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ABSTRACT  9 
 10 
 
Aims: In this paper we develop an approach for finding the cofactor, adjoint, determinant and 
inverse of a three by three matrix. 
 
Methodology: We took out the seemingly daunting task of evaluating such properties of a 
matrix by standard methods. 
 
Conclusion:  An alternative approach that provides all the vital properties of a coefficient matrix 
needed in getting the unknown of a system of equations is introduced. It is our view that  the 
Cell arrangement method  is easy  to work with and less prone to errors as compared to the 
standard matrix method which is  structured and the processes involving their usage  can seem 
a very daunting prospect. 
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1. INTRODUCTION  15 
 16 
Simultaneous equation is a common method used in solving systems of linear equation in two unknown. A 17 
repeated use of simultaneous equation in three or more unknown becomes cumbersome to handle to the 18 
extent that  mistake in one step may affect the entire determination of the unknown  quantities. A  better 19 
approach and more effective way for dealing with higher systems of linear equation is by the use of  matrices 20 
and certain peculiar  properties associated to them. 21 
One of such methods was established by G. Cramer (1704-1752)  a Swiss mathematician, where  22 
he adapted four different determinants one from the coefficient matrix of the given linear equations and three 23 
other hybrid determinants from the same coefficients matrix of which each column in turns is replaced with the 24 
RHS of  the system. The unknown were found by forming ratios of the hybrid determinants with the 25 
determinant of the coefficient matrix. The glitch in this method is that if the coefficient matrix is singular the 26 
method fails and in practice, Cramer's rule is rarely used to solve systems of order higher than three ሺ3ሻ. 27 
(Barnett, Ziegler and Byleen 2001); The advantage of this method worth noting is the light it sheds on the 28 
behavior of simultaneous linear equation. (Backhouse, Houldsworth Cooper and Horril ; 1994).  29 
The standard matrix method which uses the adjoint, determinant and inverse properties of a matrix to 30 
determine the unknown quantities of a system is quiet laborious and requires  constant practice in order to 31 
master the steps involved. Thus transition from the traditional simultaneous equation in two variables to solving 32 
three variables using matrix method  is enormous  and  for many people who take mathematics as a pre-33 
requite course or related programs that requires mathematics, the knowledge gap needs to be bridged.  34 



 

 

The purpose of this paper is to introduce  matrix approach of solving systems of linear equation. using cell 35 
arrangements and vector product.   36 
 37 
2. RELATED WORKS 38 
When Linear equations arise from a practical problem, the coefficients are unlikely to be small 39 
integers and the arithmetic can get heavy (Heard and Martin, 1983). It is for this reason that we have 40 
opted to review the work done by earlier authors on solving systems of linear equation using matrices 41 
since it offers suitable properties which enable us to critique a given system as having unique , infinite 42 
or  one with no  solution.  43 
Solving systems of linear equations by the standard method comprise of four basic processes (Stroud 44 
and Booth; 2007).   45 

The given system is firstly put in the matrix representation    ܺܣ ൌ ܾ            ⋯ .ݍ݁ ሺ1ሻ  46 

where  ܣ represents the coefficient of matrix for the system, ܺ  and ܾ  represents column vectors  47 
for the unknown variables and the constants of the RHS of the given system. For the purpose of the 48 
work at hand we shall deal with a system of linear equation in three unknowns.   49 

                      ൭
ܽଵଵ ܽଵଶ ܽଵଷ
ܽଶଵ ܽଶଶ ܽଶଷ
ܽଷଵ ܽଷଶ ܽଷଷ

൱  ቆ
ݔ
ݕ
ݖ
ቇ ൌ ൭

ܾଵ
ܾଶ
ܾଷ

൱                                                   ⋯ .ݍ݁ ሺ2ሻ    50 

where    ܣ ൌ ൭

ܽଵଵ ܽଵଶ ܽଵଷ
ܽଶଵ ܽଶଶ ܽଶଷ
ܽଷଵ ܽଷଶ ܽଷଷ

൱      ܺ ൌ ቆ
ݔ
ݕ
ݖ
ቇ  and  ܾ ൌ ൭

ܾଵ
ܾଶ
ܾଷ

൱                         ⋯ .ݍ݁ ሺ3ሻ  51 

This is followed by finding the determinant of the coefficient matrix which can be developed along any 52 
of the rows or any of the columns. Symbolically the determinant is given by  53 

|ܣ|          ൌ อ

ܽଵଵ ܽଵଶ ܽଵଷ
ܽଶଵ ܽଶଶ ܽଶଷ
ܽଷଵ ܽଷଶ ܽଷଷ

อ                                                                               ⋯ .ݍ݁ ሺ4ሻ     54 

