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Solutions to the equations governing convective flow of two
viscous immiscible dusty and pure fluids in a vertical
corrugated wall and a parallel flat wall.

ABSTRACT

This paper presents the solutions to the equations governing convective flow and heat transfer of two
viscous immiscible dusty and pure fluids confined between a vertical corrugated wall and a parallel flat
wall. The nonlinear partial differential equations governing the flow have been reduced to nonlinear
ordinary differential equations using the regular perturbation method. The transformed nonlinear ordinary
differential equations have been solved numerically using the linear approximation theorem. The effects
of the governing parameters on the velocity and temperature fields for the two fluids and the dust particles
have been obtained and graphically represented using Matlab.

Keywords: Immiscible fluids, Dusty fluid, Perturbation method, corrugated walll.

INTRODUCTION

Corrugated surfaces are, for example, utilized in compact heat exchangers and in industrial processes to
enhance heat transfer efficiency. Dusty fluids are applicable in areas such as petroleum extraction,
purification of crude oil and nuclear waste treatment. Yao and Moulic [1] studied natural convection along
a wavy surface with uniform heat flux. Sastry et al [2] analyzed Couette flow of two immiscible fluids
between two permeable beds. Umavathi et al. [3] analyzed the problem of unsteady mixed convective
heat transfer of two immiscible fluids confined between long vertical wavy wall and parallel flat wall.
Umavathi et al [4, 5] studied unsteady flow and heat transfer of three immiscible fluids. Vajravelu and
Sastri [6] investigated free convective heat transfer in a viscous incompressible fluid between a vertical
wavy wall and a parallel flat wall. Verma and Bhatt [7] considered the steady flow of two immiscible
incompressible fluids with suction at the stationary plate. Wang et al [8, 9, 10] studied free and forced
convective flow in wavy channels. Yao [11] studied natural convection along a vertical complex wavy
surface.

Most recently, Siddiqa et al [12] analyzed flow of a dusty fluid in two phase natural convection. Attia et al
[13] used a porous medium in a circular pipe to study unsteady dusty Bingham fluid flow. Abba et al [14]
also used two parallel plates with heat transfer to investigate Couette flow of two immiscible dusty fluids.
All the above cited references except Abba et al [14] investigated on dusty fluids and pure immiscible
fluids through different channels but none studied flow and heat transfer of two viscous immiscible dusty
and pure fluids between a corrugated wall and a parallel flat wall.

Thus, the objective of the present work is to study convective flow of two viscous immiscible dusty and
pure fluids between a vertical corrugated wall and a parallel flat wall.

The flow is taken to be steady, two dimensional and the fluid is liquid and not gas, incompressible and
electrically non-conducting. The governing nonlinear equations for the dusty and pure fluids are solved
numerically by Perturbation Method with linear approximation theorem.

MATHEMATICAL FORMULATION

A two dimensional steady laminar flow of two electrically non-conducting immiscible dusty and pure fluids
in a vertical channel with one wavy wall and another flat wall is considered as shown in figure 1. The X-
axis is represented by the equation
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Y =-w? +75cos(AX)

(1) which is taken parallel to the flat wall, while the Y- axis represented by the equation

Y =w® (2)
which is taken to be perpendicular. The wavy and flat walls are maintained at constant temperatures T2

(2) ()

and T1 respectively. Region | is occupied by a fluid of density 0" °, viscosity

@
p

, thermal conductivity

1
k@, thermal expansion coef‘ficientﬂ( ), specific heat at constant pressure C

2 2
by the fluid of density p( ), viscosity ,u( )

specific heat at constant pressure Cf).

and Region Il is occupied

2
, thermal conductivity k(z), thermal expansion coefficientﬂ( ),

v

Region |

Figure 1: Physical configuration

The following assumptions are considered in this study. The fluid in region-Il is dusty while the fluid in
region-l is considered to be a pure fluid. Except the density in the buoyancy term in the momentum
equation, all fluid properties are assumed constant. The transport properties of both fluids are assumed to
be constant and the fluid rises in the channel driven by buoyancy forces. The dust particles in region Il
are assumed to be electrically non-conducting, spherical in shape, solid, same radius and mass (uniform
in size), un-deformable, and uniformly distributed throughout the flow. This means that, by conduction
through their spherical surface, the dust particles gain heat energy from the fluid. The number density N
of the particles is constant throughout the flow and volume fraction of the dust particles is neglected and
the temperature between the particles is uniform throughout the motion. The concentration of particles is
very small that it is not interfering with the continuity and the net effect of the dust on the fluid particles is

equivalent to FN (u(z) —u p) per unit volume. Where F is stoke's law (drag force) where F = 6zurv

and I is average radius of the dust particles, i is coefficient of fluid viscosity (dynamic viscosity, V is

flow velocity relative to the object and N is density number of particles per unit volume of the fluid.
GOVERNING EQUATIONS
Region I (Pure fluid)

ou® sy

W—FM =0 Continuity

3)
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au® aul? ool
p(l) (u(l) 0 +y :—85(1) +y(1)V2 +,0 gﬁ ( )X Momentum (4)

