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ABSTRACT 9 
 10 
Integrated production systems were developed to preserve productive resources and 
maintain the profitability of agribusiness. However, the use of seeds of low physiological and 
sanitary quality and the implantation of agricultural and forage crops in production fields of 
low sanitary quality may favor the dissemination and proliferation of phytopathogens such as 
fungi. Therefore, using the scientific literature, this work aimed to identify the fungi 
associated with the main agricultural and forage crops that cause damage to the integrated 
production systems of tropical regions and their control measures. This work was based on a 
literature review in the Scielo, Scopus and Google Scholar databases, with data obtained 
between 1999 and 2019. The keywords employed were “fungus”, “tropical grass”; 
“agricultural crops”; “ICL”; and “ICLF” and their respective terms in Portuguese, under 
different combinations. For the inclusion criteria, publications (papers, books, theses, 
dissertations, and scientific communiqués) from 1999 to 2019 which fit the study aim were 
selected, both in the Portuguese and English languages. The publications that did not meet 
the criteria of this study and were repeated in databases were considered as exclusion 
criteria. The main fungi associated with forage and agricultural crops and soils of integrated 
systems of tropical regions are Bipolaris sp., Curvularia sp., Exserohilum syn. 
Helminthosporium sp., Phoma sp., Fusarium sp., Macrophomina sp., Pythium sp., 
Rhizoctonia sp. and Sclerotium sp. The main methods of fungal control are the use of quality 
seeds, crop rotation, resistant cultivars, and chemical seed treatment. 
 11 
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1. INTRODUCTION 15 
 16 
Agribusiness is worldwide in importance, providing essential nutrients and contributing 17 
significantly to the world economy. Due to the widespread essentiality of agribusiness, there 18 
is a need to keep the systems that compose it increasingly productive while preserving the 19 
land and reducing the need to open new areas. In order to achieve this purpose, sustainable 20 
cultivation models have been created and perfected, such as Integrated Crop-Livestock 21 
(ICLS) and Crop-Livestock-Forest (ICLF) systems. These systems aim at the maximum use 22 
of the land without degradation, improvement in the physical-chemical quality of the soil, in 23 
the zootechnical indexes of the animal component and income diversification [1, 2, 3, 4, 5, 6, 24 
7]. 25 

Both of the above-mentioned integrated systems (ICLS and ICLF), if poorly managed, might 26 
suffer from pest and disease attacks. In addition, the implantation of low sanitary quality 27 
crops in production fields, culminating in the use of seeds with low physiological and sanitary 28 



 

 

quality may favor the dissemination and proliferation of pests and phytopathogens in 29 
productive areas, reducing the yield of agricultural and forage crops and, consequently, 30 
affecting animal performance [8, 9, 10].  31 

Among the phytopathogens that can affect productive areas, fungi and nematodes are the 32 
ones that cause most concern as they can decimate crops when in high incidence, being 33 
difficult to eradicate from the production system [10].  34 

In order to adopt fungal control measures, aiming at the maximum yield of integrated 35 
systems in tropical regions, it is necessary to know the fungal incidence in the production 36 
fields of the main crops used in these systems, considering that the cultivation of forages 37 
belonging to the genera Brachiaria syn. Urochloa and Panicum, as well as agricultural crops 38 
such as soybean, maize, sorghum, and millet, are predominant in integrated production 39 
systems [11, 12, 13, 14, 15, 16, 17, 18]. 40 

Based on this, this study aimed to identify the fungi associated with the main agricultural and 41 
forage crops that damage the integrated production systems of tropical regions, as well as 42 
their control measures. 43 

2. METHODOLOGY 44 
 45 
This work was based on a literature review in the Scielo, Scopus and Google Scholar 46 
databases, with data between 1999 and 2019.  47 

The keywords employed were “fungus”, “tropical grass”; “agricultural crops”; “ICLS”; and 48 
“ICLF”; and their respective terms in Portuguese “fungos”, “capins tropicais”; “culturas 49 
agrícolas”; “iLP”; and “iLPF”, under different combinations. 50 

For inclusion criteria, publications (papers, books, theses, dissertations, and scientific 51 
communiqués) from 1999 to 2019 which fit the study aim were selected, both in the 52 
Portuguese and English languages. Publications prior to 1999 that did not meet the criteria 53 
of this study (analyzed by titles and abstract) and were repeated in the databases were 54 
considered as exclusion criteria. 55 

After reading the titles of articles and other publications, we selected 88 publications that met 56 
the initially proposed criteria, which were read in full. 57 

3. RESULTS AND DISCUSSION 58 

Fungi are phytopathogenic agents at higher rates of association with seeds, presenting 59 
longevity in the productive system through the production of resistance structures [19, 20]. 60 
They are among the main causes of diseases in forage plants, causing losses in the yield 61 
and quality of the green mass produced, besides reducing the quality (germination and 62 
vigor) of the seeds [8, 9, 21, 22, 23, 24, 25, 26]. 63 

