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The impact of agricultural practices on soil organisms: lessons learnt from 

market-gardens 
 
 
 

Abstract  
Intensive agriculture practices have an important impact on soil biota, which can affect 
dramatically soil quality. In order to limit this impact, alternative agricultural practices are 
more and more applied. However, these practices are still in progress and thus, it is necessary 
to investigate their impact on soil activity. In this context, we studied the impact of 
agricultural practices (intensive and agroecological) in vegetable cropping systems in 
Guadeloupe. The first aim of this study was to identify practices developed in vegetable 
cropping systems and explain their level of eco-agriculture. We conducted a survey on the 
whole territory which gave us a better understanding of vegetable cropping systems in 
Guadeloupe. We selected a representative subset of 18 farms located on vertisols. The second 
aim of the study was to establish a typology of cropping practices in these vegetable cropping 
systems in vertisol. We performed a PCA and a HCA on the 18 farms. These methods 
allowed us to build a typology in which farms were distributed between two types. In type A, 
farmers are using intensive agricultural practices while in type B, farmers are using alternative 
agroecological farming practices. Then, we collected soil fauna, during the rainy season in 
type A and type B farms in order to demonstrate the relationship between cropping systems 
and the quality of soils proxied by biological indicators. We hypothesized that the use of 
synthetic fertilizers and herbicides in intensive agriculture affected soil fauna activity. The 
results showed no significant difference between soil fauna abundance in both types. 
However, the number of species richness and the abundance of litter transformers were higher 
in type B. Taxonomic richness and soil fauna functional diversity thus strongly depend on 
agricultural practices in vegetables cropping systems in Guadeloupe.  
 
Keywords: Vegetable cropping systems, Agroecology, Survey, Soil fauna, Functional 
diversity. 
 
1. Introduction 
Intensive agriculture relied heavily on the use of synthetic inputs and low genetic diversity [1, 
2, 3]. It is well known that conventional intensive agriculture had negative impacts on natural 
resources such as soil (soil pollution, erosion), water quality (pollution of rivers, lakes and 
streams), biodiversity loss and human health (inadequate use of pesticides) [4, 5, 6, 7, 8, 9]. 
Therefore, such unsustainable models need to be modified to agroecosystems that can 
optimize ecological functions while maintaining high productivity [9]. Since the 1990s, there 
has been a growing interest in developing alternative sustainable farming strategies. All of 
these strategies share the same objective in terms of minimizing the use of synthetic inputs (or 
even promoting non-use at all), enhancing organic matter recycling and improving the health 
of agroecosystems while maintaining a high production level [10, 11, 12]. These strategies 
belong to the field of agroecology as they promote the development of practices based on the 
mobilization of natural regulations. According to Pretty (2008) [13], sustainable agriculture 
jointly produces food and goods for farmers and the environment. 
In 2017, worldwide agricultural production of vegetables reached 182 million metric of 
tomatoes, 97 million metric of onions, 83 million metric of cucumbers and gherkins, 71 
million metric of cabbages and other brassicas and 52 million metric of eggplants [14]. China, 
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India and the United States of America were the main producers in 2017 [14]. Market-
gardening has a major place in agriculture production and in human health as it provides 
elements such as vitamin A and C, minerals, folic acid and fibres [15, 16]. 
In Guadeloupe, agriculture is one of the most important economic sectors. It is a major source 
of exported goods, mostly based on the agroindustrial models developed with banana and 
sugarcane. The agricultural land area has been declining mainly due to urbanization (e.g. from 
57 385 ha in 1981 to 30 965 ha in 2013 [17]. However, it still covers one-third of the 
archipelago. In 2016, the island's main crops were sugarcane (590 299 tones) and banana (66 
208 tones). The other crops were vegetables (28 841 tones) and tubers (4 370 tones) [18]. 
Sugarcane and banana were the most studied cropping systems in Guadeloupe [19, 20] as they 
represent dominant agricultural systems, because of the engagement of farmers in market 
channels and professional and public organizations. Sugarcane and banana also benefit from 
major public subsidies, which helped farmers invest and maximize their production. In 
contrast, we have little knowledge of vegetable cropping practices though they are models of 
alternative diversified systems, assumed to be less dependent on chemical inputs. Therefore, 
the study focused on identifying agricultural practices in vegetable farming systems in 
Guadeloupe. As we know agricultural practices impacted soil fauna activity; however, we 
wanted to know what kind of alternative practices are used in vegetable cropping systems and 
to what extent such practices affect soil biota. Considering the lack of scientific knowledge 
regarding the influence of vegetable cropping systems on soil organisms, this article intends 
to fill this gap by providing consistent information on the functioning of such agroecosystems.  
Thus, this paper aims at (i) identifying the practices developed in vegetable cropping systems 
and explaining their degree of eco-agriculture. (ii) On this basis, a typology of cropping 
practices in these agrosystems in Guadeloupe was established. (iii) Using this typology, we 
demonstrate the relationship between cropping systems and the quality of soils proxied by 
biological indicators (abundance and diversity of soil fauna). We hypothesized that there was 
a positive correlation between the quality of practices developed in vegetable cropping 
systems and soil organism abundance and diversity. Soil is then considered as an indicator of 
the quality of the practices. Based on the identification of cropping systems in Guadeloupe, 
we selected farmers from vertisols to demonstrate the relationship between cropping systems 
and the quality of soils proxied by biological indicators (abundance and diversity of soil 
fauna). 
 