We shall show the case where it is developed along the first row. i.e. Each element and the sign 55 
associated to the position it occupies in the first row is used to multiply the lesser order determinant 56 
form by the deletion of the column and row the particular element is located. This gives 57 

|ܣ|  ൌ ܽଵଵ ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ െ ܽଵଶ ቚ
ܽଶଵ ܽଶଷ
ܽଷଵ ܽଷଷ

ቚ ൅ ܽଵଷ ቚ
ܽଶଵ ܽଶଶ
ܽଷଵ ܽଷଶ

ቚ                         ⋯ .ݍ݁ ሺ5ሻ   58 

The sign associated  to the position an element in  an array occupies,  is found as the  sum of the row 59 

and column number of the index  to which ሺെ1ሻ is raised  i.e.  ሺെ1ሻ௜ା௝  or you may determine it 60 

manually by moving in ሺ൅ሻ  and ሺെሻ alternation, starting from the first row and first column of the 61 
given array ( Barnett et al. (2001); Backhouse, et al (1985)). If there are more zeros in a particular row 62 
or column, then it would be more instructive to find the determinant along such row or column.  63 

Next the Minors of each element in the matrix  ܣ are found by deleting row and column of each  64 
particular element in that row and in that column  and the determinant of the resulting  arrays   found. 65 
This would give in all a total of nine, two by two determinants namely  66 

      ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ      ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ     ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ  67 

      ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ     ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ      ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ                                                                           ⋯ .ݍ݁ ሺ6ሻ   68 

      ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ     ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ      ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ   69 

By renaming these minors with their associated designated signs we generate the elements of the 70 
cofactors as shown below. 71 

ଵଵܣ       ൌ       ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ      ܣଵଶ ൌ െ ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ         ܣଵଷ ൌ       ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ  72 

ଶଵܣ       ൌ െ ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ      ܣଶଶ ൌ         ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ      ܣଶଷ ൌ   െ ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ               ⋯ .ݍ݁ ሺ7ሻ    73 



 

 

ଷଵܣ       ൌ      ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ     ܣଷଶ ൌ    െ ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ       ܣଷଷ ൌ         ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ   74 

Once the cofactors of the given coefficient matrix are deduced from the signed minors they are 75 
written out as a matrix array called the cofactor matrix and it is usually denoted and defined as 76 

ܥ               ൌ ൭

ଵଵܣ ଵଶܣ ଵଷܣ
ଶଵܣ ଶଶܣ ଶଷܣ
ଷଵܣ ଷଶܣ ଷଷܣ

൱                                                                                        ⋯ .ݍ݁ ሺ8ሻ    77 

 The adjoint matrix is obtained by finding the transposition of the  matrix  in ݁ݍሺ8ሻ which yields 78 

ሻܣሺ݆݀ܣ                 ൌ ்ܥ ൌ ൭

ଵଵܣ ଶଵܣ ଷଵܣ
ଵଶܣ ଶଶܣ ଷଶܣ
ଵଷܣ ଶଷܣ ଷଷܣ

൱                                                               ⋯ .ݍ݁ ሺ9ሻ    79 

The last property to be pursue in our quest of using matrix approach in solving systems of linear 80 

equation in three unknown is to determine the inverse matrix  ିܣଵ  of the matrix ܣ. This is easily done 81 

by find the product of the reciprocal of the determinant of equation ሺ5ሻ  (Anetor et al  (2013))  and the 82 

adjoint  matrix of equation ሺ9ሻ   i.e. 83 

ଵିܣ              ൌ
ଵ

|஺|
൭

ଵଵܣ ଶଵܣ ଷଵܣ
ଵଶܣ ଶଶܣ ଷଶܣ
ଵଷܣ ଶଷܣ ଷଷܣ

൱                                                                           ⋯ .ݍ݁ ሺ10ሻ   84 

Finally  using equations ሺ10ሻ   and ሺ3ሻ  the unknown of the system are uniquely found provided  |85  |ܣ 
is not equivalent to zero in the form  86 