Among the fungi present in soils used in integrated systems, and the fungi associated with 64 
Brachiaria syn. Urochloa sp., Panicum sp. and main agricultural crops, there are 65 
phytopathogenic taxa belonging to the genera Bipolaris sp., Curvularia sp., Exserohilum syn. 66 
Helminthosporium sp., Phoma sp., Fusarium sp., Macrophomina sp., Pythium sp., 67 
Rhizoctonia sp., and Sclerotium sp.. There are also secondary fungi such as Alternaria sp., 68 
Aspergillus sp., Cladosporium sp., Epicoccum sp., Nigrospora sp., Penicillium sp., and 69 
Trichoderma sp. [8, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].  70 
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Bipolaris sp. 71 

Bipolarys sp. is a pathogenic fungus with a 100% seed transmission rate to the seedlings. It 72 
is the main fungus that attacks Panicum sp., causing leaf spot disease. However, this fungus 73 
can be associated with the integument and interior of the seeds and with crop residues of 74 
susceptible crops, such as tropical grasses, maize, wheat, rice, and coffee. In addition, it is 75 
favored by temperatures between 22 and 30 °C [24, 25, 37, 38, 39, 40, 41, 42, 43, 44, 45]. 76 

The disease and its symptoms are similar in susceptible cultures, being manifested as brown 77 
spots and coalescence of the lesions in episodes of severe infestation. These symptoms can 78 
be observed 50 days after the sowing of susceptible crops in infected areas and/or using 79 
contaminated seeds [37, 38, 46]. In addition to the symptoms of contamination by 80 
phytopathogens in tropical plants, it causes disturbances in animals and humans, such as 81 
allergies, pulmonary and cutaneous infections [47]. 82 

Listing as alternatives to control the disease, the use of resistant cultivars and fungicides is 83 
commonly employed. The application of pyraclostrobin associated with epoxyconazole or 84 
tebuconazole alone has been promising for the reduction of the disease intensity in P. 85 
maximum seed production fields, increasing the speed of germination. In addition, cultural 86 
control, such as crop rotation, is an effective measure for disease control, since it reduces 87 
the initial inoculum [37, 38, 48]. 88 

Furthermore, the fungal control can be performed by means of seed treatment with 89 
fungicides, aiming to reduce the incidence of fungi in the seeds and in the soil, especially in 90 
the initial stages of development of the susceptible plants, besides avoiding the introduction 91 
or re-inoculation of phytopathogens [49, 50]. 92 

Curvularia sp. 93 

Curvularia sp. is a pathogenic fungus found in several regions of the world that has an 94 
important incidence in forage plants of the P. maximum species, causing the leaf spot 95 
disease [24, 25, 51]. Furthermore, it can cause rotting, reduction of germination up to seed 96 
unfeasibility (associating to the integument and endosperm), and death of seedlings in 97 
susceptible species, such as tropical grasses and maize. It has an absent sexual 98 
reproduction, reproducing asexually by ascomycetes [28, 37, 39, 52, 53, 54, 55]. 99 

In addition to the diseases that it causes in susceptible plants, the fungus can cause allergic 100 
conditions, endocarditis, pheochycosis, mycetoma, onychomycosis, keratitis, brain 101 
abscesses, urinary and pulmonary infections, and infectious wounds in animals and humans 102 
[56, 57, 58, 59, 60, 61].  103 

For the Curvularia sp. control it is possible to employ a seed treatment with the thiram or 104 
thiram-associated carboxin fungicides, which also have efficiency in the control of other 105 
fungi, such as Alternaria sp., Gerlachia sp. and Dreschlera sp.; as well as the fungicides 106 
fludioxonil combined with metalaxyl-M, colorless fludioxonil comminuted with metalaxyl-M, 107 
and thiram alone, which also have fungus control efficiency on Penicillium sp., Alternaria sp., 108 
Drechslera sp., and so forth. In addition, the association of thiram and thiabendazole 109 
fungicides in seed treatment may promote a greater emergence of seedlings [28, 62, 63]. 110 

Exserohilum syn. Helminthosporium sp. 111 

Such as the fungus Curvularia sp., the fungus Exserohilum sp. syn. Helminthosporium sp. 112 
causes rotting, seed unfeasibility and death of seedlings, as well as leaf and stem spot 113 



 

 

diseases. The manifested symptoms are necrotic and elliptic lesions with intense sporulation 114 
of the pathogen [9, 37, 64].  115 

