
Effect of Variable Viscosity on Natural
Convection Flow of Heat Generating/Absorbing
Fluid in a Vertical Channel: An Approximate

Solution

Abstract

The present paper was aimed at investigating the effects of variable viscosity
on natural convection flow and heat generating/absorbing fluid in a channel
formed by two vertical parallel plates. Equations of continuity, momentum
and energy are solved using the Homotopy perturbation method (HPM). The
temperature and velocity profiles are presented graphically for various values
of physical parameters. During the course of investigation, it is found that as
the heat generation increases, fluid temperature and velocity increase while it
decreases with the increase in heat absorption. Also, velocity decreases with
the increase of the viscosity of the fluid.

Keywords: variable viscosity; natural convection; heat generation/absorption;
Homotopy perturbation

Nomenclature
g - acceleration due to gravity [ms−2]
h - width of the channel [m]
S - dimensionless heat generation/absorption parameter
Q0 - heat generation/absorption coefficient [Kgm−1s−3K−1]
T ∗ - dimensional fluid temperature [K]
T ∗w - channel wall temperature [K]
T ∗0 - temperature of the ambience [K]
T - dimensionless fluid temperature
u∗ - dimensional velocity [ms−1]
u - dimensionless velocity
U - dimensional velocity of the moving plate [ms−1]
y∗ - co-ordinate perpendicular to the plate [m]
y - dimensionless co-ordinate perpendicular to the plate
Gr - Grashof number
cp - specific heat at constant pressure [m2s−2K−1]
ρ - density of the fluid [Kgm−3]
α - thermal diffusivity [m2s−1]
p - embedding parameter
β - coefficient of thermal expansion [K−1]
µ - coefficient of viscosity
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ν - kinematic viscosity [m2s−1]