 
2. Materials and Methods  
2.1 Research area  
The study was carried out in Guadeloupe (French West Indies), which is a part of the 
Windward Islands, in the eastern Caribbean Sea. This archipelago includes two main islands 
with distinct environments. Basse-Terre (848 km2) is dominated by a mountain chain oriented 
North-West to South-East. The annual temperature ranges from 20.1 and 31.9 °C (France 
Meteorological Service, http://www.meteo.gp). This island is characterized by a humid 
tropical climate and a variety of soil types: ferralsols, nitisols, andosols and vertisols [20]. The 
mean annual rainfall in Basse-Terre is comprised between 1400 mm and 3500 mm (France 
Meteorological Service, http://www.meteo.gp). On the contrary, Grande-Terre (586 km2) is 
characterized by a slightly undulating surface, and the relief rarely exceeds 40m [20]. The 
climate is tropical, with a mean annual rainfall between 1300 mm and 1600 mm, and soils are 
mostly vertisols.  
 
2.2 Farm surveys and typology  
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To collect data on the practices set up in vegetables cropping systems, a survey was carried 
out between September and November 2016. 49 farms were randomly sampled: 21 in Grande-
Terre and 28 in Basse-Terre. We only targeted farms, which have all or a part of their 
productions devoted to vegetable cropping systems. We visited and interviewed those farmers 
to describe their practices. In the survey, we used variables that best described and 
discriminated farms. Some variables are intangible (i.e. soil type) while others depend on 
farmers’ strategies: crops rotation, soil tillage, irrigation, use of pesticides, weed control, use 
of synthetic fertilizer or organic amendment, mulch and management of crop residues. Based 
on cropping systems of the initial set of 49 farms on the whole territory, we selected a 
representative subset of 18 farms developed on vertisols in Grande-Terre. This selection was 
due to the fact that in Guadeloupe, vegetable cropping systems are mostly concentrated on 
vertisol [21]. Indeed, these soils are rich in calcium, magnesium, potassium and they maintain 
a pH neutral to slightly basic [22]. In addition, the large diversity of soils in Basse-Terre 
makes it difficult to build a typology.  
On the 18 farms, we performed a PCA and a HCA. These methods allowed us to build a 
typology, by gathering farms based on their characteristics and practices. This analysis was 
realized by using the following variables: (i) soil tillage separated farms into 3 classes: deep, 
superficial and manual tillage ; (ii) the type of pesticides used divided farms in 3 classes: 
chemical pesticides, pesticides used in biological agriculture or no pesticides; (iii) use of 
synthetic herbicides distributed farms in 3 classes: intensive, intermediate and occasional; (iv) 
weed control separated farms in two classes: mechanical or manual; (v) amendment divided 
farms in 4 classes: application of synthetic fertilizer, application of organic matter, application 
of both, and no fertilization; (vi) use of mulch separated farms in 2 classes: presence or 
absence; (vii) management of crop residues divided farms in three classes: removed from the 
field, incorporated into the soil, and left in the plot; (viii) application of slash-and-burn 
practices distributed farms in two classes: with or without slash-and-burn practices; (ix) 
finally, the observation of soil biodiversity on the surface separated farms in four classes: 
high, medium, low and no activity. 
 
