1	Original Research Article
2	
3	CORRELATION ANALYSIS OF TOXIC METALS DISTRIBUTION AND POLLUTION
4	INDICES IN SOIL, BEANS AND MAIZE SAMPLES OF KANO STATE, NIGERIA
5	
6	

7 ABSTRACT

8 Correlational study and evaluation of pollution indices of toxic metals distribution in soil and crops of a population is imperative for accessing risk of chronic diseases associated with these 9 metals. Correlational analysis for the distribution of; lead (Pb), cadmium (Cd), chromium (Cr) 10 and mercury (Hg) in soil (S), bean (B) and maize (M) was conducted around Bunkure (BKR), 11 Danbatta (DBT), Gwarzo (GRZ), Ungogo (UGG) and Wudil (WDL) as sampling zones around 12 Kano State, Nigeria. The samples were collected from farm harvests in each of the sampling 13 zones under the study and designed as; BKRS, BKRB, BKRM, DBTS, DBTB DBTM, GRZS, 14 GRZB GRZM, UGGS, UGGB, UGGM, WDLS, WDLB, WDLM. The metal Concentration was 15 determined using atomic absorption spectrometery (AAS). Results in mg/kg across the local 16 17 governments indicates respective ranges for Hg, Pb, Cd, and Cr of; 0.33 - 3.13, 0.14 - 0.84, 0.02 - 0.05 and 0.01- 0.49 in soil, 0.04-4.23, 0.06-0.23, 0.02-0.04 and 0.00-0.10 in maize and 0.20-18 4.23, 0.16-0.19, 0.03-0.04 and 0.00-0.03 in beans. Although with exception of mercury, the 19 ranges of the toxic metals are within the tolerable ranges set by International Standard Tolerable 20 Limits and European Regulatory Standard. Potential hazard may be speculated because the 21 detected levels are on higher tolerable ranges. A higher level of mercury in almost all the 22 samples indicates potential hazards associated with human activities in those areas. Strong 23 24 positive correlation between soils samples with respect to level of some of the toxic metal may suggest a common nature of the soil, while the negative correlation may be due variation in 25 agrochemicals in-use. For the pollution load index, Wudil had the highest soil pollution load 26 index for Hg (3.13 ± 0.16), Cd (1.6×10⁻² ± 0.01) and Cr (4.9×10⁻³ ± 0.01), while Ungogo had the 27 highest pollution load for Pb. Also, all grains within the study zones exhibited a positive transfer 28 factor, except Cr in Bunkure, Danbatta and Gwarzo. It may be concluded that crops grown in 29 30 those areas may bioaccumulates some of these toxic metals, thereby incorporating them into food chain, hence potential health risk. 31

32

33 Keywords: toxic metals, Soil, Farm produce, Correlation, Distribution, pollution index Kano-

34 *LGAs*

35 **1.0 INTRODUCTION**

36 Toxic metals are confined to those metals having higher atomic number (Norman, 1981),

37 associated with little or no biochemical functions. However; they have many industrial and

38 agricultural applications (Alloway, 1995) and are relatively high density metallic elements with

39 potential toxicity at low concentration (Holding, 2004). According to WHO (2014) toxic metals occur in trace amount and are at least five times denser than water. They are stable and persistent 40 in environmental samples, hence bioaccumulates to pass up via food chain to humans. According 41 to Alhassan et al (2012) sources of heavy metals are varied and include natural sources and all 42 human activities, with possibility of polluting the environment. In another perspective, 43 environmental toxic metals are due to direct deposition from mining activities, industrial 44 processes as well as waste water from domestic processes, in addition to agricultural practices 45 (Madyiwa, 2006). Heavy metals contamination to agricultural soils could be through a variety of 46 sources among which is land application of biosolids, fertilizers, livestock manure, 47 agrochemicals (Pesticides), irrigation activities and atmospheric droplet. Worthy consideration is 48 accumulation of these metals in agricultural soils and possible negative impacts on soil fertility 49 and large potential accumulation in crops for possible incorporation to human food chains (Gray 50 et al., 2003). Unlike the inorganic, the organic (alkylated) forms are readily taken up by body 51 tissues and can be retained for a considerable length of time (Garrett *et al.*, 1992) this is due to 52 their lipid solubility. The tissue penetrating power of organometals crown them more toxic to 53 humans than the inorganic form (Carpenter, 2001). 54

Human exposure to soil accumulated toxic metal may be chronic via food chain transfer or acute by direct ingestion or dermal contact. The former may be associated with; mental lapses, kidney, liver, lung and gastrointestinal tract abnormalities, central nervous insufficiency, lower energy levels, damage to blood compositions, kidneys, and other vital organs (Gray *et al.*, 2003). Long term exposure to low dose may result in slowly progressing physical, muscular, and neurological degenerative processes that mimic Alzheimer's disease, Parkinson's disease, muscular dystrophy, and multiple Sclerosis (Srivastava and Goyal, 2010). Allergies are not uncommon and 62 repeated long-term contact with some metals or their compounds may even cause cancer. The 63 letter, depends on the degree to which a system, tissue, organ or cell is affected by a heavy metal 64 type and the individuals degree of exposure (Vallero and Letcher, 2013).