1 Introduction

The study of natural convection flow in a vertical channel has received a great deal
of attention due to its applications such as, engineering field, geophysics, oceanogra-
phy and environmental problems. A detailed review of natural convection flow and
heat transfer can be found. Abdou [1] studied the effect of radiation with temper-
ature dependent viscosity and thermal conductivity on unsteady a stretching sheet
through porous media. He concluded his work that velocity and temperature across
the boundary layer increase with increasing viscosity variation parameter. Santana
and Hazarika [2] examined the effects of variable viscosity and thermal conductivity
on magnetohydrodynamics free convection and mass transfer flow over an inclined
vertical surface in a porous medium with heat generation. They concluded that
an increasing values of viscosity retard the velocity but enhance the temperature.
Adel et al. [3] worked on the similarity solution for steady magnetohydrodynamics
Falkne-skan heat and mass transfer flow over a wedge in porous media considering
thermal-diffusion and diffusion-thermo effects with variable viscosity and thermal
conductivity. They discovered that the velocity of the fluid is found to increase with
increase of the temperature dependent fluid viscosity. Makungu et al. [4] studied
the effects of variable viscosity of nanofluid flow over a permeable wedge embedded
in saturated porous medium with chemical reaction and thermal radiation. Hazarika
and Gopal [5] analyzed the effects of variable viscosity and thermal conductivity on
magnetohydrodynamics flow past a vertical plate. They observed that, the velocity
profile decreases with the increase of variable viscosity is not so prominent in case
of temperature profile. Mohamed [6] examined dissipation and variable viscosity
on steady magnetohydrodynamics free convective flow over a stretching sheet in
presence of thermal radiation and chemical reaction. He discovered that, the ve-
locity decreases with an increase in viscosity parameter. Phukan and Hazarika [7]
studied the effects of variable viscosity and thermal conductivity on magnetohydro-
dynamics free convective flow of micropolar fluid past a stretching plate through
porous medium with radiation, heat generation and Joule heating. They reported
that velocity decreases with the increase of the viscosity parameter. In another ar-
ticle, Noghrehabadi et al. [8] examined the effects of variable viscosity and thermal
conductivity on natural convection of nanofluids past a vertical plate in a porous
media. The outcomes showed that, an increase of variable viscosity parameter in-
creases the velocity profiles whereas decreases the concentration profiles. Moreover,
variation of viscosity parameter does not show the significant effect on the temper-
ature profiles. All the above mentioned studies did not consider the effect of heat
generation/absorption.
The study of heat generation/absorption in moving fluids is important in several
physical problems dealing with chemical reactions and those concerned with dissoci-
ating fluids. Possible heat generation effects may alter the temperature distribution
and therefore, the particle deposition rate. Chamkha and Camille [9] solved hydro
magnetic flow with heat and mass transfer over a flat plate in the presence of heat
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generation or absorption and thermophoresis. Natural convection with heat genera-
tion along a uniformly heat vertical wavy surface have been demonstrated by Molla
et al. [10]. Veena et al. [11] worked on heat transfer characteristics in the lami-
nar boundary layer flow of a viscoelastic fluid over a linearly stretching continuous
surface with variable wall temperature subjected to suction or blowing. Jha and
Ajibade [12] considered the case of unsteady free convective Couette flow of heat
generating/absorbing fluid. Their outcomes showed that, the skin friction increased
as the external heating/cooling increases, likewise an increase in heat absorption
increases the rate of heat transfer on the moving plate and decreases the rate of
heat transfer on the stationary plate.
The objective of this study is to investigates the effect of variable viscosity and heat
generation/absorption fluid on natural convection flow in a vertical channel. The
equation governing the flow have some non linear terms in them so that obtaining
closed form solution is a daunting task. Such problems can therefore be approached
by numerical schemes or some approximate solution methods. One of the efficient
methods is the perturbation method. However, solutions obtained by perturbation
method are restricted to small perturbation parameters, therefore to overcome this
restriction, another method called Homotopy perturbation method was introduced.
He [13] was first studied to solve linear, non-linear and couple problems in partial
or ordinary form. He [14] studied a coupling method of a Homotopy technique and
a perturbation technique for non-linear problems. In another article, He [15] stud-
ied a new non linear analytical technique using Homotopy perturbation methods.
Da-Hua [16] studied Homotopy perturbation method for nonlinear oscillators.

2 Mathematical analysis

We considers a steady natural convection flow of an incompressible viscous fluid in
a vertical channel of width h. The flow is assumed to be in the x∗ - direction which
is taken vertically along one of the plates while y∗ - axis is taken normal to it. The
second is placed h distance away from the first. The temperature of the fluid and
one of the channel plates are kept at T0 while the temperature of the plate y∗ = 0
is raised or fell to Tw and thereafter maintained constant. Also, the plate y∗ = 0
moves in its own plane impulsively at a uniform velocity u∗ = U while the other
plate remains at rest. The flow configuration and coordinates system is shown in
figure 1.
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Figure 1: Schematic diagram of the problem

Under the usual assumption of Boussinesq’s approximation, the governing equations
of the energy and momentum as follows:

du∗

dx∗
= 0, (1)

1

ρ

d

dy∗

(
µ∗
du∗

dy∗

)
+ gβ(T ∗ − T0) = 0, (2)

α
d2T ∗

dy∗2
− Q0

ρcp
(T ∗ − T0) = 0. (3)

The viscosity of the working fluid is assumed to vary linearly with temperature as
follows

µ∗ = µ0(1− λ∗(T ∗ − T0))

while the boundary conditions are:

u∗ = U, T ∗ = Tw at y∗ = 0,

u∗ = 0, T ∗ = T0 at y∗ = h.
(4)

Due to the nature of the quantities that are given in different dimensions, we in-
troduce some dimensionless quantities that can transform the governing equations
and their conditions into dimensionless form. The dimensionless quantities used in
equations (1) - (3) and the boundary condition (4) are:

y =
y∗

h
, u =

u∗

U
, T =

T ∗ − T0
Tw − T0

, S =
Q0h

2

k
,

Gr =
gβh2(Tw − T0)

vU
, λ = λ∗(Tw − T0).

