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ABSTRACT5

The predictive calculations of vacancy formation energies in metals: Cu, Ag, Ni, Pt, Au, Pd, Ir and6

Rh are presented. The energy is given as a function of electron density. Density functional theory7

underestimates the vacancy formation energy when structural relaxation is included. The unrelaxed8

mono-vacancy formation, unrelaxed di-vacancy formation, unrelaxed di-vacancy binding and low9

index surface energies of the fcc transition metals Cu, Ag, Ni, Pt, Au, Pd, Ir and Rh has been10

calculated using embedded atom method. The values for the vacancy formation energies agree with11

the experimental value. We also calculate the elastic constants of the metals and the heat of solution12

for the binary alloys of the selected metals. The average surface energies calculated by including the13

crystal angle between planes (hkl) and (111) correspond to the experiment for Cu, Ag, Ni, Pt and14

Pd. The calculated mono-vacancy formation energies are in reasonable agreement with available15

experimental values for Cu, Ag, Au and Rh. The values are higher for Pt and Ir while smaller values16

were recorded for Ni and Pd. The unrelaxed di-vacancy binding energy calculated agrees with17

available experimental values in the case of Cu, Ni, Pt and Au.18
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Many stories have been expended on the interatomic potential models competent for computer

simulation of metallic systems. Out of many intend methods so far, the embedded-atom method

(EAM) is an extensively used technique proposed (Daw et al., 1983) for the understanding of many-

body potential models for material. Using the EAM, the energy need to position a trivial impurity

atom in a lattice is taken as a function of the electron density at that peculiar site. Each atom species

at that site therefore has an unmatched energy function of the electron density (Puska et al., 1981).

Through this belief, many authors have originated several potential models. Finnis and Sinclair,

1984 developed a model which is mathematically analogous to the EAM. The functional form of

the energy of the EAM was deduce (Manninen, 1986) and (Jacobson et al., 1987) using density-

functional theory. By replacing the atomic electron density with an exponentially decline function,

Johnson (1988) developed a simple analytic model for fcc (face-centered cubic) metals using

nearest neighbor distance. This EAM function is sufficient only for nearest-neighbor interaction.

The relevancy of Johson analytic EAM has been proof by calculating the ground state properties of

some chosen metals.

The exponential form for absolute charge density has empowered Mei et al., 1990 to procure a

closet analytic form of embedding function. By chosen exponential charge density of interest, they

obtained potential parameters for fcc metals using a third neighbor model. Cai and Ye, 1996

developed the EAM potential under the assumption that the embedding energy is supposed to be of

the total form present by Banerjea and Smith (1988).

It is now open that everyone have choice of potentials and embedding energy but the most

significant ones are those that can portray the significant parameters of the metals and alloys.
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The employed potential utilized the total form of the embedded function present by Mayer with

two-body potential given by Rose et al., 1984. This potential function was select for it is very

simple form and is easy to be used in computer simulation. The potential parameters of this model

are decided by fitting lattice constant, three elastic constants (C11, C12, C44), cohesive energy, and

vacancy forming energy using an optimization technique. The procure parameters have been used to

calculate properties including bulk modulus, monovacancy forming energy, divacancy forming

energy, divacancy binding energy, the surface energy of the low index crystal, and the elastic

constants. Information concerning the ground state properties of these metals is significant in

mandate to know the kind of materials that can be formed from such metals. Zhang and Liu (2002)

developed an embedded atom method potential for Ni-Al alloys. Their declaration of the embedded

function was devise in analogy with the density function theory. Consistent empirical embedded-

atom potential that contains a long range force for fcc metals and alloys has been developed to

estimate the elastic constants and the heats of solution of some choice fcc metals (Iyad, 2009). In

this scene, each atom in the metal is fixed into the electron gas produce by the other atoms.

The total energy of EAM is given as= ∑ ( ) + ∑ ( ), (1)

where= ∑ ( ) (2)

The parameter ( ) is the energy to embed an atom into the local compactness of the remaining

atoms, is an electrostatic two-body interaction between atoms and and ( ) is the local

electron density, is the host electron density. So far, equation (1) features three important

functions which are ( ), ( ) and ( ).
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THEORY

In the Analytic Embedded Atom Method, the electron density is given by:( ) = − − 1 (3)

The embedding potential between atom and atom is given by:( ) = − − 1 (4)

The embedding function is determined using equation (5):

( ) = − 1 − − (5)

where = 12 and = 6
To determine the two adjustable parameters and for each metal, equation (6) was used.=

Ω
and = (6)

where is an arbitrary scaling constant.