Mercury combines with other elements to form organic and inorganic mercury compounds. 65 Metallic mercury used to produce chlorine gas, caustic soda, in thermometers and dental fillings, 66 switches, light bulbs, and batteries, including coal-burning power plants are the largest human-67 caused source of mercury emissions to the air in the United States. Mercury in soil and water is 68 converted by microorganisms to methyl mercury, a bio accumulating toxin (Sabine and Wendy, 69 2009). The EPA reported that mercuric chloride and methyl mercury are possible human 70 carcinogens and nervous system is very sensitive to all forms of mercury. Exposure to high 71 levels can permanently damage the brain, kidneys, and developing fetuses. Effects on brain 72 functioning may result in irritability, shyness, tremors, changes in vision or hearing, and memory 73 problems. Short-term exposure to high levels of metallic mercury may cause lung damage, 74 nausea, vomiting, diarrhea, increases in blood pressure or heart rate, skin rashes, and eye 75 irritation (Davidson et al., 2004). 76

Exposure to high lead levels can severely damage the brain and kidneys and ultimately cause
death. In pregnant women, high levels of exposure to lead may cause miscarriage. High level
exposure in men can damage the organs responsible for sperm production (Emsley, 2011).

Chromium, chromium (III) compounds and chromium metal are not considered a health hazard, while the toxicity and carcinogenic properties of chromium (VI) have been known since late 19th century, while Cadmium exposure is a phenomenon of the early 20th century, and onwards. In Japan in 1910, the Mitsui Mining and Smelting Company discharging cadmium into the Jinzugawa River, as a byproduct of mining operations. Residents in the surrounding area

subsequently consumed rice grown in cadmium-contaminated irrigation water, experienced
softening of the bones and kidney failure (Gray *et al.*, 2003).

87

88 **2.0 STUDY AREA**

89 Kano State was formally established on April 1, 1968. It is situated in a semi-arid region, located between latitudes 10.30°N to 13°N and longitude 7.40°E and 10.39°E. Kano city is at 472.45 90 meters above sea level. The state is bordered by Jigawa State in the north-east, Katsina State in 91 the north-west and Kaduna State is on the southern boundary. According to 2006 census, the 92 state has a population of 9.5 million with projection of over 13 million in 2018. It has a total land 93 area of 20,760 square kilometres with 1, 754, 200 hectares for agricultural and 75,000 hectares 94 forest vegetation and grazing land. The state is noted for its fairly stable climate with relatively 95 minor changes in temperature and humidity (Stilwell, 2000). Agriculture is the mainstay of the 96 economy involving at least 75% of the rural population. Important crops produced in the State 97 include maize, beans, rice, corn and varieties of vegetables. 98

99

100 **3.0 MATERIALS AND METHODS**

101 **3.1 Sample Collection and Preparation**

102 The samples were dehusked into grains washed with de-ionized water and dried to constant 103 weight in hot air oven at 105°C for 6hrs, ground to powder and stored in clean air tied 104 containers.

- 105
- 106

- 108

109 **3.2 ANALYSIS**

Five 5.0g of the prepared samples of subsection 3.1 were air dried, ground in an agate mortar 110 and was placed in quartz crucibles for dry ashing and mineralized thermally in a muffle furnance 111 at 450°C for 12hrs. The mineralized samples was then acid digested according to Miller (1998), 112 113 by dissolving in 20ml of 1:1 (v/v) concentrated HNO₃ and HCl acids in 100ml volumetric flask. The flask was then heated in an electro thermal heater with gentle swirling till digestion 114 completed by evolution of white fumes. The cooled digests was filtered through what man No 1 115 filter paper into 50ml volumetric flask and was diluted to the mark with de-ionized water. The 116 heavy metals content of the samples were determined using the atomic absorption 117 spectrophotometer (AAS) and the concentration was calculated using the relation y = mx + c118 from calibration of each metal standard (AOAC, 2005). 119

120

3.3 Determination of Pollution Load Index (PLI), Transfer Factor (TR), Daily Intake of Metals (DIM) and Health Risk Index (HRI)

123

124 **3.3.1 Pollution Load Index (PLI)**

The following modified equation was used to determine the pollution load index (PLI) level insoils (Liu *et al.*, 2005).

$$PLI = \frac{Cs}{Cr}$$

Where C_{soil=} Concentration of metal in soil.
 C_{reference=} Reference standard value of metal in soil.
 129

130

131

132 **3.3.2 Transfer Factor (TF)**

133 Transfer factor (TF) from soil to grains was calculated as described by Liu *et al.* (2005).

134

$$TF = \frac{Cg}{Cs}$$

135Where $C_{g=}$ Concentration of metal in grains136 $C_{s=}$ Concentration of metal in soil.137

138 **3.3.3 Daily Intake of Metals (DIM)**

139 The Daily intake of metals (DIM) was determined as described by Wang *et al.* (2005).

$$\text{DIM} = \frac{Cg \times Cf \times Dfi}{Babw}$$

140Where: $C_g = concentration of heavy metals in grains (mg/kg)$ 141 $C_f = 0.085$ 142 $D_{fi}(daily food intake) = 0.345 kg per day for adult$ 143 $B_{abw}(average body weight) = 55.90 kg for adult (Wang et al., 2005).$

144

145 **3.3.4 Health Risk Index (HRI)**

146 Health risk index was calculated as described by US-EPA (2002).

$$HRI = \frac{DIM}{RFD}$$

147 Where *RFD*= reference oral dose (USEPA, 2002).

148 *DIM*= *Daily intake of metals*

149

150

151

152 Statistical analysis:

153 The data were expressed as mean \pm standard deviation, two-way ANOVA was conducted to

Government Areas) on the level of heavy metals (Hg, Pb, Cd and Cr). SPSS version 20.0 was
used for statistical analyses and P<0.05 was set as level significant.

