o'y (x.t) K’ 63u1(x,t)+ h? 0%u, (x,t)
24 ox* 6 ox° 2 ox
_h 6ul(x,t)_8¢l(il(x,t))
OX ot
h* d'u, (x,t) h® &%u,(x,t) .\ h? 0°u, (x,t)
24 ox* 6 ox° 2 o
el (x1) 3¢, (i, (x)) 0
oX ot
h_464i1(1<,t)+h_363i1(>3(,t +h_262i1(>2<,t)+h6i1(x,t)
24 0Ox 6 ox 2 OX OX
a(ul(x,t)—uz(x,t))+8ql(u1(x,t))

+C,

ot ot

h* o%, (z(t) +h_383i2 ()3(t) +h_2 0%, (Z(t) h ai, (x,1)

24 0Ox 6 Ox 2  OX OX

¢, 8(u1(x,t)—u2(x,t))+aq2(u2(x,t)) . 6
ot ot

3. Construction of a set of four solitary wave solutions of type (Kink ; Kink; Kink ; Kink)
relative to general differential equation (6)

We define each of nonlinear charges Q, (u1 (X,t)) , O, (u2 (X,t)) of the capacitors and each of nonlinear

magnetic flux linkage ¢, (i1 (X,t)), 3 (i2 (X,t)) of the inductors under the analytical shape given below:
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¢l(i1(x,t)):E (X,t)+ E,if (x,t)+ E4i (X, t) + Eiff (X, 1)

#, (i, (x.t)) = Bi, (x,t)+ Rl (x,t)+ Fji5 (x,t) + F,i; (x,t) o)
oy (uy (X)) = Auy (X, 1)+ Au? (x,t)+ Aus (X, t) + Auy (x,t)

0, (U, (X,1)) = By, (X,t)+ B,u3 (x,t)+Byuj (x,t)+ B,u; (x.t)

withE ; E,; B E R R R FGAA A A ;B B, ; B;and B, are non-nil real
numbers which will be chosen conveniently. By substituting each of the nonlinear charge ql(ul(x,t)) ,

a, (u2 (X,t)) and each of the nonlinear magnetic flux ¢l(i1(x,t)), o, (i2 (X,t)) of (7) in (6) we obtain

the set of four nonlinear partial differential equation written as:

h_“a“ul(x,t)_h_363u1(x,t)+h_282u1(x,t)_h8ul(x,t)
24 ox* 6 ox° 2 ox X

il(x,t)=0

+(—E, = 2E,i, (%,t) = 3E,i7 (X, t) —4E,if (X)) o
h* o, (xt) 1’ 63u2(x,t)Jr h? azuz(x,t)_hauz(x,t)

o))

24 ox* 6 ox° 2 ox OX

+(=F, = 2R, (x,)=3FiZ (x,t) ~4F,i2 (x.1)) a'zé:’t) _0
h* 2% (x.t) t) h® &%, (xt) h?o%(xt)  ai(xt) au, (x,t)

Tt — >—+h -G,

24 6 OX 2 0OX X ot
+(Co+ A +2AU, (X, 1) +3AUS (X, 1)+ 4AU7 ( )) :O
h* 0%, (xt) h? asiz(x,t) h? &%, (%, ) ai, (X, ) ou, (x,t)
oL ~C,
24 ox' 6 o 2 o ox ot

+(Co + B, +2B,u, (X,t)+3B,u (x,t) +4B,u3 ( (8)

Let us use Bogning-Djeumen Tchaho-Kofane method [15-20] to come out with the solution of (8) under
the analytical shape below:

u, (x,t)=atanh(kx—vt)
u, (x,t) =btanh(kx—vt)

N—"

(9)

Where a; b; e; f; k and v are non-nil real numbers to be determined in terms of modeled line parameters.
Replacing ul(x,t) (X t) (X t) et i, (X,t) given by (9) in (8) we yield the following set of four

equations which are written in a simplified form:
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2 1
3E,°%v —hak — = h'ak® + Eev |————
( s’V —hak - Zhiak’ + 1evjcosh2(kx—vt)
+(2E292V—£h4ak4—hzak2+4E4e4VjM
3 cosh® (kx—vt)
—F(h“ak4 _4E4e4v)w+(—3ESESV+h3ak3)+=0
cosh® (kx —vt) cosh* (kx—vt)