         ቆ
ݔ
ݕ
ݖ
ቇ  ൌ ܺ ൌ  

ଵ

|஺|
൭

ଵଵܣ ଶଵܣ ଷଵܣ
ଵଶܣ ଶଶܣ ଷଶܣ
ଵଷܣ ଶଷܣ ଷଷܣ

൱ . ൭

ܾଵ
ܾଶ
ܾଷ

൱                                                      ⋯ .ݍ݁ ሺ11ሻ      87 

The advantage of the method is that it is structured and by extension it could be applied on higher 88 
order  nonsingular matrices. The inherent lapses associated to the standard matrix method is also 89 
due to the fact that, it is structured and very laborious. A common error that may occur is the omission 90 
of the prescribed signs for the cofactors which do not actually surface in their development and if not 91 
remedied, the entire determination of the unknown would yield inaccurate results.  92 
Turner, Knighton, and Budden  (1989) Observe that the Calculation of the entries in the adjoint or 93 
adjugate matrix from their basic definition can seem a very daunting prospect and to overcome the  94 
none introduction of the designated signs relating the minors to the cofactors they propose an 95 

alternative approach, in a way that the original entries of the matrix  in equation ሺ3ሻ are written 96 
repeatedly in each section of a quadrant as shown below. 97 
 98 
 99 
 100 
 101 
 102 
 103 
 104 
 105 
 106 
 107 
 108 
 109 
 110 
 111 
This is followed by the deletion of the extreme elements round the quadrant. Once that is done, all 112 
possible two by two determinants of the remaining array are evaluated producing    113 
 114 

ܽଵଵ ܽଵଶ ܽଵଷ  
ܽଶଵ ܽଶଶ ܽଶଷ  
 ܽଷଵ    ܽଷଶ    ܽଷଷ  
 ܽଵଵ    ܽଵଶ    ܽଵଷ  
ܽଶଵ ܽଶଶ ܽଶଷ  
ܽଷଵ ܽଷଶ ܽଷଷ  

 ܽଵଵ    ܽଵଶ    ܽଵଷ  
 ܽଶଵ    ܽଶଶ    ܽଶଷ  
 ܽଷଵ    ܽଷଶ    ܽଷଷ  
 ܽଵଵ    ܽଵଶ    ܽଵଷ  
 ܽଶଵ    ܽଶଶ    ܽଶଷ  
 ܽଷଵ    ܽଷଶ    ܽଷଷ  
 



 

 

 115 
 116 
 117 
 118 
 119 
 120 
 121 
 122 
 123 

the same results for the entries of the cofactors  as in equations ሺ7ሻ and ሺ8ሻ. Once the cofactor matrix 124 
is obtained, the adjoint, inverse matrix and the determinant are used accordingly to retrieve the 125 
unknown being sought for.  Clearly the innovation introduced by these writers is that, the 126 
computations of the cofactor matrix is simpler and less prone to errors. The approach  proposed by  127 

Turner et al. (1989);  however does not work for matrix whose order is greater than three ሺ3ሻ. 128 
 129 
 130 
3. METHODOLOGY  131 
 132 
MAIN RESULTS  133 
The results of a cross product of two vectors  ࡲ૚ ൌ ܽଵ࢏ ൅ ܽଶ࢐ ൅ ܽଷ࢑ and  ࡲ૛ ൌ ܾଵ࢏ ൅ ܾଶ࢐ ൅ ܾଷ࢑    134 
is given by ࡲ૚ ൈ ૛ࡲ ൌ ሺܽଶܾଷ െ ܽଷܾଶሻ࢏ ൅ ሺܽଷܾଵ െ ܽଵܾଷሻ࢐ ൅ ሺܽଵܾଶ െ ܽଶܾଵሻ࢑   where the element in the  ݌௧௛ 135 
component of the cross product is obtained by omitting only the  ݌௧௛ column and evaluating the determinant of 136 
the remaining components  in an anticlockwise cyclic manner. This idea may be exploited in obtaining the 137 
cofactor matrix without associating the designated sign of the determinants of their respective minors. 138 
   139 
THEOREM 140 
Suppose the rows of a 3 ൈ 3  coefficient matrix ܣ of a system of linear equation represents the components of 141 
the vectors ଵܸ ൌ൏  ܽଶଵ    ܽଶଶ    ܽଶଷ  ൐ , ଶܸ ൌ  ൏  ܽଷଵ    ܽଷଶ    ܽଷଷ  ൐    and  142 