157

158 4.0 RESULT AND DISCUSSION

159 **4.1 RESULTS**

Figure 1 shows the imperfect linear distribution of mean Hg concentration in samples of Bunkure (BKR), Danbatta (DBT), Gwarzo (GRZ), Ungogo (UGG) and Wudil (WDL) local government areas. The near zero linear coefficient (r) correlation is suggesting the distribution of Hg across the local governments is not perfectly correlated. This is further supported by the square of coefficient of multiple variations (\mathbb{R}^2), which gave a measure of the total variation in the dependent variable (soil), explained by variations in the explanatory variable (farm produce).

166

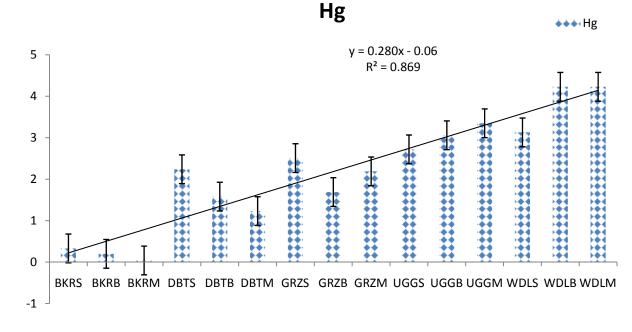
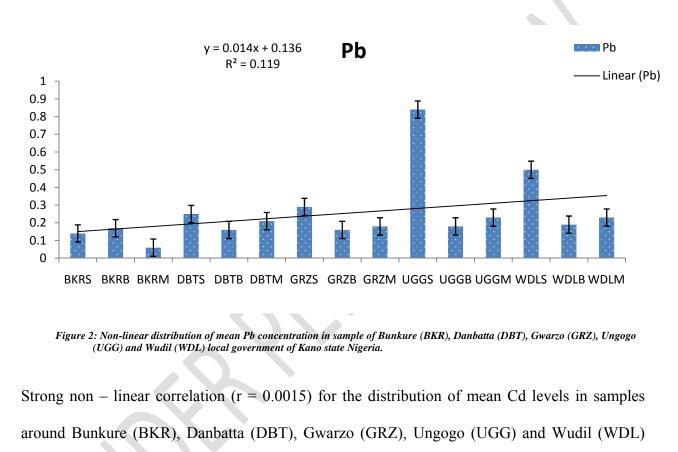


Figure 1: Non-linear distribution of mean Hg levels in sample of Bunkure (BKR), Danbatta (DBT), Gwarzo (GRZ), Ungogo (UGG) and Wudil (WDL) local government of Kano state Nigeria.

168 169 170

Figure 2 displays weak linear correlations for the distribution of mean Pb levels in samples around Bunkure (BKR), Danbatta (DBT), Gwarzo (GRZ), Ungogo (UGG) and Wudil (WDL) local government of Kano state Nigeria, as indicated by the value of linear coefficient (r). The measure of the total variation in the dependent variable (R²) further justifies that.


176

177 178

179

180

181

182 local government of Kano state Nigeria is shown on Figure 3 with a reasonable measure of the

total variation in the dependent variable (R^2) .

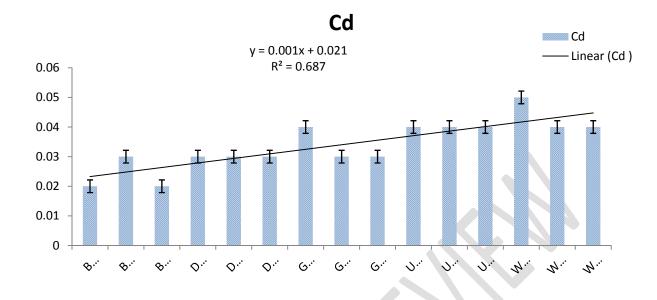


 Figure 3: imperfect linear distribution of mean Cd value in sample of Bunkure (BKR), Danbatta (DBT), Gwarzo (GRZ), Ungogo (UGG) and Wudil (WDL) local government of Kano state Nigeria.

Figure 4 shows an imperfect linear distribution of Cr in samples of Bunkure (BKR), Danbatta (DBT), Gwarzo (GRZ), Ungogo (UGG) and Wudil (WDL) local government of Kano state Nigeria. The near zero linear coefficient (r) correlation is suggesting the distribution of the Cr across the local governments is not perfectly correlated. This is further substantiated by the value of the square of coefficient of multiple variations (\mathbb{R}^2), which gave a measure of the total variation in the dependent variable.

194

184

 Figure 4: imperfect linear distribution of mean Cr value in sample of Bunkure (BKR), Danbatta (DBT), Gwarzo (GRZ), Ungogo (UGG) and Wudil (WDL) local government of Kano state Nigeria.

Table 1 shows the coefficient correlation matrix for Mercury (Hg) distribution in soil, beans and maize of the five local government areas of the study. It show a significant perfect correlation (P<0.01) between; WDLS vs WDLM, DBTS vs GRZB, UGGS vs BKRB, WDLS vs BKRM, UGGM vs GRZM, UGGM vs WDLB and imperfects positive correlation between GRZS vs GRZB.