1
cosh? (kx—vt)
sinh(kx—vt)
cosh® (kx—vt)

(35 3 —hbk — 2 bk’ + F, fvj
3

+(2F2 f Zv—%h“bk“ —h?bk? + 4F, f 4vj

sinh (kx —vt s L33 1
cosh5((kx—vt))+(_3F3f v ik )cosh“(kx—vt):0
1
cosh? (kx —vt)
sinh (kx —vt)
cosh® (kx —vt)

+(h*bk* - 4F, f*v)
(—3A3a3v +hek + % h’k® - Aav—C,av + Cobvj

+(3Aa’v—h’ek?) L )+(h4ek4 +4Aa'v)

cosh* (kx—vt

+(—2A,Za2v-1 hek* —h%ek? _4AAa4VjM =0
3 cosh® (kx—vt)
10
(—3B3b3v+ hk +Eh3fk3—Blbv—CObv+Coavj+ (10)
3 cosh® (kx—vt)
BBV IC) (k4 ap i) S V).
cosh* (kx—vt) cosh® (kx—vt)
inh (kx —
+(—282b2v—1h4fk4_h2fk2_4B4b4vjm+zo
3 cosh® (kx—vt)

The set of equations (10) is valid if and only if each of its basic hyperbolic function coefficients is nil. This
permits us to obtain the following set of sixteen equations:
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3E,e’v —hak 2 oAk Eev=0
3

2E2e2v—%h“ak4 —h%*ak® +4E,e'v=0

h*ak*-4E,e'v=0
-3E,e°v+h’ak® =0

3F, v —hbk — 2 hbk® + F, fv = 0
3

2F2f2v—%h4bk4 _h?bk? +4F, fv =0

h*bk* —4F, f*v =0
—3F,f%+h%k® =0

—3A,a% + hek + % h’k® - Aav—-C,av+C,bv =0

—2A2a2v—%h“ek4 —h%k?-4Aa'v=0
3Aa°v—h%k® =0
h'ek*+4Aa'v=0

—3B,b% + hfk + % h®fk® - Bbv-Cbv+Cjav=0
(12)

_2BbPv— S h* fk* —h? Tk’ — 4B,b* = 0
3

3B,b%v—h?fk® =0
h* fk* +4B,b*v =0

Haven solved the set of equation (11), it has permitted us to present in (12) the solution with conditions
of the set of four nonlinear partial differential equations obtained in (8) which model the dynamic of a set
of four solitary wave of type (Kink; Kink; Kink; Kink):

L BAA 5N .e_(AsE§)Z\/—48A2A4+54A§ _ f_Bé‘Af(AsEi)Z\/—48AzA4+54A§ _

8A, 8E,A, 8E,AB
3 3 % ) . 1 >
. E B; (AES)* (—48A,A, +54A% ) V:—8A4(A3E3)4 J—48A,A, +54A ‘
: 512A°E2B] ’ 81E,A/ ’
BS(A3E§’)4 AE;B; A
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k:

1 —(AES)* (—48A,A, +54A;

h(AE)

216 A

_ —h%k®a® +3heka® —3Cyva’ +3Cyva’b

Y

A

3va*

B —hak(—3e3 + h2k2e3) .

3e’v
3

—hbk (—thf 2+h%3f 2)

; ;

? h*ak* hok®
} SRR IR
; B =

—h? fk®b° + 3hfkb® —3C,vb* +3C,vba

3vb*

—hak (—2 hke? + hsk?’ezj

2

3e'v !

F =
2 3fv

; AL <0 |53<0;54A32 > 48A,A, ;

B —hbk(—3f3+h2k2f3) |

3fiv

u(xt)=

E,

) JABAA, +54R]

8A,

3
4

B; (AES)* (—48A,A, +54A)

1

33
2

1 ~(AES)* (-48A,A, +54A7)

+8Aj(AaE§)R/—48A2A4 +54A§t

81E, A’

X

1 1| —(AE)(-48AA, +54A7)

3
2

3
2

216 A

uz(x,t)=

iy (x,t) =

i,(x,t)=

By(AES )¢

512A°ESB?