(5)

By using the dimensionless quantities, the governing equations and the boundary
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conditions are transformed into non-dimensional form as

du

dx
= 0, (6)

(1− λT )
d2u

dy2
− λdu

dy
· dT
dy

+Gr(1− λT )T = 0, (7)

d2T

dy2
− ST = 0. (8)

And the boundary conditions are:

u = 1, T = 1 at y = 0,

u = 0, T = 0 at y = 1.
(9)

2.1 Homotopy perturbation method

In order to illustrate the basic ideas of the Homotopy Perturbation Method (HPM),
we consider the following nonlinear differential equation

A(u)− f(r) = 0, r ∈ Ω, (10)

with the boundary conditions of

B(u,
∂u

∂n
) = 0 r ∈ Γ, (11)

where A is a general differential operator, B is a boundary operator, f(r) is known
analytical function and Γ is the boundary of the domain Ω, respectively. Generally
speaking, the operator A can be divided into two parts which are L and N , where
L is linear part and N is nonlinear part. Therefore (10) can be written as:

L(u) +N(u)− f(r) = 0, r ∈ Ω, (12)

By the homotopy techniques, we construct a homotopy as follows
v(r, p) : Ω× [0, 1]→ R which satisfies:

H(v, p) = (1− p)[L(v)− L(u0)] + p[A(v)− f(r)] = 0, (13)

in equation (13), p ∈ [0, 1] is an embedding parameter, while u0 is an initial approx-
imation of equation (10), which satisfies the boundary conditions. Clearly from eqn
(13), we have

H(v, 0) = L(v)− L(u0) = 0, (14)

H(v, 1) = A(v)− f(r) = 0. (15)

We can assume that the solution of equation (13) can be written as a power series
in p:

v = v0 + pv1 + p2v2 + ..., (16)
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setting p = 1 gives the approximate solution of eqn (10) as

u = lim
p→1

v = v0 + v1 + v2 + .... (17)

Applying the Homotopy perturbation technique to solve the governing equations in
the present problem, we construct a convex Homotopy on eqs. (7) and (8) to get

H(u, p) = (1− p)
[
d2u

dy2

]
+ p

[
d2u

dy2
+ λT

d2u

dy2
+ λ

du

dy
· dT
dy
−GrT + λGrT 2

]
= 0,(18)

H(T, p) = (1− p)
[
d2T

dy2

]
+ p

[
d2T

dy2
− ST

]
= 0, (19)

using infinite series (18) and (19) to define u and T as follows

u = u0 + pu1 + p2u2 + ...,

T = T0 + pT1 + p2T2 + ....
(20)

Substituting eqn. (20) into eqns. (18) and (19), we have

d2u0
dy2

+ p
d2u1
dy2

+ p2
d2u2
dy2

+ p3
d2u3
dy2

+ ... = pλT0
d2u0
dy2

+ p2
[
λT0

d2u1
dy2

+ λT1
d2u0
dy2

]
+ p3

[
λT0

d2u2
dy2

+ λT2
d2u0
dy2

+ λT1
d2u1
dy2

]
+ ...

+ pλ
du0
dy
· dT0
dy

+ p2
[
du0
dy
· dT1
dy

+ λ
du1
dy
· dT0
dy

]
+ p3

[
λ
du0
dy
· dT2
dy

+ λ
du2
dy
· dT0
dy

+ λ
du1
dy
· dT1
dy

]
+ ...

− pGrT0 − p2GrT1 − p3GrT2 − ...
+ pλGrT 2

0 + p2 [2λGrT0T1]

+ p3
[
2λGrT0T2 + λGrT 2

1

]
+ ...