The parameters , and can easily be determined from equations (7 – 9).

= 3 Ω (7)

= Ω( ) (8)

= Ω ( ) (9)

The elastic constants , and , were calculated using equations (10), (11) and (12):= Ω ( ) − ( ) + 2 ( ) ( ) − ( ) (10)
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= Ω ( ) − ( ) + 2 ( ) ( ) − ( ) + Ω ( ) ( ) (11)

= Ω ( ) − ( ) + 2 ( ) ( ) − ( ) (12)

The bulk modulus and the shear modulus , in equations  (7 – 9) is determined from equations

(13) and (14) respectively.

= ( + 2 ) (13)

= ( − + 3 ) (14)

Energy Calculations:

Vacancy migration which most often leads to vacancy forming is the controlling movement behind

atomic carriage in most elemental crystals, and is of underlying consequence in procedure similar

solid phase transformations and fault migration. Vacancy formation implies the removal of an atom

from the interior of a crystal. The twelve two-body bonds were removed; the embedding energy at

the equilibrium electron density is removed and the mono-vacancy formation energy is rate at

equilibrium electron density. The unrelaxed mono-vacancy formation energy is calculated using

equations (15) and (16)= −12 ( ) + 12 − 6 (15)

= −12 + 12 (16)

where is the total energy of the system having no vacancy.

The unrelaxed di-vacancy formation energy can be computed using equation (17)= −18 + 14 + 4 (17)

The unrelaxed di-vacancy binding energy is calculated using:= 2 − = − 6 + 10 − 4 (18)
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The low index surface energy can be computed with equations (19) to (20):

The number of bonds broken on (111) surface = (3 / )x (1 / )
Therefore number of bonds broken on (111) surface = 3/(√ )= = ; = =∴ Г = / ( − )
where is the number of atom on the surface.∴ Г = √ ( − ) (19)

Similarly for Г and Г we haveГ = ( − ) (20)

Г = √ ( + − 2 ) (21)

The crystal angle between planes (hkl) and (111) is calculated using

( ) = ( )( ) (22)

Alloy potentials and heats of solutions

In computing the alloys pair potentials, the mixing rule in equation (23) was used( ) = ( )( ) ( ) + ( )( ) ( ) (23)

and the heats of solution for atom type-b as an impurity and atom type-a as the host is computed by

the summation of equations (24 – 29).

Remove host : ∆ = − ( ) − ∑ ( ) (24)
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Add impurity : ∆ = + ( ) + ∑ ( ) (25)

Adjust neighbours: ∆ = − ∑ ( ) + ∑ ( ) (26)

where = + ∆ (27)

and ∆ = − ( ) + ( ) (28)

Adjust cohesive energy: ∆ = − + (29)

Hence, ∆ = ∆ + ∆ + ∆ + ∆ (31)

It is essential to include lattice relaxations in many calculations involving energies [1]. The

relaxation energy is given as:

∆ = − 1.167 ΩΩ − 1 (32)

Here, is the equilibrium electron density of a–type atoms,Ω is the atomic volume of a - type atoms andΩ is the atomic volume of b - type atoms.
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Table 1.0: Experimental data used in fitting procedure consists of equilibrium lattice constants ( ),

cohesive energy ,  vacancy formation energy and the elastic constants: ( , , in

(column 5 - 7)) and /Å (column 8 – 10). The elastic constants: , , in the last

three column was converted from to /Å .

Refs: a(Folies et al., 1986) ; b(Simmons and Wang, 1971); c(Kittel, 1996); d(Landolt-Börnstein,

1991) ; e(Ziesche and Perdew, 1994); f(Sisoda and Verma, 1989) ; g(De Boer et al., 1988); h(Ballufi,

1978); i(Johnson, 1989); j(Ghorai, 1991).