	Hg DBTS	Hg DBTB	Hg DBTM	Hg BKRS	Hg BKRB	Hg BKRM	Hg GRZS	Hg GRZB	Hg GRZM	Hg UGGS	Hg UGGB	Hg UGGM	Hg WDLS	Hg WDLB	Hg WDLM
HgDBTS	1.000														
HgDBTB	.000	1.000													
HgDBTM	.000	-1.000**	1.000												
HgBKRS	.816	.500	500	1.000											
HgBKRB	-1.000**	.000	.000	816	1.000										
HgBKRM	.333	816	.816	.000	333	1.000									
HgGRZS	.816	500	.500	.500	816	.816	1.000								
HgGRZB	1.000^{**}	.000	.000	.816	-1.000**	.333	.816	1.000							
HgGRZM	.333	.816	816	.816	333	333	.000	.333	1.000						
HgUGGS	-1.000**	.000	.000	816	1.000^{**}	333	816	-1.000**	333	1.000					
HgUGGB	.000	1.000^{**}	-1.000**	.500	.000	816	500	.000	.816	.000	1.000				
HgUGGM	.333	.816	816	.816	333	333	.000	.333	1.000^{**}	333	.816	1.000			
HgWDLS	.333	816	.816	.000	333	1.000^{**}	.816	.333	333	333	816	333	1.000		
HgWDLB	.333	.816	816	.816	333	333	.000	.333	1.000^{**}	333	.816	1.000^{**}	333	1.000	
HgWDLM	.333	816	.816	.000	333	1.000^{**}	.816	.333	333	333	816	333	1.000^{**}	333	1.000

Table 1: coefficient correlation of Mercury (Hg) distribution in soil, beans and maize of five local government areas of Kano state Nigeria

** Correlation is significant at the 0.01 level (2-tailed).

Table 2 shows coefficient correlation of Lead (Pb) distribution in soil, and farm produce (beans and maize) in five local government areas of the study. The lead distributions show significant negative correlation (P<0.01) between soil in DBT and the farm produce, maize in BKR and beans in WDL. In some instances it shows significant positive correlation (P<0.01) between; DBTS vs UGGS and UGGB, BKRB vs WDLM, GRZB vs GRZM and WDLM and UGGM vs WDLS. Imperfect positive correlation was shown between soil sample of each local government and respective farm produce.

	Pb	Pb	Pb	Pb	Pb	Pb	Pb	Pb	Pb	Pb	Pb	Pb	Pb	Pb	Pb
	DBTS	DBTB	DBTM	BKRS	BKRB	BKRM	GRZS	GRZB	GRZM	UGGS	UGGB	UGGM	WDLS	WDLB	WDLM
PbDBTS	1.000														
PbDBTB	-1.000**	1.000													
PbDBTM	-1.000**	1.000^{**}	1.000												
PbBKRS	-1.000**	1.000^{**}	1.000^{**}	1.000											
PbBKRB	333	.333	.333	.333	1.000										
PbBKRM	1.000^{**}	-1.000**	-1.000**	-1.000**	333	1.000									
PbGRZS	.333	333	333	333	.333	.333	1.000								
PbGRZB	333	.333	.333	.333	1.000^{**}	333	.333	1.000							
PbGRZM	333	.333	.333	.333	1.000**	333	.333	1.000^{**}	1.000						
PbUGGS	1.000^{**}	-1.000**	-1.000**	-1.000**	333	1.000^{**}	.333	333	333	1.000					
PbUGGB	1.000^{**}	-1.000**	-1.000**	-1.000**	333	1.000^{**}	.333	333	333	1.000^{**}	1.000				
PbUGGM	.333	333	333	333	.333	.333	1.000^{**}	.333	.333	.333	.333	1.000			
PbWDLS	.333	333	333	333	.333	.333	1.000^{**}	.333	.333	.333	.333	1.000^{**}	1.000		
PbWDLB	333	.333	.333	.333	333	333	-1.000**	333	333	333	333	- 1.000 ^{**}	-1.000**	1.000	
PbWDLM	333	.333	.333	.333	1.000^{**}	333	.333	1.000**	1.000^{**}	333	333	.333	.333	333	1.000

Table 2: coefficient correlation of Lead (Pb) distribution in soil, beans and maize of five local government areas of Kano state Nigeria

**Correlation is significant at the 0.01 level (2-tailed).

Table 3 show the coefficient correlation for the distribution of Cd in the local government area under study. It show significant positive correlation (P<0.01) between; DBTB vs DBTS, BKRS vs DBTM, GRZS vs DBTS and DBTB, GRZM vs BKRB, UGGB vs BKRM, UGGM vs BKRB, WDLS vs DBTS, DBTB and GRZS, and WDLM, DBTM and BKRS. The distribution projects significant negative correlation between BKRM vs DBTM and BKRS, UGGB vs DBTM and BKRS, WDLM vs BKRM and UGGB. Cd distribution in soil of each local government under the study show negative correlation with that of maize except for UGG that shows significant positive correlation (P<0.01). The distribution show positive correlation with that of beans except in UGG and WDL.