2.3 Soil fauna 
From December 2016 to January 2017, in each selected farms on Vertisol, five soil samples 
of 25 cm (length) × 25 cm (width) × 20 cm (deep) were taken for soil macrofauna extraction 
using TSBF method [23]. Each sample was separated at least 200 m from the others and was 
collected 1 km far away from any road and walking path. Animals were collected in alcohol, 
counted and identified at the taxonomic level under a dissecting microscope. The following 
taxonomic groups of soil fauna were identified: Oligochaeta, Formicidae, Isoptera, Isopoda, 
Diplopoda, Dictyoptera, Coleoptera, Diptera, Lepidoptera, Gasteropoda, Homoptera, 
Orthoptera, Heteroptera, Arenaidae, Chilopoda, Dermaptera, Turbellaria, Insect larvae, and 
Other Insects. They were gathered in different functional groups: litter transformers, predators 
and ecosystem engineers, and we calculated taxonomic richness. This functional approach can 
provide information on soil framework and vegetation quality [24, 25]. 
 
2.4 Data analysis methods 
To establish a typology of farming practices in vegetable cropping systems, a principal 
component analysis (PCA) was performed. PCA is a multivariate data analysis based on 
projection methods. It is a useful technique for reducing the dimensionality of such datasets, 
increasing interpretability but at the same time minimizing information loss [26]. Based on 
the PCA, a hierarchical cluster analysis (HCA) was performed. HCA builds a tree diagram, 
which groups similar observations into a dataset. These analyses were performed through R 
statistical software (http://www.r-project.org/) using the R Commander package (Rcmdr). 
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With regards to the relation between the two types of farming practices and soil fauna, we 
used Welch's t-test. That test was carried out using R software. 
 