(21)

d2T0
dy2

+ p
d2T1
dy2

+ p2
d2T2
dy2

+ p3
d2T3
dy2

+ ... = pST0 + p2ST1 + p3ST2 + ... (22)

By comparing the coefficient of p0, p1, p2 and p3 of eqns. (21) and (22), we have

P 0 :
d2u0
dy2

= 0, (23)

P 0 :
d2T0
dy2

= 0, (24)

P 1 :
d2u1
dy2

= λT0
d2u0
dy

+ λ
du0
dy
· dT0
dy
−GrT0 + λGrT0

2, (25)
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P 1 :
d2T1
dy2

= ST0, (26)

P 2 :
d2u2
dy2

= λT0
d2u1
dy2

+ λT1
d2u0
dy2

+ λ
du0
dy
· dT1
dy

+ λ
du1
dy
· dT0
dy
−GrT1

+ 2λGrT0T1,

(27)

P 2 :
d2T2
dy2

= ST1, (28)

P 3 :
d2u3
dy2

= λT0
d2u2
dy2

+ λT2
d2u0
dy2

+ λT1
d2u1
dy2

+ λ
du0
dy
· dT2
dy

+ λ
du2
dy
· dT0
dy

+ λ
du1
dy
· dT1
dy
−GrT2 + 2λGrT0T2 + λGrT 2

1 ,

(29)

P 3 :
d2T3
dy2

= ST2. (30)

:
:
:

The boundary conditions are transformed also as

T0(0) = 1, T1(0) = T2(0) = T3(0) = ... = 0,

T0(1) = T1(1) = T2(1) = ... = 0,

u0(0) = 1, u1(0) = u2(0) = u3(0) = ... = 0,

u0(1) = u1(1) = u2(1) = ... = 0.

(31)

Since the zeroth order of the Homotopy gives a linear ordinary differential equations,
it is easily solvable without making recourse to initial guess. Therefore solving eqs.
(23) and (24) and applying the boundary conditions T0(0) = 1 and T0(1) = 0,
u0(0) = 1 and u0(1) = 0, we obtain eqs. (32) and (33) as

u0 = A1y + A2, (32)

T0 = B1y +B2. (33)

Solving eqs. (25) and (26) and applying the boundary conditions T1(0) = 0 and
T1(1) = 0, u1(0) = 0 and u1(1) = 0, we obtain eqs. (34) and (35) as

u1 =
λy2

2
+ λGr

[
y2

2
− y3

3
+
y4

12

]
−Gr

[
y2

2
− y3

6

]
+ A3y + A4, (34)

T1 = S

[
y2

2
− y3

6

]
+B3y +B4. (35)
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Solving eqs. (27) and (28) and applying the boundary condition T2(0) = 0 and
T2(1) = 0, u2(0) = 0 and u2(1) = 0, we obtain eqs. (36) and (37) as

u2 = λ2
[
y2

2
− y3

6

]
+ λ2Gr

[
y2

2
− y3

2
+
y4

4
− y5

20

]
− λGr

[
y2

2
− y3

3
+
y4

12

]
− λS

[
y3

6
− y4

24

]
+
λSy2

6
− λ2y3

6
− λ2Gr

[
y3

6
− y4

24
+
y5

60

]
− λGry2

6

+ λGr

[
y3

6
− y4

24

]
+
λ2y2

4
+
λ2Gry2

8
−GrS

[
y4

24
− y5

120

]
+
GrSy3

18

+ 2λGrS

[
y4

24
− y5

30
+

y6

180

]
− 2λGrS

3

[
y3

6
− y4

12

]
+ A5y + A6,

(36)

T2 = S2

[
y4

24
− y5

120

]
− S2y3

18
+B5y +B6. (37)