1
tanh| N(AES )

zaAj(/s.sE33)%,/—48A2A4 +54A2
+

81E,A’

3
2

1 —(AES)* (—48AA, +54A)

8E,A,

(A3E3)4\/_48A2A4+54A3 tann| (A"

216A3

8Aj(A3E§’)%,/—48A2A4 +54A2 t
+

81E,A’

1 —(AES)* (-48A,A, +54A7 )

t

1
3
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2

SR (S FRATIR )

216A7

8E,AB,

8Aj(A3E33)%,/—48A2A4 +54A7 t
+
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4. Construction of a set of four solitary wave solutions of type (Pulse; Pulse; Pulse; Pulse)
relative to general differential equation (6)

We define each of nonlinear charges ¢ (ul (X,t)) R (u2 (X,t)) of the capacitors and each of nonlinear

magnetic flux linkage ¢ (i1 (X,t)), @ (i2 (X,t)) of the inductors under the analytical shape given below:

¢ (i, (1)) = By (%, £)+ Eif (1) + (i, (x,) + Eif (x,1)) 1—i12(—>:2’t)

8 (i, (x,t)) = R, (%,t) + Fyi5 (X, t) + (Faly (x,t) + i3 (x,t)) 1—@(%0

o (U (1)) = A, (x,1)+ A7 (X ) + (A, (X, 1)+ AuZ (x.t)) LM

2

(13)

0 (U (X,1)) = By, (X, )+ B,u3 (X,t) +( By, (X,t) + B,uj (x,t)) 1_1122(_?'[)

With |Eq| > [i, (x,1)] 5 [Fo] > [i (6 t)] 5 |A] > |u, (x,1)] 5 [Bo|>[u, (1) Ey s E, 5 By Eus s By
F: R A A A A B B,y Byand B, are non-nil real numbers which will be chosen

conveniently. By substituting each of the nonlinear charge ql(ul(x,t)), a, (u2 (X,t)) and each of the

nonlinear magnetic flux ¢ (i1 (X,t)), @, (i2 (X,t)) of (13) in (6) we obtain the set of four nonlinear partial
differential equation written as:
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h* o'u (xt) h° o (xt) \ h? 0%u, (x,t) _hﬁul(x,t)
24 ox* 6 ox° 2 o OX

il (xt) N E.if (x.t)+E,i; (x,t) |8i,(x,t)

EZ -2 at
0 2 1_|1 (xz,t)
EO

=0

+| —E, = 3E,if (x,t)—(E, +3E,i (x,t)), [1-

h* ', (x,t) h° 0%, (xt) .\ h? 0%u, (x,t) h au, (x,t)
24 ox* 6 ox° 2 o OX

i2 (%) N Ry (x.t)+ Fji; (x.t) | 8, (x,t) _ 0

F?2 i2 ot
0 FOZ\/l— [ (X,t)

+| —F —3R,i; (xt)—(F +3F,i; (x1)),[1-

R’
h 8% (xt) % (xt) b % (xt) | ai(xt) _ au,(xt) .
ACALY \MY L ALY ALY e A Gl

24 x* 6 o 2 o ox o at

uf (xt) AU (X )+ A (x.t) [auy (xt) 0

A u? (x,t) ot
1-
& A

+| C, + A1+2A2u12(x,t)+(A3 +3A4uf(x,t)) 1-

h_484i2(1<,t)+h_383i2(>3<,t)+h_282i2(2<,t)+haiz(x,t)_coaul(x,t)
24 0Ox 6 Ox 2 OX oX ot

Uz (x,t)  Buj (x,t)+Byu; (x,t) |du, (x.t)

BZ ot
0 Bz 1 (); '[)