3. Results and discussion 
3.1. Description of 49 farms based on surveys  
The first aim of this study was to identify practices developed in vegetable cropping systems 
and explain their level of eco-agriculture. We conducted a survey that showed the diversity of 
agricultural practices in vegetable cropping systems in Guadeloupe. In Basse-Terre and in 
Grande-Terre, we saw similar crops such as lettuce, zucchini, tomatoes, melon, chilli pepper, 
and eggplant. In addition, in Basse-Terre, we also observed cucumber, pumpkin, cabbage, 
okra and chives. We also observed various types of cropping systems, from monoculture to 
polyculture, and a wide range of practices, from conventional to agroecological.  
Farming practices are mainly territorially anchored. Tillage is used to enhance soil conditions 
in relation to the water balance and crop growth, to loose upper soil layers to prevent soil 
compaction, to diminish weed growth and to prepare the seedbed [27, 28, 29, 30]. Our results 
showed that in Grande-Terre, most farmers used deep tillage (76%) compared to superficial 
tillage (24%). In this region, vertisols – rich clay soils which are extremely hard when they 
dry, including cracks and polygonal structures [31] – are predominant. Deep tillage is 
therefore used to prepare the field for the next culture, by moving and mixing the topsoil with 
crop residues, which are incorporated into the soil [28]. On the contrary, farmers from Basse-
Terre used superficial tillage (71%) rather than deep tillage (29%), due to the type of soils 
found in that region. Ferralsols have loose and friable fragments [22]. Nitisols are very similar 
to ferralsols but at an earlier stage. Finally, andosols are slightly sticky and friable to very 
friable [32]. Tillage reduced soil organic matter availability by accelerating decomposition 
and by increasing soil erosion and soil degradation [33]. Moreover, it has a detrimental effect 
on environmental quality because of its impact on greenhouse gas emissions [34, 35]. Soil 
disturbance such as tillage has a strong influence on soil fertility and water availability [36]. 
In contrast, by minimizing mechanical disturbance of soil and macro-aggregate destruction, 
reduced tillage strongly decreases soil erosion [37, 38] and improves water use efficiency 
[39]. Reduced tillage thus has positive effects on nutrient cycling and soil biodiversity [40, 
41].  
Throughout the survey, we observed that the use of synthetic pesticides was widely spread 
among the different farms. In Guadeloupe, crop yield was affected by pest damage and 
diseases, mainly during the rainy season. Farmers usually prevent economic loss due to pest 
by spreading heavy pesticides treatments [42]. Additionally, the application rate of herbicides 
depended on the area. Farmers from Grande-Terre combined herbicides and deep tillage. The 
mixture of those two methods regulated the abundance of weed species in the field [43]. In 
fact, Chauhan and Johnson (2008) [44] showed that when seeds were deeply buried, the 
emergence rate was very low. 
33% of farmers in Grande-Terre and 11% of farmers in Basse-Terre applied mineral 
fertilizers. Agricultural production has increased, since the 1950s, due to the large input of 
mineral fertilizers [45]. However, the intensive use of mineral fertilizers has a negative impact 
on soil fertility (soil acidification) and yield production [46]. 25% of farmers applied organic 
matter in Basse-Terre and 24% in Grande-Terre. Organic fertilizers are used as an alternative 
to synthetic ones, in order to restore or enhance soil physical, chemical and biological 
properties [47]. Organic matter is not only a source of plant nutrients in soils but also plays an 
important part in preserving soil fertility, reducing soil erosion, nutrient cycling, water 
retention and disease suppression [48, 49]. During the study, we noticed that in most cases, 
farmers mixed organic matter and mineral fertilizer together, 54% in Basse-Terre compared to 
33% in Grande-Terre. A meta-analysis, across sub-Saharan Africa, demonstrated that the use 
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of both input types leads to greater crops production [50]. Other studies have reported that 
organic input prevents the rapid leaching of nitrogen fertilizer by immobilizing the nitrogen 
temporarily [51, 52, 53]. 
As for the management of crops residues, most farmers left crops residues in the plot (68% 
and 52% for Basse-Terre and Grande-Terre respectively). Some farmers removed crop 
residues from the field – 29% in Grande-Terre and 18% in Basse-Terre – or incorporated 
them into the soil (19% and 14% for Grande-Terre and Basse-Terre respectively). Crop 
residues can serve as a nutrient source for soil organisms [54]. Moreover, crop residues can 
improve soil structure, increase organic matter in soil and reduce evaporation [55]. At the 
same time, we examined soil biodiversity activity on the soil surface (observation of ant nests 
and earthworm casts), and most farms had an activity between high and medium. The 
presence of ant nests and earthworm casts may be an indicator of soil health. Our primary 
results gave us a better understanding of vegetable cropping systems in Guadeloupe and the 
impact of each practice on soil health.  
 