Solving eqs. (29) and (30) and applying the boundary condition T2(0) = 0 and
T2(1) = 0, u2(0) = 0 and u2(1) = 0, we obtain eqs. (38) and (39) as

u3 = λ3
[
y2

2
− y3

3
+
y4

12

]
+ λ3Gr

[
y2

2
− 2y3

3
+
y4

2
− y5

5
+
y6

30

]
− λ3

[
y3

6
− y4

12

]
− λ2Gr

[
y2

2
− y3

2
+
y4

4
− y5

20

]
+
λ2S

3

[
y2

2
− y3

6

]
− λ2S

[
y3

6
− y4

8
+
y5

40

]
− λ3Gr

[
y3

6
− y4

6
+
y5

15
− y6

90

]
+ λ2Gr

[
y3

6
− y4

8
+
y5

40

]
+
λ3

2

[
y2

2
− y3

6

]
− λ2Gr

3

[
y2

2
− y3

6

]
+
λ3Gr

4

[
y2

2
− y3

6

]
+
λS2y2

72
+
λGrS

3

[
y3

6
− y4

12

]
− λGrS

[
y4

24
− y5

30
+

y6

180

]
+ 2λ2GrS

[
y4

24
− 7y5

120
+
y6

36
− y7

252

]
− λS2y2

90

− 2λ2GrS

3

[
y3

6
− y4

6
+
y5

20

]
+ λ2S

[
y4

24
− y5

120

]
− λGrS

[
y4

24
− y5

30
+

y6

180

]
+ λ2GrS

[
y4

24
− 7y5

120
+
y6

36
− y7

252

]
− λ2Sy3

18
− λ2GrS

3
+

[
y3

6
− y4

6
+
y5

20

]
+
λGrS

3

[
y3

6
− y4

12

]
− λS2

[
y5

120
− y6

720

]
− λ3

[
y3

6
− y4

24

]
+
λ2Gry3

18
− λ3y3

12

− λ3Gr
[
y3

6
− y4

8
+
y5

20
− y6

120

]
+ λ2S

[
y4

24
− y5

120

]
+ λ2Gr

[
y3

6
− y4

12
+
y5

60

]
+ λ3Gr +

[
y4

24
− y5

60
+

y6

360

]
− λ2Gr

[
y4

24
− y5

120

]
+ λGrS

[
y5

120
− y6

720

]
+
λ3y4

24
− λ3Gry3

24
− λ2Sy3

18
− 2λ2GrS

[
y5

120
− y6

180
+

y7

1260

]
− λGrSy4

72

+
2λ2GrS

3

[
y4

24
− y5

60

]
+

5λ3y2

24
+

9λ3Gry2

80
− 7λ2Gry2

48
+
λ2Sy2

48
+
λGrSy2

90

− λ2GrSy2

72
+ λ2S

[
y4

12
− y5

40

]
− λ2Sy3

18
+ λ2GrS

[
y4

12
− 3y5

40
+
y6

36
− y7

252

]

(38)
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− λ2GrS

3

[
y3

6
− y4

12
+
y5

60

]
− λGrS

[
y4

12
− y5

20
+

y6

120

]
− λ2S

2

[
y3

6
− y4

24

]
+
λGrS

3

[
y3

3
− y4

12

]
− λGrSy2

18
+
λ2Sy2

12
− λ2GrS

4

[
y3

6
− y4

24

]
+
λ2GrS

24

−GrS2

[
y6

720
− y7

5040

]
+
GrS2y3

360
− GrS2y3

270
− λGrS2

9

[
y5

20
− y6

30

]
− λ2Sy3

18

+ λGrS2

[
y6

120
− y7

252
+

y8

2016

]
+ 2λGrS2

[
y6

720
− y7

840
+

y8

6720

]
+
λGrS2y4

108

− 2λGrS2

3

[
y5

40
− y6

180

]
+ A7y + A8,

T3 = S3

[
y6

720
− y7

5040

]
− S3y5

360
+
S3y3

270
+B7y +B8. (39)

Eqns (32) - (39) gives the expressions for the velocity and temperature as

u = u0 + u1 + u2 + u3 + ..., (40)

T = T0 + T1 + T2 + T3 + .... (41)

where,

A1 = B1 = −1, A2 = B2 = 1, A3 =
Gr

3
− λ

2
− λGr

4
, B3 = −S

3
,

A4 = B4 = A6 = B6 = A8 = B8 = 0,

A5 = −5λ2

12
− 9λ2Gr

40
+

7λGr

24
− λS

24
− GrS

45
+
λGrS

36
, B5 =

S2

45
,

A7 = −3λ3

8
− 151λ3Gr

720
+

193λ2Gr

720
− 2λ2S

45
− 13λGrS

720
+

1673λ2GrS

70560

+
λS2

240
+

2GrS2

945
− λGrS2

270
, B7 = −2S3

945
.