0

=0

+| Cy+B,+2B,u3 (x,t)+(B, +3B,uZ (x.t)), [1-

Let us use Bogning-Djeumen Tchaho-Kofane method [15-20] to come out with the solution of (14) under
the analytical shape below:

u, (x,t)=asech(kx—vt)
(x,t) =bsech (kx—vt)
i, (x,t) =esech (kx—vt)
(xt)=

f sech (kx—vt)

(15)

I,
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Where a; b; e; f; k and v are non-nil real numbers to be determined in terms of modeled line parameters.
Replacing ul(x,t) ; ul(x,t) ; il(X,t) et i2 (X,t) given by (15) in (14) we yield the following set of four

equations which are written in a simplified form a= A, ; b=B;; e=E; et f =F;:

(—20h4A0k4 +48E,VE, — T2EVE, — 24h2A0k2)sinh (kx —vt)cosh? (kx —vt)
+(h*Ak* +12h* Ak? — 24E,VE, )sinh (kx —vt)cosh* (kx —vt) +(96ESVE, + 24h*Ak* )sinh (kx—vt )
+(240° AK® + T2EVE, ) cosh (kx —vt) +(~T2ESVE, — 24hAk + 24E,VE, — 28h*Ak® ) cosh® (kx—vt)
+(24hAk — 24E,VE, +4h*Ak® )cosh® (kx—vt) =0
(—20n*Byk* + 48F,vF, —72F;vF, — 24h*B.k? )sinh (kx —vt ) cosh? (kx —vt)
+(h*Bk* +12h°Byk? — 24F,vF, )sinh (kx —vt) cosh* (kx —vt) +(96F5'vF, + 24h*B.k* )sinh (kx—vt)
+(24h°Byk® + 72FVF, ) cosh (kx —vt) +(~72F;VF, — 24hB.k + 24F,VF, — 28h°B.k* )cosh® (kx—vt )
+(24hB.k — 24F,VF, +4h*B.k° ) cosh® (kx—vt) =0

(—20n*Eqk* —48AVA, + T2 AVA, — 24h°E -k )sinh (kx —vt) cosh? (kx —vt)

+(—24n°Egk® — 72 AVA, ) cosh (kx—vt) + (—96 AJVA, + 24h*E k* )sinh (kx—vt )

+(h*Egk* +12h°E k® + 24 A VA, )sinh (kx —vt) cosh* (kx —vt)

(16)

+(72AVA, + 24hE k — 24 AVA +28h°E k® — 24 ANC, + 24BvC, ) cosh® (kx —vt )
+(—24NE k + 24 A\VA — Ah°E k® + 24 AVC, — 24B,C, ) cosh® (kx—vt) = 0
(—20n*F,k* —48B,vB, + 72B3vB, — 24h*F,k* )sinh (kx —vt)cosh? (kx —vt)
+(~24n°F,k® — 72B3vB, ) cosh (kx —vt) +(~96B5vB, + 24h*F k* )sinh (kx—vt)
+(h*Fok® +12h?F k? + 24B,VB, )sinh (kx —vt) cosh* (kx —vt)

+(72B3vB, + 24hF k — 24B VB, + 28h°F k° — 24B,vC, + 24AVC, )cosh® (kx —vt)

+(—24hF,k +24B,VB, —4h°F k° + 24BC, — 24 A\C, )cosh® (kx—vt) =0

The set of equations (16) is valid if and only if each of its basic hyperbolic function coefficients is nil. This
permits us to obtain the following set of twenty four equations:
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—20h*Ak* +48E,VE, — T2EVE, — 24h*Ak* =0
h*B,k* +12h*B k* — 24F,vF, =0
96EVE, +24h*Ak* =0
24h°Ak® + T2EVE, =0
—T2EVE, — 24hAK + 24E,VE, — 28h°Ak® =0
24hAk —24E,VE, +4h°Ak® =0
—20h*B,k* +48F,VF, — 72F,vF, —24h’Bk* =0
h*B,k* +12h*B k* — 24F vF, =0
96FVF, +24h*Bk* =0
24h°Byk*® + 72FVF, =0
~T2FVF, — 24hB K + 24F,vF, —28h°B k° =0
24hBk — 24F,VF, +4h°Bk® =0
—20h*E k* —48AVA, + T2AVA, —24h°Ek* =0
—24h°Ek* —72AVA, =0
—96 AVA, +24h*Ek* =0
h*Ek* +12h*E Kk + 24 AVA, =0
72 ANA, +24hEk —24 A VA +28h°E k°® —24AVC, +24BVC, =0
—24hE k +24AVA —4h°E k® + 24AVC, — 24BVC, =0
—20h*F k* —48B VB, + 72BvB, —24h’F k* =0
24h°F.K° ~72B3B, =0 17)
—96BVB, +24h*Fk* =0
h*Fk* +12h*F k? +24B,B, =0
72BVB, + 24hF k — 24B VB, + 28h°F k* — 24B,vC, + 24 AvVC, =0
—24hF k +24B,vB, —4h*F k* + 24BvC, — 24 AVC, =0