3.2. Typology of farms located on vertisols 
Based on the identification of cropping systems in Guadeloupe, we selected farmers from 
vertisols to demonstrate the relationship between cropping systems and the quality of soils 
proxied by biological indicators (abundance and diversity of soil fauna). We realized a 
typology on 18 farms located on vertisol in Grande-Terre based on PCA and AHC. The first 
two components of PCA explained nearly 43.85% of the total variation (Figure 1 a). Axis F1 
has a positive correlation with organic matter, soil biodiversity and slash-and-burn. At the 
opposite, axis F1 has a negative correlation with herbicides and synthetic fertilizer. Axis F2 
opposed plots with biological pesticides to plots using weed control.  
Our results showed that farmers from type A are using conventional intensive agricultural 
practices. These farms are the most numerous in Grande-Terre (Figure 1c) and are 
characterized by an intensive to the medium application of synthetic fertilizers and herbicides. 
In this type, farmers do not use mulch and slash-and-burn methods. The observation on the 
soil activity showed low biodiversity (Figures 1a, 1b, 1c). At the opposite, farmers from type 
B are using alternative agroecological farming practices. In particular, these farms are 
characterized by the application of organic matter, the use of biological pesticides or no 
pesticides, slash and burn and mulch. The residues are usually left on the field. Observation of 
soil activity showed rich biodiversity (Figures 1a, 1b, 1c). 
In our study, farmers from type A applied mineral fertilizer, which globally, improve crop 
yields and food security [56, 57]. Nevertheless, the overdose of mineral fertilizer contributed 
to soil deterioration, water pollution, and soil biodiversity through soil acidification [58, 59, 
60]. Farmers from type A also applied a high amount of herbicides which also had a negative 
effect on fauna, by reducing soil fauna abundance or fitness, due to the destruction of habitat 
and food resources [61]. On the contrary, in type B, the application of organic matter had a 
beneficial effect on diverse biological processes by being a food resource for various 
ecological groups in the community [62, 63]. In addition, farmers of type B applied slash-and-
burn, an alternative agroecological method. By using this method, farmers can actually 
maintain carbon stock and increase biodiversity [64, 65, 66, 67]. Mulching also had a major 
impact on soil fauna abundance and diversity. Mulching is a form of cover crops that remains 
on the surface of the soil. It can be inorganic or organic material (plastic, straw, cover crop 
residues or live plant) and it is used to prevent soil erosion, increase water retention, pest 
control and weed control [10, 68, 69, 70]. However, few of the surveyed farmers are using 
this method. Farmers using the cover crop method had positive feedback based on their crop 
production. Though, farmers, who used plastic had trouble recycling the plastic and plan on 
shifting to an ecological method. 
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3.3. Soil macrofauna on farms located on vertisols  
Soil macrofauna was collected on selected farms. We found 171 ± 52 (mean ± SE) 
individuals.m-2 in type A, and 554 ± 239 individuals.m-2 in type B. The abundance of soil 
fauna was slightly higher in type B (Figure 2b). However, there was no significant difference 
in soil fauna abundance between both types (t-test Welch; P = .13). In general, ecosystems 
engineers were more abundant than litter transformers and predators (Figure 2a). In type B, 
the number of ecosystem engineers (432 ± 229 individuals.m-2) and predators (48.8 ± 16.88 
individuals.m-2) was slightly higher than in type A (ecosystem engineers: 116 ± 41 
individuals.m-2, biological regulators: 24 ± 6 individuals.m-2). However, there was no 
significant difference between the number of ecosystem engineers and predators between type 
A and type B (t-test Welch; P = .21 and P = 0.15). On the other hand, the number of litter 
transformers was significantly different between the two types (t-test Welch; P = .02) (Figure 
2a). The number of litter transformers was higher in type B (72 ± 18 individuals. m-2) than in 
type A (30 ± 10 individuals. m-2). Also, in Figure 2c, the taxonomic richness was significantly 
higher in type B (11 ± 0.4 taxonomic richness) compared to type A (6.5 ± 0.61taxonomic 
richness) (t-test Welch; P < .001). 
Soil macrofauna may be used as bioindicators of soil health and contribute to ecosystems 
services [25]. Soil macrofauna plays an important role in soil organic matter decomposition 
(litter transformers), regulation of pests (predators), the formation of stable aggregates, water 
regulation and erosion control (ecosystems engineers) [71]. Our results showed that soil 
macrofauna may be directly or indirectly impacted by agricultural practices. In type A, we 
observed a number of intensive agricultural practices (deep tillage, application of high 
amounts of chemical pesticides, synthetic fertilizer, and herbicides), which are well known to 
have a negative impact on soil biodiversity [59]. Our study showed that litter transformers are 
strongly impacted by these intensive practices. They had an essential role in soil carbon 
sequestration [72]. As a consequence, by decreasing the number of litter transformers, 
intensive agriculture may have profound effects on climate change. On the contrary, by 
decreasing the input of synthetic fertilizers and herbicides, by reducing the rate of tillage and 
by increasing the application of organic matter, farmers in type B are stabilizing their soil. 
Moreover, type B applied mulching, which can have a positive effect on soil habitat. 
Mulching helps to preserve the ecosystem by reducing the rate of tillage. Sustainable 
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