	Cd	Cd	Cď	Cd	Cd	Cd	Cd	Cd	Cd						
	DBTS	DBTB	DBTM	BKRS	BKRB	BKRM	GRZS	GRZB	GRZM	UGGS	UGGB	UGGM	WDLS	WDLB	WDLM
CdDBTS	1.000														
CdDBTB	1.000**	1.000													
CdDBTM	333	333	1.000												
CdBKRS	333	333	1.000^{**}	1.000											
CdBKRB	.333	.333	.333	.333	1.000										
CdBKRM	.333	.333	-1.000**	-1.000***	333	1.000									
CdGRZS	1.000^{**}	1.000^{**}	333	333	.333	.333	1.000								
CdGRZB	.816	.816	.000	.000	.816	.000	.816	1.000							
CdGRZM	.333	.333	.333	.333	1.000^{**}	333	.333	.816	1.000						
CdUGGS	.333	.333	.333	.333	1.000^{**}	333	.333	.816	1.000^{**}	1.000					
CdUGGB	.333	.333	-1.000**	-1.000**	333	1.000^{**}	.333	.000	333	333	1.000				
CdUGGM	.333	.333	.333	.333	1.000^{**}	333	.333	.816	1.000^{**}	1.000^{**}	333	1.000			
CdWDLS	1.000^{**}	1.000^{**}	333	333	.333	.333	1.000^{**}	.816	.333	.333	.333	.333	1.000		
CdWDLB	.000	.000	816	816	816	.816	.000	500	816	816	.816	816	.000	1.000	
CdWDLM	333	333	1.000^{**}	1.000^{**}	.333	-1.000**	333	.000	.333	.333	-1.000**	.333	333	816	1.000

Table 3: coefficient correlation of Cadmium (Cd) distribution in soil, beans and maize of five local government areas of Kano state Nigeria

**. Correlation is significant at the 0.01 level (2-tailed).

The coefficient correlation of Chromium (Cr) distribution in the local government areas under study is shown on Table 4. It shows significant correlation (P<0.01) between; DBTS vs DBTB, DBTM, BKRB and GRZM, DBTB vs BKRB and GRZM, DBTM vs BKRB, GRZM, BKRS vs GRZB, GRZS vs WDLB, UGGS vs UGGB, UGGM vs WDLM. The lead distributions show significant negative correlation (P<0.01) in some instances Table 4. Positive correlation exists in each local government between soil and farm produce except in BKR and beans in GRZ and WDL that shows negative correlation.

Table 4: coefficient correlation of Chromium (Cr) distribution in soil, beans and maize of five local government areas of Kano state Nigeria

	Cr	Cr	Cr	Cr	Cr	Cr	Cr	Cr	Cr	Cr	Cr	Cr	Cr	Cr	Cr
	DBTS	DBTB	DBTM	BKRS	BKRB	BKRM	GRZS	GRZB	GRZM	UGGS	UGGB	UGGM	WDLS	WDLB	WDLM
CrDBTS	1.000														
CrDBTB	1.000^{**}	1.000													
CrDBTM	1.000^{**}	1.000**	1.000												
CrBKRS	500	500	500	1.000											
CrBKRB	1.000^{**}	1.000**	1.000^{**}	500	1.000										
CrBKRM	500	500	500	500	500	1.000									
CrGRZS	816	816	816	.000	816	.816	1.000								
CrGRZB	500	500	500	$1.000^{\ast\ast}$	500	500	.000	1.000							
CrGRZM	1.000^{**}	1.000**	1.000^{**}	500	$1.000^{\ast\ast}$	500	816	500	1.000						
CrUGGS	.816	.816	.816	816	.816	.000	333	816	.816	1.000					
CrUGGB	.816	.816	.816	816	.816	.000	333	816	.816	1.000^{**}	1.000				
CrUGGM	.816	.816	.816	.000	.816	816	-1.000**	.000	.816	.333	.333	1.000			
CrWDLS	816	816	816	.816	816	.000	.333	.816	816	-1.000**	-1.000**	333	1.000		
CrWDLB	816	816	816	.000	816	.816	1.000^{**}	.000	816	333	333	-1.000**	.333	1.000	
CrWDLM	.816	.816	.816	.000	.816	816	-1.000**	.000	.816	.333	.333	1.000^{**}	333	-1.000**	1.000

**. Correlation is significant at the 0.01 level (2-tailed).

The pollution load index of toxic metals in five Local Government Areas, Kano State, Nigeria is shown on Table 5. The result show that the highest soil pollution load (PL) of Mercury was in Wudil (3.13 ± 0.16) followed by Ungogo soil with Hg PLI of 2.72 ± 0.48 , Gwarzo (2.51 ± 0.46) Danbatta (2.24 ± 1.30) and Bunkure with the lowest mercury PLI of 0.33 ± 0.44 . Ungogo shows the highest soil PL of Lead ($5.6\times10^{-3}\pm0.04$) while the lowest soil Lead PL was in Bunkure ($0.93\times10^{-3}\pm0.08$). Also, Wudil show the highest PL of Cadmium ($1.6\times10^{-2}\pm0.01$) and PL of Chromium ($4.9\times10^{-3}\pm0.01$).

Table 5: Toxic metals pollution load index in soil of five Local Government Areas, Kano State, Nigeria

Study	Hg	Pb	Cd	Cr
area				
Bunkure	0.33 ± 0.44	$0.93 \times 10^{-3} \pm 0.08$	$0.67 \times 10^{-2} \pm 0.00$	$0.1 \times 10^{-3} \pm 0.02$
Danbatta	2.24 ± 1.30	$1.66 \times 10^{-3} \pm 0.13$	$1.0 \times 10^{-2} \pm 0.00$	$0.2 \times 10^{-3} \pm 0.02$
Gwarzo	2.51 ± 0.46	$1.9 \times 10^{-3} \pm 0.05$	$1.3 \times 10^{-2} \pm 0.00$	$1.5 \times 10^{-3} \pm 0.03$
Ungogo	2.72 ± 0.48	$5.6 \times 10^{-3} \pm 0.04$	$1.3 \times 10^{-2} \pm 0.00$	$4.4 \times 10^{-3} \pm 0.04$
Wudil	3.13 ± 0.16	$3.3 \times 10^{-3} \pm 0.01$	$1.6 \times 10^{-2} \pm 0.01$	$4.9 \times 10^{-3} \pm 0.01$

Table 6 shows the transfer factor of toxic metals from soil to grains in the five Local Government Areas under study. From the result, all the grains within the study zones exhibited a positive transfer factor, with the exception of Chromium in Bunkure, Danbatta and Gwarzo, where the transfer factor was zero.