Haven solved the set of equation (17), it has permitted us to present in (18) the solution with conditions
of the set of four nonlinear partial differential equations obtained in (14) which model the dynamic of a
set of four solitary wave of type (pulse ; pulse ; pulse ; pulse):

1
. 33 \3 3 3 3
a=%;b=BO;e=Eo;f=Fo;k—Ao( 64A450J .V_64A4E0;A2A4<0;Bz_ hifk®

TEh| 27AA ) T BIAIA ~ 3B
S MG WA RAKS L WBK L NBK
Y 4B 2 3t Y 4y ] 2 3fw RS VA
3 3 4 4 2 2 3 3
Al:_Co+c050+hek ek A3=_hek _hek® - O+C0Ab+hfk+hfk;
A, 6AV Ay 24AV  2AV B, 6By By
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h*ftk* h?fk? hAKk h®Ak® h?Ak? h*AKk*
3= a ;o B=——t+—"—, E= + ’ 1 ryYyYs
24B)v 2B,V ev Gev 2ev 24ev fv 6 fv
1
A (—64A’ES EX_64AjE0
E,hl 27TAA 81AAS

£ _hBjk B

’

u, (x,t)= A sech

A [ —B4A’ES B B4A'E
UZ(X,t):BOSECh En 27A§A§0 X—mt
h?B,k? h*Bk* °

2l 24t BAASE> % 64 A E -
i, (x,t) = E, sech al (_ < Oj X 40

F,

Ehl 27A3A° | BIAA
1

I YVX=RE 3
i,(x,t)=F,sech A“( 64A4E°J x—JAAE, |

E,hl 27AAS 81A, A

5. Conclusion

The choice of nonlinear hybrid electrical line with crosslink capacitor for our study is due to the fact that
it permits the simultaneous displacement of four signals contrary to a non-coupled hybrid electrical line
which permits the simultaneous displacement of two signals; let us recall that the more we will multiply
the crosslink capacitor in the line, the more we will multiply the simultaneous displacement of signals in
the line. In mathematical domain, the nonlinear hybrid electrical line with crosslink capacitor presented
in figure 1 has permitted us in the one hand to discover in (8) a set of four nonlinear partial differential
equations which have for exact solution a set of four solitary waves given in (12) and on the other hand
to discover in (14) another set of four nonlinear partial differential equations which have for exact solution
another set of four solitary waves given in (18). In the domain of physics in general and particularly in the
domain of telecommunication, the set of four solitary waves obtained in (12) will permit the
manufacturing of a new hybrid electrical line with crosslink capacitor where the flux linkage of its
inductors and the charge of its capacitors vary in nonlinear manner defined in (7). In the same light, the
set of four solitary waves obtained in (18) will permit the manufacturing of another hybrid electrical line
with crosslink capacitor where the flux linkage of its inductors and the charge of its capacitors vary in
nonlinear manner defined in (13). The set of four solitary waves obtained in (12) and in (18) prove that
the quality of signals which are being displaced in the nonlinear hybrid electrical line with crosslink
capacitor was ameliorated as compared to sinusoidal signals which are being displaced in hybrid electrical
line with crosslink capacitor.
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Figure 1: presentation of a nonlinear hybrid electrical line with crosslink capacitor.
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