ଷܸ ൌ ൏  ܽଵଵ    ܽଵଶ    ܽଵଷ  ൐   then the  143 
i.   cross products   ଵܸ ൈ ଶܸ  ;   ଶܸ ൈ ଷܸ  ; ଷܸ ൈ ଵܸ  generates the row entries of the cofactor  144 
    matrix without the placed sign of the minors of the original matrix 145 
ii.  scalar triple products  ଷܸ. ሺ ଵܸ ൈ ଶܸሻ ൌ  146    |ܣ|
 147 
Proof: 148 

Let the entries of the  coefficient matrix  ܣ ൌ ൭

ܽଵଵ ܽଵଶ ܽଵଷ
ܽଶଵ ܽଶଶ ܽଶଷ
ܽଷଵ ܽଷଶ ܽଷଷ

൱  of a  given system of linear 149 

equations which is consistent be defined by the vectors 150 

ଵܸ ൌ ൏  ܽଶଵ;   ܽଶଶ ;    ܽଶଷ  ൐ , ଶܸ ൌ  ൏  ܽଷଵ;    ܽଷଶ;    ܽଷଷ  ൐ , ଷܸ  ൌ  ൏  ܽଵଵ;  ܽଵଶ;    ܽଵଷ  ൐  151 
then   152 

ଵܸ ൈ ଶܸ ൌ ൏ ܽଶଶܽଷଷ െ ܽଶଷܽଷଶ ;  ܽଶଷܽଷଵ െ ܽଶଵܽଷଷ ;  ܽଶଵܽଷଶ െ ܽଶଶܽଷଵ ൐   153 

              ൌ ൏ ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ  ;   ቚ
ܽଶଷ ܽଶଵ
ܽଷଷ ܽଷଵ

ቚ  ;  ቚ
ܽଶଵ ܽଶଶ
ܽଷଵ ܽଷଶ

ቚ ൐      No place signed 154 

             ൌ ൏ ; ଵଵܣ ; ଵଶܣ  ଵଶܣ  ൐       ⋯  ሺܽሻ    155ݍ݁      
also 156 

ଶܸ ൈ ଷܸ ൌ ൏ ܽଷଶܽଵଷ െ ܽଷଷܽଵଶ ;   ܽଷଷܽଵଵ െ ܽଷଵܽଵଷ ;  ܽଷଵܽଵଶ െ ܽଷଶܽଵଵ ൐   157 

          ൌ ൏ ቚ
ܽଷଶ ܽଷଷ
ܽଵଶ ܽଵଷ

ቚ  ;  ቚ
ܽଷଷ ܽଷଵ
ܽଵଷ ܽଵଵ

ቚ ;  ቚ
ܽଷଵ ܽଷଶ
ܽଵଵ ܽଵଶ

ቚ ൐      No place sign  158 

         ൌ ൏ ; ଶଵܣ ; ଶଶܣ  ଶଷܣ  ൐        ⋯  ሺܾሻ     159ݍ݁      
Similarly  160 

ଷܸ ൈ ଵܸ ൌ ൏ ܽଵଶܽଶଷ െ ܽଵଷܽଶଶ ;  ܽଵଷܽଶଵ െ ܽଵଵܽଶଷ ;  ܽଵଵܽଶଶ െ ܽଵଶܽଶଵ ൐  161 

             ൌ ൏ ቚ
ܽଵଶ ܽଵଷ
ܽଶଶ ܽଶଷ

ቚ  ;   ቚ
ܽଵଷ ܽଵଵ
ܽଶଷ ܽଶଵ

ቚ  ;  ቚ
ܽଵଵ ܽଵଶ
ܽଶଵ ܽଶଶ

ቚ ൐       having no place sign 162 

            ൌ ൏ ; ଷଵܣ ; ଷଶܣ  ଷଷܣ  ൐     ⋯  ሺܿሻ    163ݍ݁      

ܽଶଵ ܽଶଶ  
ܽଷଵ ܽଷଶ  
ܽଵଵ ܽଵଶ  
ܽଶଵ ܽଶଶ  

 ܽଶଶ    ܽଶଷ 
 ܽଷଶ    ܽଷଷ 
 ܽଵଶ    ܽଵଷ  
 ܽଶଶ    ܽଶଷ 



 