It survives in crop remains (saprophytic form) and in the soil, forming resistance structures 116 
and associating to seeds (integument and endosperm) and hosts, such as tropical grasses, 117 
sorghum and maize (causing helminthosporiosis). In addition, the fungus is favored by 118 
temperatures between 18 and 27 °C and high moisture. The main control method is through 119 
genetic resistance and crop rotation with resistant cultures [39, 41, 42, 43, 44, 64]. 120 

Phoma sp. 121 

The pathogenic fungus Phoma sp. affects several crops from many continents, such as 122 
soybean and coffee. In the European region, the main etiological agent in soybean is Phoma 123 
pinodella (=Phoma sojicola). The causal agent in Brazil is the fungus Phyllosticta sojicola 124 
[35, 65, 66, 67].  125 

Furthermore, this fungus also focuses on forages of the genus P. maximum. The symptoms 126 
depend on the severity of the incidence, beginning four or five days after the inoculation, 127 
causing leaf spot with elongated, necrotic and irregular characteristics, rotting, seed 128 
unfeasibility and death of seedlings. By possessing fast and aggressive growth, it can even 129 
kill infected seeds before germination [25, 37, 51, 68]. The fungus belongs to the group of 130 
mitosporic fungi and is a Coelomycete, presenting cylindrical, hyaline and small non-septate 131 
conidia [69]. 132 

An efficient alternative to control this fungus is the treatment of seeds with thiram fungicides, 133 
thiram associated to carboxin, fludioxonil combined with metalaxyl-M, colorless fludioxonil 134 
comminuted with metalaxyl-M, and thiram alone [28, 62, 63]. 135 

Fusarium sp. 136 

Fungi of the genus Fusarium sp. cause damage to agricultural production systems 137 
composed of several agricultural crops, tropical grasses, and animals. This occurs due to the 138 
incidence of fusariosis and production of mycotoxin. The symptom of fusariosis in plants is 139 
dependent on the phytopathogen species and on the interspecific relation between host-140 
phytopathogen. Mycotoxins can cause symptoms such as false heat, abortion, stillbirths, 141 
infertility, problems in the digestive system, bleeding, anemia due to the destruction of the 142 
bone marrow, vomiting, necrosis of the epidermis and death of the animals [70, 71, 72].  143 

The F. solani species causes red root rot in the soybean crop, a symptom of which is the 144 
rotting of the root system; F. moniliforme causes the fusarium rot disease in crops of cotton, 145 
rice, maize, sorghum, and tropical grasses, in addition to the potential for intoxication of 146 
animals due to the production of mycotoxins (zearalenone, fumonisins, and vomitoxins or 147 
deoxynivalenol). F. graminearum, F. equiseti, and F. tricintum also produce mycotoxins in 148 
maize, sorghum, soybean, wheat, and oat crops, as well as F. pallidoroseum, which can 149 
break the stem and lead to the tipping of the cotton, beans and soybean plants [70, 73]. 150 

Furthermore, tropical grass seeds susceptible to phytopathogens may increase the inoculum 151 
potential in the area and act as a reservoir for future dissemination in crops that will succeed 152 
in the area, such as pine, cotton, wheat, rice, bean, soybean, maize, sugarcane, and so 153 
forth. The incidence level can be influenced by ideal climatic conditions of high temperature 154 
and soil moisture [24, 25, 34]. 155 



 

 

An effective measure for the control of these phytopathogens is the chemical treatment of 156 
seeds with fungicides. Among the available options in the commercialization, as previously 157 
mentioned for the control of Curvularia sp. and Phoma sp, the use of thiram or carboxin 158 
associated with thiram is highlighted, besides the fungicides fludioxonil combined with 159 
metalaxyl-M, colorless fludioxonil comminuted with metalaxyl-M, and thiram alone. 160 
Furthermore, iIn the absence of resistant cultivars, well-drained and fertilized soils and 161 
healthy and certified seeds can be employed [28, 34, 62, 63]. 162 

Macrophomina sp. 163 

The genus Macrophomina sp. inhabits the soils and manages to multiply in vegetal remains 164 
by means of its propagation structures produced by the mycelium (microsclerocios). These 165 
structures are resistant to adverse conditions for long periods in the soil. The ideal conditions 166 
for phytopathogens to develop are high temperatures and moisture. Moreover, after the 167 
insertion into the production area, it attacks roots, stems, leaves, and fruits of susceptible 168 
crops, such as sunflower, cotton, sorghum, maize, soybean, and bean, among others. The 169 
main species, M. phaseolina, triggers symptoms corresponding to grayish lesions that may 170 
evolve to rot and tissue destruction. On the other hand, this tissue disruption causes 171 
chlorosis, wilt, drought, and death of susceptible plants [34, 74]. 172 

The broad spectrum of susceptible species and the absence of resistant cultivars hinder the 173 
control through crop rotation, although the performing of this practice with forage grasses is 174 
recommended. Also, it is always recommended to use healthy and certified seeds [34].  175 