To obtain the skin friction and rate of heat transfer at the surfaces of the channel
boundaries, the expressions for velocity and temperature are differentiated with
respect to y, that is τ = (1− λT )du

dy
|y=0,y=1 and Nu = dT

dy
|y=0,y=1 so that,

du

dy
|y=0 = −1 + A3 + A5,

τ0 = (1− λT )
du

dy
|y=0, (42)

du

dy
|y=1 = −1 + λ− Gr

2
+ A3 +

λ2

2
+
λ2Gr

12
+
GrS

24
− 2λGrS

45
+ A5,

τ1 = (1− λT )
du

dy
|y=1, (43)
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dT

dy
|y=0 = −1 +B3 +B5, (44)

dT

dy
|y=1 = −1 +

S

2
+B3 −

S2

24
+B5, (45)

To obtain the mass flux Q, we have

Q =
1

2
+
λ

6
− λGr

45
− Gr

8
+
A3

2
+
λ2

6
+

4λ2Gr

45
+
GrS

144
− λGrS

840
+
λS

45
+
A5

2
, (46)

and mean temperature θm, we have

θm =

∫ 1

0
uT (y)dy∫ 1

0
u(y)dy

, (47)

3 Results and discussion

The present work analyses the effects of variable viscosity on natural convection
flow of heat generating/absorbing fluid in a vertical channel using Homotopy per-
turbation method. The velocity and temperature fields are presented graphically in
figures 2-5 for various values of Grashof number (Gr), heat generation/absorption
parameter (S) and variable viscosity (λ). For the purpose of this discussion, the
parameters of interest are carefully selected between 1 ≤ Gr ≤ 10, −2 ≤ S ≤ 2 and
−1 ≤ λ ≤ 1.
Figures 2 and 3 display temperature and velocity profiles for different values of heat
generation/absorption parameter (S). It should be noted that positive values of S
signifies heat absorption while negative values of S signifies heat generation. It is
seen from the figures that as the heat generation (S ¡ 0) increases, fluid temperature
and velocity increase while, fluid temperature and velocity decreases with increase
in heat absorption (S ¿ 0). Increasing the heat generation parameter causes the fluid
temperature to increase and it strengthens the convection current within the channel
which in turn increases the fluid velocity. In addition, fluid temperature drop as a
result of increasing the heat absorption parameter and the thermal boundary layer
becomes thinner thereby reduces the velocity distribution of the fluid as shown in
figure 3.
Figure 4 shows the influence of thermal buoyancy parameter (Gr) on the fluid ve-
locity for fixed values of heat generation/absorption parameter (S) and variable
viscosity parameter (λ). It is clear from this figure, the velocity profile increases
with increases in the values of thermal buoyancy. Increasing the buoyancy parame-
ter is made possible by decreasing the fluid viscosity which lead to thickening of the
momentum boundary layer and hence an increase in velocity with growing Gr.
Figure 5 depict the effect of viscosity parameter (λ) on the velocity profile for fixed
values of heat generation/absorption parameter (S) and Grashof number (Gr). It
is seen from the figure that velocity decreases with the increase of the viscosity pa-
rameter and hence reduced resistance to flow.
The skin friction on both plate is simulated and presented in Table 1. From table
1 it is evident to shows that growing buoyancy parameter, heat generation as well
as viscosity have tendency to increase the skin friction on both plates. However,
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heat absorption contributes a decrease in the skin friction and this due to velocity
decrease caused by increasing heat absorption which consequently leads to decrease
in the skin friction on both plates.
Table 2 reveals the numerical values of rate of heat transfer on both plates. A gen-
eral view of this table indicates that growing buoyancy parameter, heat generation
as well as viscosity leads to a significant changes in the rate of heat transfer, this can
be attributed to decrease on the heated plate while the opposite trend is observed on
the cold plate. Furthermore, heat absorption leads to increase in the heat transfer
on the heated plate.
Table 3 presents the mass flux Q within the channels. It is clearly seen that the mass
flux increase with the increase in heat generation and decreases with increasing heat
absorption. The table further shows that growing buoyancy parameter and viscosity
leads to increase the mass flux.
Table 4 shows the numerical values of mean temperature θm. It is observed that
with the increase in heat generation, mean temperature decreases and the reverse
trend is observed in heat absorption.
To validate this problem, we compare our results obtained for temperature as well
as velocity are in good agreement with those of Jha and Ajibade [12] as shown in
table 5 which shows that the Homotopy perturbation method is an efficient tool for
solving coupled and nonlinear system of differential equations.