 

்ܥ ൌ ݆ܽ݀ሺܣሻ ൌ

ሺܾଶܿଷ െ ܾଷܿଶሻ ሺܿଶܽଷ െ ܿଷܽଶሻ ሺܽଶܾଷ െ ܽଷܾଶሻ

ሺܾଷܿଵ െ ܾଵܿଷሻ ሺܿଷܽଵ െ ܿଵܽଷሻ ሺܽଷܾଵ െ ܽଵܾଷሻ

ሺܾଵܿଶ െ ܾଶܿଵሻ ሺܿଵܽଶ െ ܿଶܽଵሻ ሺܽଵܾଶ െ ܽଶܿଵሻ

 

Finally writing out the results   of each of these cross products  in equations  ሺܽሻ   ሺܾሻ   and ሺܿሻ   as the row 164 
entries of a  3 ൈ 3   matrix , the cofactor matrix of the original matrix is determined. 165 
ii. ଷܸ. ሺ ଵܸ ൈ ଶܸሻ ൌ ൏  ܽଵଵ;  ܽଵଶ;    ܽଵଷ  ൐.൏ ; ଵଵܣ ; ଵଶܣ  ଵଷܣ  ൐        166 
                         ൌ  ܽଵଵܣଵଵ ൅ ܽଵଶܣଵଶ ൅ ܽଵଷܣଵଷ  ൌ  167  |ܣ|
The Product  ଷܸ. ሺ ଵܸ ൈ ଶܸሻ  is known  in vector Analysis as the scalar triple product. This evaluate a single 168 
unique real number associated to the matrix called the determinant of the coefficient matrix. The determinant is 169 
important since geometrically, it's absolute value represents  the volume of the parallelepiped spanned by the 170 
vectors  ଵܸ, ଶܸ and   ଷܸ.     171 
By carefully  arranging the rows of a 3 ൈ 3  matrix  in three different cells in pairs, starting with the second row 172 
and repeating the last row of a  pair in the next cell, the co- factor  matrix , the adjoint matrix the determinant 173 
are easily obtained and hence the inverse of the matrix under  174 
consideration found at the same time.  A prototype of this approach is shown using the matrix 175 

ܣ ൌ ൭

ܽଵ ܽଶ ܽଷ
ܾଵ ܾଶ ܾଷ
ܿଵ ܿଶ ܿଷ

൱  and a demonstration of the method is illustrated with an example.  176 

 177 
 178 
௕భ      ௕మ       ௕య
௖భ      ௖మ       ௖య 
௖భ      ௖మ       ௖య

 
ೌభ       ೌమ       ೌయ
ೌభ      ೌమ      ೌయ

 

௕భ      ௕మ      ௕య

       179  

 180 
 181 
  182 
 183 
 184 
 185 
 186 
|ܣ| ൌ ܽଵሺܾଶܿଷ െ ܾଷܿଶሻ ൅ ܽଶ ሺܾଷܿଵ െ ܾଵܿଷሻ ൅ ܽଷሺܾଵܿଶ െ ܾଶܿଵሻ 
 187 
 188 
Clearly it can be seen that all the rows of the cofactor matrix give the precise definition of a cross 189 
product of the element of the original matrix arranged in pairs following this approach.  A 190 

Transposition of the cofactor matrix gives the adjoint matrix ܣ∗ of matrix ܣ. Two other  interesting 191 

properties of the matrix ܣ  that can be derived from the above is the determinant |ܣ| and the inverse 192 

 The determinant can be shown to be the term by term multiplication of the first row of 193 .ܣ ଵ of matrixିܣ
the last cell and the first column of the adjoint matrix  and this is shown in the layout by  the arrows, 194 

(i.e. the scalar product along the row and column specified) while the inverse matrix ିܣଵ is easily 195 
obtained by the scalar multiplication of the reciprocal of the determinant and the adjoint matrix.  196 
  197 
 198 
 199 
 200 
 201 
 202 
 203 
 204 
 205 
 206 
 207 