Moreover, iIt is observed that soybean plants produce the phytoalexin gliceolin when 176 
infected by M. phaseolina, a compound that has the potential to restrict the development of 177 
the mentioned fungus through the rapid biosynthesis of glycerol by the plant during fungal 178 
infection. This feature may promote genetic improvement programs in the search for 179 
resistant plants to M. phaseolina. As a palliative measure to reduce the incidence of these 180 
phytopathogens, it is possible to use cultivars with higher tolerance to drought and/or high 181 
temperatures [75, 76]. 182 

Pythium sp. 183 

This pathogen is an inhabitant of the soil which can infect seeds and seedlings. It can be 184 
associated with plant remains (saprophytes) or susceptible plants, such as soybean, 185 
sorghum, cotton, bean, maize, wheat and tropical grasses. The fungus presents resistance 186 
structures (oospores) that allow its survival in adverse conditions [73, 77]. 187 

The most frequent species are P. graminicola and P. debaryanum, but. In addition, P. 188 
ultimum causes the most impact.  The symptoms related to the attack of this genus 189 
correspond to chlorosis, growth reduction and drying of the leaves; in ideal conditions of 190 
development (high moisture and mild temperature), the lesions develop rapidly causing wilt, 191 
root rot and tipping of the plant [73, 77]. 192 

Furthermore, it also causes economic losses to the agricultural production system since it 193 
contributes to the onset of sudden death (root rot and plant tipping) of the Marandu grass (B. 194 
syn. Urochloa brizantha cv. Marandu), along with Rhizoctonia sp., Fusarium sp. and water 195 
stress [37, 78]. 196 

Rhizoctonia sp. 197 
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The fungus Rhizoctonia is a saprophytic fungus, being able to exert parasitism on several 198 
crops and animals. It presents a high gene flow, genetic diversity, sexual reproduction and 199 
dispersion of clones with high adaptability, as well as producing resistance structures 200 
(sclerotia) which remain in the soil for long periods [73, 79, 80]. 201 

The R. solani species can cause leaf burning, collection rot and death in tropical grasses, 202 
soybean and maize; in soybean, it causes plant tipping and root rot, which may reduce the 203 
vigor and germination rate of the seeds, as well as toxins that inhibit plant growth. In cotton, 204 
the fungus causes the tipping of the plants [73, 79, 80, 81]. 205 

The methods that have effectiveness in controlling the fungi living in the soil, such as 206 
Pythium sp. and Rhizoctonia sp., are based on the chemical treatment of seeds, rotation of 207 
crops with resistant species (grasses) and elimination of crop residues. With regard to the 208 
biological control, isolates of the fungus Trichoderma spp. have effectiveness in the control 209 
of R. solani [34, 82, 83]. 210 

Sclerotium sp. 211 

The main species, Sclerotium rolfsii, lives in the soil and affects crops of soybean, bean, 212 
potato, and tomato, among others. It causes the rotting of roots and colon, wilt and tipping of 213 
infected plants. The symptoms are manifested in the region of the lap of the plant and 214 
correspond to dark spots that originate the cortical rot. This rot can be identified by the 215 
formation of a white mycelium and brown-colored resistance structures (sclerocytes). The 216 
destruction of tissues occurs under these structures and, with that, wilt, drought and death of 217 
the plants. The ideal development conditions occur in regions of tropical climate, with 218 
temperatures within 25 and 35 °C and soil moisture in 70% of the field capacity [34, 73, 84]. 219 

As a control method, the need to use healthy and certified seeds, the elimination of crop 220 
residues and crop rotation with maize and cotton (resistant plants) are highlighted, as well as 221 
the efficiency of the fungicide tebuconazole in the colony growth and in the germination of 222 
sclerotia of S. rolfsi with regard to the chemical control [34, 85, 86].  223 

In general, for the fungal control, it is always necessary to employ seeds with high 224 
physiological and sanitary quality, as well as crop rotation, resistant cultivars and chemical 225 
treatment of seeds with fungicides. Seed treatment has a low cost and can improve seed 226 
germination and seedling development. However, for effective seed treatment and fungal 227 
control, effective fungicides are necessary [34, 49, 87, 88]. 228 

4. CONCLUSION 229 
 230 
The main fungi associated with forage and agricultural crops and soils of integrated systems 231 
in tropical regions are Bipolaris sp., Curvularia sp., Exserohilum syn. Helminthosporium sp., 232 
Phoma sp., Fusarium sp., Macrophomina sp., Pythium sp., Rhizoctonia sp. and Sclerotium 233 
sp.  234 

The main methods of fungal control involve the employment of high-quality seeds, crop 235 
rotation, resistant cultivars and chemical seed treatment. 236 
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