State, 1	igeria.							
Study area	Hg			Pb	С	d	Cr	
	Beans	Maize	Beans	Maize	Beans	Maize	Beans	Maize
Bunkure	0.60	0.12	1.21	0.42	1.5	1	0	0
Danbatta	0.70	0.54	0.64	0.84	1	1	0	0
Gwarzo	0.67	0.87	0.55	0.62	0.75	0.75	0	0
Ungogo	1.12	1.23	0.21	0.27	1	1	0.06	0.22
Wudil	1.35	1.35	0.38	0.46	0.80	0.80	0.06	0.12

 Table 6: The transfer factor of toxic metals from soil to grains from five Local Government Areas, Kano State, Nigeria.

Table 7 show the daily intake of toxic metals in the five Local Government Areas under study. From the results, beans and maize from Wudil and Ungogo and maize from Gwarzo provided the highest daily intake of Mercury. This was followed by Gwarzo beans, beans and maize from Danbatta and Bunkure beans. The daily intake of Chromium from Bunkure beans and maize, Danbatta beans and maize and Gwarzo beans and maize was zero.

Table	7: Daily inta	ike of toxic me	etals in beans	and maize ac	ross five Loca	l Governmen	t Areas under stu	dy
Study area	Hg		Pb		Cd		Cr	
	Beans	Maize	Beans	Maize	Beans	Maize	Beans	Maize
Bunkure	1.0×10^{-4}	2.0×10^{-5}	8.9×10 ⁻⁵	3.1×10 ⁻⁵	1.5×10^{-5}	1.0×10^{-5}	0	0
Danbatta	8.2×10^{-4}	6.4×10^{-4}	8.3×10 ⁻⁵	1.0×10^{-5}	1.5×10^{-5}	1.5×10^{-5}	0	0
Gwarzo	8.8×10^{-4}	1.1×10^{-3}	8.3×10^{-5}	9.4×10^{-5}	1.5×10^{-5}	1.5×10^{-5}	0	0
Ungogo	1.6×10^{-3}	1.7×10^{-3}	9.4×10^{-5}	1.2×10^{-4}	2.0×10^{-5}	2.0×10^{-5}	1.5×10^{-5}	5.2×10^{-5}
Wudil	2.2×10^{-3}	2.2×10^{-3}	9.9×10 ⁻⁵	1.2×10^{-4}	2.0×10^{-5}	2.0×10 ⁻⁵	1.0×10^{-5}	3.1×10 ⁻⁵

The health risk index of toxic metals across the five Local Government Areas, Kano State, Nigeria is presented on Table 8. From the results beans and maize from Wudil had highest health risk index due high Mercury content, followed by Ungogo, Gwarzo, Danbatta and Bunkure with the lowest health risk index of Mercury. All the remaining toxic metals showed a health risk index of less than one.

Table 8: Health risk index in beans and maize across five zones in Kano State, Nigeria

Study area	Hg			Pb	С	d	Cr		
	Beans	Maize	Beans	Maize	Beans	Maize	Beans	Maize	
Bunkure	0.33	0.10	0.025	0.008	0.015	0.01	0	0	
Danbatta	2.7	2.1	0.023	0.003	0.015	0.015	0	0	
Gwarzo	2.9	3.6	0.023	0.026	0.015	0.015	0	0	
Ungogo	5.3	5.6	0.026	0.035	0.02	0.02	0	0	
Wudil	7.3	7.3	0.028	0.035	0.02	0.02	0	0	

4.2 DISCUSSION

Current study evaluated the levels of toxic metals (mercury, lead, cadmium and chromium) in soil and farm produce (maize and beans) of five local governments of Kano state. Mean Pb, Cd and Cr concentration of the soil samples are within the respective limits of 150mg/Kg, 3mg/kg and 100 mg/Kg set by International Standard tolerable limits (2001). However, with exception of BKRS, all soil samples have mean mercury (Hg) concentration above 1mg/Kg, the limits set by international standard tolerable limits (2001). Mean Pb, Cd and Cr levels in beans and maize of the study area were all within the respective limits of 0.3mg/kg, 0.2 mg/kg and 0.2mg/kg set by International Standard tolerable limits (2001). While mean Hg concentrations in beans and maize are above 0.05mg/kg tolerable limit set by international standard tolerable limits (2001). Although, the mean levels of Pb, Cr, Cd are within tolerable limit, however, attention should be focused on low level chronic exposure to these toxic metals, mercury inclusive.

The study shows that the spatial soil distribution of the toxic metals in each of the study areas is significantly (P < 0.01) correlated with levels in the farm produce. The significant (P < 0.01) negative correlation may indicates uptake/removal of the toxic metals from soil into the crops, while the instances of positive significant (P < 0.01) correlation may indicates additional point sources of these metals, possible from the application of agrochemicals (fertilizers, pesticides and herbicides) and/or from non-point sources such as run off from environmental waste deposits of organic manure of animal origin, this is in line with the findings of Alhassan *et al* (2012) who established higher than reference value of some of these toxic metals in road site dust.