S/N Atom (Å) ( ) ( )
1 Cu 3.615a 3.54c 1.30h 1.670a 1.240a 0.760a 1.04 0.77 0.47

2 Ag 4.090a 2.85c 1.10h 1.240b 0.934b 0.461b 0.77 0.58 0.29

3 Ni 3.520a 4.45c 1.70i 2.465b 1.473b 1.247b 1.54 0.92 0.78

4 Pt 3.920a 5.77c 1.60i 3.470b 2.510b 0.765b 2.17 1.57 0.48

5 Au 4.080c 3.93c 0.90h 1.860b 1.570b 0.420b 1.16 0.98 0.26

6 Pd 3.890c 3.91c 1.54i 2.341b 1.760b 0.712b 1.46 1.10 0.44

7 Ir 3.840c 6.94c 1.80d 5.990b 2.560b 2.690b 3.74 1.60 1.68

8 Rh 3.800c 5.75c 1.71g 4.220b 1.920b 1.940b 2.63 1.20 1.21
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RESULTS AND DISCUSSION

Table 2.0 : Calculated input parameters Ω , , and model parameters , , , and

S/N Metal Ω(Å ) (eV/Å ) G(eV/Å ) ( ) ( )
1 Cu 11.81 0.86 0.34 0.30 0.59 5.09 5.81 7.94

2 Ag 17.10 0.65 0.21 0.17 0.47 5.91 5.96 8.26

3 Ni 10.90 1.13 0.59 0.41 0.74 4.98 6.41 8.86

4 Pt 15.06 1.77 0.41 0.38 0.96 6.44 6.70 8.56

5 Au 16.98 1.04 0.19 0.23 0.66 6.36 6.67 8.20

6 Pd 14.72 1.22 0.34 0.27 0.65 6.43 5.90 8.23

7 Ir 14.16 2.31 1.44 0.49 1.16 6.51 10.98 14.09

8 Rh 13.72 1.68 1.01 0.42 0.96 6.00 12.05 14.54
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Table 3.0: Calculated formation ( ),  binding ( ), and low index surfaceГ( )( )
energies.  The present work is listed first (values with asterisk include ( )). The experimental

values are listed second, and the results of other authors are listed last.

Refs: a(Folies et al., 1986) ; d(Landolt-Börnstein, 1991) ; e(Ziesche and Perdew, 1994); g(Ledbetter

and Kim, 2001) ; h(Ballufi, 1978); i(Johnson, 1989) ; j(Ghorai, 1991) ; l(Seeger et al., 1963);
l*( Seeger and Schumacher, 1967) ; m(Fluss et al., 1980); n(Kraftmakher and Strelkov, 1970)

; p(Mehrer et al., 1965) ; q(Baskes, 1992); r(Bauerle and Koehler, 1957); t(Meshii et al., 1962) ;
u(Ehrhart et al., 1991); a*( Nanao et al., 1977).

The calculated surface energies for the low index crystal faces are compared to the experimental

polycrystalline average values ( / ). The experimental polycrystalline average values (last

S/N Atom ( ) ( ) ( ) Г x10 Г x10 Г x10 Г x10
1 Cu 2.41 0.19

0.13±0.04l , 0.3m

0.27a

1.31
1.3h

1.28a

1.02, 1.02* 1.23, 2.14* 1.34, 1.64* 1.20, 1.60
1.77q

1.28a, 1.57q

2
Ag

2.13 0.15
0.38n

0.22a

1.14
1.10h

0.70, 0.70* 0.86, 1.49* 0.94, 1.15* 0.83, 1.11
1.32q

0.70a, 1.19q

3
Ni

3.15
2.92–3.10a*

0.27
0.33p, 0.28l*

0.44a

1.71
1.80d

1.32, 1.32* 1.56, 2.71* 1.69, 2.06* 1.52, 2.03
2.24q

4
Pt

3.29 0.19
0.1 – 0.2h

0.45a

1.74
1.60i

1.24, 1.24* 1.56, 2.70* 1.72, 2.10* 1.51, 2.02
2.50**

1.61a, 1.99q

5
Au

1.93 0.09
0.1±0.03r,0.3t

0.22a

1.01
0.90h

0.70, 0.70* 0.89, 1.54* 0.99, 1.21* 0.88, 1.15
1.54q

0.90a, 1.03q

6
Pd

3.10 0.20

0.34a

1.65
1.70i

1.15, 1.15* 1.41, 2.45* 1.54, 1.89* 1.37, 1.82
2.00**

1.36a, 1.57q

7
Ir

3.64 0.32 1.98
1.80d

1.25, 1.25* 1.47, 2.54* 1.58, 1.93* 1.43, 1.91
3.00**

2.84a

8
Rh

3.14 0.28 1.71
1.71g

0.78, 0.78* 0.91, 1.58* 0.98, 1.20* 1.28, 1.72
2.60**
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row) are accurate at least to about 10% and in a number of cases, indicated by an asterisk, have been

crudely extrapolated from the melt temperature to 0K (Baskes, 1992).