ܥ ൌ

ሺܾଶܿଷ െ ܾଷܿଶሻ      ሺܾଷܿଵ െ ܾଵܿଷሻ    ሺܾଵܿଶ െ ܾଶܿଵሻ

 
ሺܿଶܽଷ െ ܿଷܽଶሻ  ሺܿଷܽଵ െ ܿଵܽଷሻ ሺܿଵܽଶ െ ܿଶܽଵሻ

 ሺܽଶܾଷ െ ܽଷܾଶሻ  ሺܽଷܾଵ െ ܽଵܾଷሻ ሺܽଵܾଶ െ ܽଶܿଵሻ

 
 
 



 

 

 208 
 209 
 210 
 211 
An immediate application is solving systems of linear equation in three unknowns. We illustrate the 212 
Cell arrangement method with a system having the following information. 213 

ܣ     ൌ ൭
1 2 3
2 1 1
3 1 െ2

൱    ܾ ൌ ൭
6
5
1
൱   ܺ ൌ ቆ

ݔ
ݕ
ݖ
ቇ        214 

 215 
 216 
 217 
   218 
 219 
 220 
 221 
 222 
  223 

     2     1        1    
     3     1    െ 2 
     
     3      1   െ 2   
     1      2        3 
   
    1     2        3  
     2      1      1  
 

∴ ଵିܣ  ൌ
1

8
൭

0 2 െ1
െ7 2 8
െ14 5 13

൱   

 
    

ܥ  ൌ   ൭
 െ3 7 െ1
7 െ11     5
െ1    5 െ3

൱     

   
          
                   

்ܥ   ൌ  ൭
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4. RESULTS AND DISCUSSION 224 
 225 
The cofactor adjoint procedure for solving linear equations is, rather tedious, especially when the 226 
order is much higher, the arithmetic becomes quite challenging. To save labor and to greatly facilitate 227 
the solution of the system (Dass, 1998), there is therefore the need to seek for an alternative 228 
approach without compromising the underlining principle of the matrix method.  It is in this light that 229 
the Cell arrangement method becomes an indispensable tool in the determination of the cofactors, 230 
adjugate matrix, the determinant, the inverse and hence the unknown quantities of the system of 231 
equations.  The advantage of the Cell arrangement method over the standard matrix approach is that, 232 
the steps involve in obtaining the properties of the coefficient matrix necessary for the determination 233 
of the unknown are less laborious and less time consuming. This is so since  the same procedure is 234 

repeated three times on each paired cells and only a  ݆௧௛   column is deleted and also ensuring that 235 
the cofactor to occupy that position is evaluated in an anticlockwise manner. The method really works 236 
faster especially when the arithmetic of the procedure discussed is done mentally without having to 237 
write out the determinants that evaluates each cofactor and more so the necessity of assignment of 238 
the designated sign in the computation of the cofactors involved is completely eliminated.  In contrast 239 
to the standard methods, much effort and time is spent on the determination of the cofactors in each 240 

particular position by the deletion of both the  ݅௧௛ and the ݆௧௛ entries of the original matrix ܣ  and the 241 

determinant of the remaining array found, multiplied by  the scalar ሺെ1ሻ௜ା௝ of that  position.    242 
 The only inherent setback for the Cell arrangement method is that it works only for linear equation in 243 
three variables and the process of finding the cross product of the respective row vectors may pose a 244 
challenge since the ordering of the row vectors are extremely important to our search for the solution. 245 
This method permits defined ordering of the vectors we generate from the coefficient matrix. This is 246 
so because of the manner in which the entries of the cofactor matrix are churned out. They follow 247 
precisely the definition of a cross product of two vectors which are strictly defined for three-248 
dimensional vectors. (Stewart, 2003). 249 
An algorithm is developed to aid us generate satisfactory solution to the above mentioned system. 250 
This algorithm will help determine if the cell arrangement method is computationally expensive or not. 251 
By this we are interested in the computational complexity which has to do with the time complexity 252 
and memory complexity of the algorithm relative to the other known traditional methods. This is a 253 
proof of the efficiency of the cell arrangement method to the traditional method. 254 
 255 
 256 
5. CONCLUSION 257 
 258 
An alternative approach that provides all the vital properties of a coefficient matrix needed in getting the 259 
unknown of a system of equations is introduced. It is our view that the Cell arrangement method is easy to 260 
work with and less prone to errors as compared to the standard matrix method which is structured and the 261 
processes involving their usage can seem a very daunting prospect. 262 
 263 
 264 
 265 
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