The established levels of these toxic metals in the farm produce relative to soil concentration could be alarming and may indicate their buildup to food chain. It may therefore serve as means of exposing human population to these toxic metals. This may be convinced by considering the outstanding characteristics of elements "non-destroyable and bioaccumulating". The finding of

the study established alarming concentration of Hg in most of the sample analyzed, despite the non or less toxic effect due to exposure of low levels of metallic mercury speculated by some researchers (Davidson *et al.*, 2004), biotransformation of the inorganic Hg to organic Hg such as methyl mercury may occur, that potentiate the toxic effects of the mercury which includes lung damage, nausea, vomiting, diarrhea, increase in blood pressure or heart rate, skin rashes, eye irritation, permanently damage to brain, kidneys, and developing fetuses (Sabine and wendy, 2009 and Davidson et al., 2004). Alhassan et al (2012) pointed out that human exposure to lead may result in many biological effects depending on the level and duration of exposure. Lead resembles calcium as divalent ion, it is therefore handled by the body as if it were Ca²⁺, hence replacing the calcium in many biological systems and protein matrix with concomitant loss in biological activity. In addition other biochemical toxicity of lead could be associated to it affinity to cell membrane and mitochondria, where it interfere with oxidative phosphorylation, it also interferes with Na, K and Ca ATP-ase pumps (Schumacher et al., 1991). Chronic lead exposure to blood level > 1.4 μ g/l in children is believed to cause mental retardation, selective deficits in language, cognitive function, balance, behavioural and school performance. Across all age chronic exposure to lead is associated kidney damage and interstitial nephritis, affect sperm and ova, anaemia, CNS defects, peripheral neuropathies, and reduced birth weight. Susceptibility to lead toxicity is governed by genetic factors, as established in Caucasians population with 15% variant of gene code for aminolevulinic acid dehydrogenase, hence become more susceptible to lead exposure (Pirzada et al., 2009).

Cadmium is a very toxic metal, found in all soils, including coal and mineral fertilizers. Cadmium has many uses, including batteries, pigments, metal coatings, and plastics. It is used extensively in electroplating (Peter, 2005). Cadmium and cadmium compounds are known human carcinogens. Smokers get exposed to significantly higher cadmium levels than nonsmokers. Severe damage to the lungs may occur through breathing high levels of cadmium common to cigarette smokers. High levels ingestion induces severe stomach irritation that induces vomiting and diarrhea, while Long-term exposure to lower levels leads to a buildup in the kidneys and possible kidney disease, lung damage, and fragile bones (Somers, 1983).

Chromium is found in rocks, animals, plants, and soil, its compounds bind to soil and are not likely to migrate to ground water but, they are very persistent in sediments in water. Chromium is used in metal alloys such as stainless steel; protective coatings on metal (electroplating); magnetic tapes; and pigments for paints, cement, paper, rubber, composition floor covering and other materials. Its soluble forms are used in wood preservatives (Lynch, 2005). Chromium (VI) compounds are toxins and known human carcinogens, whereas Chromium (III) is an essential nutrient. Breathing high levels can cause irritation to the lining of the nose; nose ulcers; runny nose; and breathing problems, such as asthma, cough, shortness of breath, or wheezing (Alabdulaaly *et al.*, 2009).

The level of Cadmium and Chromium in the soil, beans and maize samples from all the local government are not considered a health hazard. However, chronic exposure to such a low levels may lead to the toxicity and carcinogenic properties of chromium, softening of bones and kidney failure (Akintola, 2008). It is worth noting that most of the above mentioned sign and symptoms of heavy metals toxicity could be very common clinical cases in most hospitals nowadays and may not be unconnected to buildup of these toxic metals in foods and ultimately in human tissues.

Based on the findings of this study, mercury was found to possess a health risk index in four of the five Local Government Areas studied. The calculated health risk index of mercury in the

studied areas was greater than one, and which shows obvious risk of exposure by the population in the zones (Zhan *et al.*, 2012). According to the world health organization (2007), the majority of mercury in the environment results from coal-fired power station, residential heating systems and waste incinerators. Mercury is also released into the environment in the process of mining gold and other metals. WHO (2007), also established that consumption of contaminated fish, shellfish and marine mammals is the main source of methyl mercury exposure, especially for people who rely on predatory fish as their main source of protein. A recently conducted study by Zhang *et al.* (2010) found an elevated concentration of methyl mercury in rice (9.3ug/kg) throughout the Guizhou province of China. According to the Al-saleh and Shinwari, (2001), Mercury continues to be found in rice even in regions where mercury based pesticides are no longer in use. A study conducted in Saudi Arabia found that the concentration in rice was (3.18 ug/kg). In addition to past or ongoing fungicide use, mining and other industrial activities introduce another route of mercury exposure into the food chain through grain consumption in some regions of the world.

CONCLUSION

Heavy metals contamination constitutes a major factor of environmental pollution. However, from this study, it appears that all the toxic metals of the samples (soils, beans and maize) were below the maximum tolerable levels and might appear harmless. However, it is imperative to note that chronic exposure to these even at low concentrations should be avoided.