Table 4.0: Calculated and experimental properties of pure metals. The first lines present the

experimental values of elastic constants in /Å (column 3 – 5) and Bulk modulus in /Å
(column 6). The second lines present the predicted values using common cut-off radius 1.11 ≥≤ 1.25 .

Refs: a(Folies et al., 1986); b(Simmons and Wang, 1971) ; d(Landolt-Börnstein, 1991) ; f(Sisoda and

Verma, 1989) ; g(De Boer et al., 1988) ; *Computed using equation (8)

S/N Metal
1 Cu 1.04

a

1.03
0.77

a

0.57
0.47

a

0.53
0.86

g

0.72
2 Ag 0.77

b

0.77
0.58

b

0.43
0.29

b

0.40
0.60

g

0.54
3 Ni 1.54

b

1.53
0.92

b

0.84
0.78

b

0.79
1.16

g

1.07
4 Pt 2.17

b

1.87
1.57

b

1.02
0.48

b

0.96
1.77

g

1.30
5 Au 1.16

b

1.18
0.98

b

0.65
0.26

b

0.61
1.08

g

0.83
6 Pd 1.46

b

1.66
1.10

b

0.97
0.44

b

0.88
1.21

g

1.20
7 Ir 3.74

b

3.72
1.60

b

1.97
1.68

b

1.90
2.22

b

2.55
8 Rh 2.63

b

2.53
1.20

b

1.33
1.21

b

1.28
1.68

*

1.78
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Table 5.0: Heats of solution for the likely binary alloys of the chosen fcc metals. The results of the

unrelaxed calculations are listed first, the values with relaxation second, the experimental values

(Ref. v and w) where valid, and the adapted values from other author (Ref. q and y) are listed last.

Refs: q(Baskes, 1992); w(Miedema et al., 1980) ; v(Hultgren et al., 1973) ; y(Iyad, 2009)

Impurit
y

Host
Cu Ag Ni Pt Au Pd Ir Rh

Cu 0.40
0.27
0.25v

0.11
0.10
0.11v

-0.19
-0.26
-0.30v

0.05
-0.08
-0.13v

0.10
0.05
-0.39v

-0.29
-0.33
-0.64q

-0.17
-0.20
-0.72q

Ag 0.79
0.52
0.39v

1.88
1.44

0.65
0.63

-0.06
-0.06
-0.16v

0.32
0.28
-0.11v

1.37
1.31
0.78q

1.12
1.02

Ni 0.08
0.07
0.03v

0.75
0.57

-0.12
-0.23
-0.33v

0.33
0.19
0.22v

0.22
0.21
-0.09v

-0.34
-0.41
-0.25q

-0.14
-0.20
-0.35q

Pt -0.30
-0.40
-0.53v

0.66
0.64

-0.23
-0.43
-0.28v

0.46
0.46

-0.03
-0.03

0.17
0.16

0.02
0.01

Au -0.01
-0.27
-0.19v

-0.03
-0.03
-0.19v

0.84
0.42
0.28v

0.58
0.56

-0.03
-0.06
-0.20v

1.47
1.42
0.57q

0.91
0.84
0.37q

Pd 0.15
0.06
-0.44v

0.30
0.28
-0.29v

0.69
0.53
0.06v

-0.01
-0.01

0.01
-0.01
-0.36v

0.43
0.43

0.26
0.25

Ir -0.94
-0.99
-0.73q

0.66
0.62
0.55q

-1.29
-1.41
-0.68q

0.07
0.06

0.51
0.47
0.38q

-0.06
-0.06
-0.28q

- 0.004
0.006

Rh -0.44
-0.48
-0.74q

0.52
0.47
0.35q

-0.47
-0.56
-0.55q

-0.01
-0.00

0.32
0.27
0.24x

0.03
0.03
-0.35q

-0.04
-0.04

-
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Fig.1: Characteristics of the electron density function for the selected metals.
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Fig. 2: Characteristics of the pair-potential function for the selected metals.

Fig. 3: Characteristics of the embedding energy function for the selected metals.
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Fig. 3: Characteristics of the embedding energy function for the selected metals.
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Fig. 5: Plot of unrelaxed surface energies for the selected metals.