4 Conclusion

In this paper we have studied the effect of variable viscosity and heat generat-
ing/absorbing fluid in a vertical channel, the work concluded that as the heat gen-
eration increases, fluid temperature and velocity increase while fluid temperature
and velocity decreases with increase in heat absorption and also the velocity pro-
file increases with increase in thermal buoyancy parameter. In addition, velocity
decreases with the increase of the viscosity parameter.
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Figure 2: Velocity profile for different values of S (Gr = 8.0, λ = −0.2)

Figure 3: Temperature profile for different values of S (Gr = 8.0, λ = −0.2)
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Figure 4: velocity profile for different values of Gr (S = 2.0, λ = −0.2)

Figure 5: Velocity profile for different values of λ (S = 2.0, Gr = 8.0)
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Table 1: Estimated numerical values of skin friction τ0 and τ1
Gr = 5.0, λ = −0.3 Gr = 8.0, λ = −0.1

S τ0 τ1 τ0 τ1
-1 0.98240 2.23681 2.04270 2.60022

-0.5 0.89122 2.16944 1.93499 2.51369
0.5 0.70886 2.03472 1.71958 2.34064
1 0.61768 1.96736 1.61187 2.25411

Table 2: Estimated numerical values of rate of heat transfer Nu0 and Nu1
Gr = 5.0, λ = −0.3 Gr = 8.0, λ = −0.1

S Nu0 Nu1 Nu0 Nu1
-1 0.64444 1.18611 0.64313 1.93121

-0.5 0.82778 1.08819 0.81146 1.96662
0.5 1.16111 0.92153 1.16010 1.99301
1 1.31111 0.85278 1.29000 2.03011

Table 3: Estimated numerical values of mass flux Q
Gr = 5.0, λ = −0.3 Gr = 8.0, λ = −0.1

S Q Q
-1 0.64444 0.64513

-0.5 0.82778 0.83146
0.5 1.16111 1.18210
1 1.31111 1.41000

Table 4: Estimated numerical values of mean temperature θm
Gr = 5.0, λ = −0.3 Gr = 8.0, λ = −0.1

S θm θm
-1 0.49416 0.40148

-0.5 0.55081 0.50380
0.5 0.67386 0.72479
1 0.74085 0.84436
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Table 5: Comparison of numerical values between the present problem and of Jha
and Ajibade (12)

Jha and Ajibade (12) Present work
Gr = 8.0, y = 0.5 Gr = 8.0, λ = 0, y = 0.5

S Temperature V elocity Temperature V elocity
-1 0.56974696 1.05797571 0.56967230 1.05737847

-0.5 0.53296476 1.02743612 0.53289252 1.02736545
0.5 0.47029886 0.97521826 0.47029486 0.97528212
1 0.44340944 0.95272446 0.44348524 0.95321181
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