REFERENCES

- Alloway B.J (1995). Heavy metals in soils 2nd edition, Blackie academic and professional, Glasgow. pp. 500.
- Alhassan, A.J. Sule, M.S. Atiku, M.K., Wudil, A.M., Dangambo, M.A., Mashi, J.A. And Ibrahim, N.A. (2012). Study of Correlation between Heavy Metal Concentration, Street

Dust and Level of Traffic in Major Roads of Kano Metropolis, Nigeria.

- Al-Saleh I and Shinwari N. (2001). Report on the levels of cadmium, lead and mercury in imported rice grain samples. *Biol Trace Elements Health Research*, 83 (1):91-96.
- AOAC. (2005). Official Methods of Analysis, association of analytical Chemists. Washington DC, 15 edition. Pp 11-14.
- Alabdulaaly, A. I., & Khan, M. A. (2009). Heavy metals in cooler waters in Riyadh, Saudi Arabia. *Environmental Monitoring and Assessment*. 157, 23-28.
- Carpenter D.O. (2001). Effects of metals on the nervous system of Humans and metals. International Journal of Occapational medicine and Environmental Health. 14(3); 209-218.
- Davidson PW, Myers GJ, Weiss B (2004). "Mercury exposure and child development outcomes". *Pediatrics* **113**: 1023–9.
- Emsley, J (2011). Nature's Building Blocks. Oxford University Press. ISBN 9780199605637. Pp 34.
- Garrett N.E, Garrett R.J.B, Archdeacon J.W. (1992). Placental transmission of mercury to foetal rat. *Toxicological Application pharmacological*. 22; 649-654.
- Gray C.W, Mclaren R.C, Roberts A.H.C. (2003). Atmospheric accessions of heavy metals to some New Zealand pastoral soils. *The science of the total Environment*. 305; 105-115.
- Holding BV (2004). Heavy Metals (http://www. Lenntech. Com/heavy metals.htm).
- International Standard Tolerable Limits (2001). Maximum levels of heavy metals in soil and foods. ISBN 9780123970268.

Liu, W. H., Zhao, J. Z., Soderlund, L., and Liu, G. H. (2005). Impacts of sewage irrigation on heavy metal distribution and contamination in Beijin, China. *Environment international journal*. 31: 313-812.

- Lynch, E., and Braithwaite, R. (2005). A Review Of The Clinical And Toxicological Aspects of "Traditional" (Herbal) Medicines Adulterated With Heavy Metals. Sand Well and West Birmingham Nhs. In: UK Trust Regional Laboratory for Toxicology City Hospital Birmingham UK, pp. 769-778.
- Madyiwa S. (2006). Modeling lead and cadmium uptake by star Grass under irrigation with treated waste water. Published philosophiae. Doctor Thesis, University of Pretoria, South Africa. pp. 44-51

Peter, B. W. (2005). Municipal Solid Waste Compositing: Potential Effect of Heavy Metals in

Municipal Solid Waste Composts on Plants and Environment. Boyce Thompson Institute for Plant Research at Cornell University: 1-5.

- Pirzada, H., Ahmad, S. S., Rashid, A., & Shah, T. (2009). Multivariate analysis of selected roadside plants (Dalbergia sissoo and Cannabis sativa) for lead pollution monitoring. *Pakistan Journal Bot*, 41, 1729-1736.
- Sabine Martin and Wendy Griswold. (2009). Centre for hazardous substances Research. Kansas University. U.S.
- Schumacher, M., Bosgue, M. A., Domingo, J. L., &Corbella, J. (1991). Dietary Intake of Lead and Calcium from Foods in Tarragora Province, Spain. Bull Environ Contaminants and Toxicology, 46, 320-328.
- Somers, E. (1983). The Toxic Potential of Trace Metals in foods. A Review. *Journal of Food Science*. 39, 215-217.
- Srivastava, S; Goyal, P (2010). Novel Biomaterials: Decontamination of Toxic Metals from Wastewater. Springer-Verlag. ISBN 978-3-642-11329-1.
- Stilwell, Sean (2000). "Power, Honour and Shame: The Ideology of Royal Slavery in the Sokoto Caliphate". Africa: Journal of the International African Institute (Edinburgh University Press) 70 (3): 394–421.
- USEPA, IRIS. (2002). United State, Environmental Protection Agency, Integrated Risk Information System. <u>http://www.epa.gov/iris/subs</u>. Accessed 25 February 2010.
- Vallero, DA; Letcher, TM (2013). Unravelling environmental disasters. Elsevier.
- Wang, S. T. (2005). Study on predicting effects of the soil polluted with heavy metals on vegetables and method of assessing quality of the soil in vegetable plot irrigated with a sewage-a case study on Baoding suburb. Agricultural University of Hebei, China. Pp 1-43.
- World Health Organization (WHO). (2014) Joint FAO/WHO Food Standards Programme. Codex Committee on Food Additives and Contaminants. Thirty-second session. Draft Maximum levels of lead. Prepared by Denmark pp 389.
- World Health Organization (WHO), (2007). *Exposure to mercury: A major public health concern*. Geneva, Switzerland, World Health Organization (http://www.who.int/phe/news/Mercury-flyer.pdf, accessed 10 May 2010).
- Zhan-Jun Xue, Shu-Qing Liu, Yan-Ling Liu and Yong-Lu Yan (2012). Health risk assessment of heavy metals for edible parts of vegetables grown in sewage-irrigated soils in suburbs of Baoding city, china. *Environmental Monitoring Assess* 184:3503-3513.