Fig. 6: Plot of unrelaxed mono-vacancy formation energies
for the selected metals.
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In Fig.1, the electron density ( ) displays the common characteristics for the selected metals.

Fig. 2 shows the least (minimum) free energy curves for the electron which gives the equilibrium

interatomic distance. The width of the curves increases as the values of r increases, therefore the

position of the principal minimum is displaced to larger values of r. The pair-potential tends to

group Cu, Ag, Ni, Pt, Au and Pd, also Ir and Rh.

In Fig. 3, there are systematic trends in the embedding energies. The curvature of the embedding

function accounts for the “many-body” aspect of the model with the least embedding energy

occurring for Ir.

Fig. 4. shows that the embedding function goes through the appropriate range of electron densities

and the characteristics curves tends to group: Cu, Pd with Au and also Pt with Rh.

Fig. 7: Plot of unrelaxed di-vacancy binding energies for some of the
selected metals.
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Fig. 5. presents the unrelaxed surface energies for the selected metals while Fig. 6 and Fig. 7 give

the plots of the unrelaxed mono-vacancy formation and di-vacancy binding energies respectively.

The properties calculated in this work will help in finding new metals/compounds for substitution in

alloying processes. The ground state properties such as, surface energies, vacancy formation

energies and heats of solutions has been calculated. The sensitivity of the heats of solutions on the

embedding function and the potential produces good results in comparison with the available

experimental values.

Finding new metals/compounds for substitution in alloying processes is an issue that needs to be

addressed by the material scientist especially in this state of scarcity in the case of palladium. The

calculated mono-vacancy formation energies are in reasonable agreement with available

experimental values for Cu, Ag, Au and Rh as shown in Fig. 6. The values are higher for Pt and Ir

while smaller values were recorded for Ni and Pd. The unrelaxed di-vacancy binding energy

calculated agree with available experimental values closer than the results of Folies et al., 1986 in

the case of Cu, Ni, Pt and Au (See Fig. 7).

The unrelaxed surface energy for the three fcc low-index planes was estimated by dividing the total

energy increase in separating bulk material on a crystallographic plane by the total new surface area

created.  In all the cases, the trends ( ) < ( ) < ( ) was observed and also by including

crystal angle between planes, we have ( ) < ( ) < ( ).  The lowest surface energy

corresponds to the closed-packed (111) plane as observed in Table 3.0. Therefore closed packed

surfaces looks most stable for fcc metals. The calculated average surface energies are closer to the

experimental values than those obtained by the MEAM (Baskes, 1992).

The average surface energies predicted low average values compared to the available experimental

values but when the crystal angle was included, moderate average values were obtained and they
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are in good agreement with the available experimental values for Cu, Ag, Ni, Pt and Pd. The results

for Cu, Pt, Au and Pd are closer to the experimental values than that of Ref. (Folies et al., 1986)

(See Fig. 5) and (Baskes, 1992) (See Table 3.0).

SUMMARY

The calculated ground state properties for the pure metals include surface energies, mono-vacancy

formation energies, di-vacancy formation energies, di-vacancy binding energies, elastic constants

and their heats of solutions. The agreement between the experiment and the calculated values is

quite good for the metals and their alloys. From the heats of solutions calculated (Table 5.0), the

positive heats of solution recorded are higher than the negative heats of solutions. The most

negative heats of solution occur for the relaxation values and most positive occurs for the unrelaxed

values. The pair potential function of the alloy mixing ‘ ( ) ’ between two different atoms a and

b gives reasonable values of heats of solutions in the case of Cu, Ag, Au, Ni and Pt.

CONCLUSION

The EAM model was used to compute some ground state properties of the selected fcc transition

metals and their binary alloys. The di-vacancy binding energies calculated also agree with the

available experimental values. The surface energies predicted by the model was low in comparison

to experiments but when the crystal angle was included, the model predicted low index surface

energies that agree reasonably with the experiment in better comparison with the values from Ref.

(Foiles et al., 1986) and (Baskes, 1992). The model is well-suited for studies of defects energies in

metals and their alloys. The surface energies calculated by including the crystal angle between

planes corresponds to the experiment for Cu, Ag, Ni, Pt and Pd.  For surface energy minimization, it

is good that the (111) texture should be favoured in an fcc film. The embedding function ( ) with
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the angle between planes (hkl) and (111) can be used to estimate the relative values of surface

energy for surfaces in different orientations.
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