OX ay(l)
5\,(1) 8\/(1) oot
p(l)(uu) ax<1>+v(l) ) as VA yatomentum (5)
@ @
00 0T T | ogere
pC, (U o +V ay(l) =kVVT Energy
(6)
Region Il (Dusty fluid)
au(z) av(z)
W‘FW:O Continuity

(7)

of oa? oo DY e @ @) (<0 @
P lu +V =— +u VU +p7gp (T —TS)—FN(U -u )X-Momentum (8)

aX(Z) ay(z) 8x(2)
(2) (2)
of @  ga?)  p? 2,2 @
P {U %'FV %J ax( ) +/,l V —FN (V —Vp)Y-Momentum 9)

The equation of motion of the dust particles by taking Newton’s second law in the X direction is given by

p p
m, upau +6u =FN(u(2)—u")
ox oy

(10)

n'[) is average mass of dust particles.

oT® oT® PC
p(z)cf)(u(z) 7t +v? ) = kv 4 pe (T T()) Energy equation of the fluid
X oy %

(11)

or’ oT’ .
2 ot @ @ = (Tp -TC ) Energy equation of the particles

ox oy 7, (12)
For both the velocity and temperature, the relevant boundary and interface conditions used to solve Egns.
(3) to (12) are

u® =v® =uP =vP =0at Y =-w? +ycos(AX), u? =v® =0aty =w®, u¥ =u® =u®

) () p
v =y =y at Y =0, ¥ 8_u+@ = u? 8_u+8_v = u®? 8_u+@ atY =0
oy OX oy oOX oy OX

u

® () - =
P__P_ y—o, T? =T, at Y=—w®+pcos(2X), TY =T, at v —w®

o
1t e oA, 0 (e am )y
oy OX oy oOx
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The non-dimensional flow variables are:

1 1 2 (2) 1) 1)
d_ X Y X ey e W e g WY
WOR WO @ WO Vo Vo
3 w0
G0 W e g W e g WU OBTAT p o g iS5y
@ @ o 27 s o
Vv \" \Y;
5 p” P = p” oY = T, 09 = T -T, T IL F
<1>( /W1>) e (v<2> /w® )2 T,-T, T,-T, T,-T.'° T,-T,
2 2 1 2 2 (W)
B _ﬂ W _W(_) = ! P _P() k, = k? c _% v uv v %
07 L1 0T (1)! T o0 @O @ e T (2) =T T
Ve i pe o K@ c o0 e

The non-dimensional variables are substituted in to Eqgns. (3.1) to (3.10) and dropping the (caps) for
simplicity, the equations obtained are as follows

Region I (Pure fluid)

=0 13
OX oy (%)
® @ @ 2, 2,3
SRV 4y d 1 Gro® (14)
OX oy OX OX oy
0 o " o ap(l) oy o2y

__ 15
8x+vay 8y+ax2+ay2 (15)

wod"  wod? _1 (azd” 626%”}

+“ gy 16
8)( 8y 8X2 5y2 ( )
Region Il (Dusty fluid)
2 (2)
o +8V =0 (17)
OX oy
) 2,.(2) 2
@~  @ou _ op” Jdu” 0 W12 20" @ _y»
u x +V 5 ox + o + Y +GrﬂO W, g o @ Ro(u u ) (18)
2 2 2 2,,(2) 2,,(2)
W@ @V P OV OV —Ro(v(z)—vp) (19)
OX oy oy  ox* oy’
p p
upaLJrvpaL:i(u(z)—up) (20)
OX oy G,
2 2 2 2
u(z)—(%)()+v(2) 06" _ ka4, (56 829() +2R°(9p—42)) (21)
oX oy Pr ox’ 5y2 3Pr
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X oy

The boundary and interface conditions are non - dimensionalized as follows
u® =v®? =uP =vP at y=-1+7C0s(AX), u® =v® -0 aty=1

u® = u? o’ v = v __V aty=0

HoWo Py HoWo HoWo Py HoWo Py
au o)) 1 (au ) 1 (e v
—_—t+— :? —+— :7 —+— aty:0
oy OX Wo Lo P \ OY  OX Wo kg Py \ Oy OX
oo 1 op?
B > P aty-0,69=1 aty=—1+77cos(/1x), ¢ =T aty=1
X PotlgW; OX
o0 — g _go (98, 00 Y ko0, 00)" k(20 20Y at y =0

oy ox W, \ oy ox W, \ 0y  OX

SOLVING OF THE EQUATIONS

Perturbation techniques can be used to obtain approximate solutions since analytical solutions are
difficult because of their nonlinear form. By introducing a small parameter 7 and assuming that the
solutions consists of a Zeroth order (no perturbation, hence no new information) and a first order
(meaning full perturbation) the velocity, pressure and temperature can be written as

Region I (Pure fluid)

u” (x,y)=ul (y)+7ul (X, y)+ oo

(23)

V(% )= 2w (X, Y) + oo

(24)

Y (%, ) =7 (X, Y) # o
@)

O (% y) =6 (y)+ 70 (X, y) + oo
(26)

Region Il (Dusty fluid)

® (% y) =uP (y)+ U (X, y) + oo

)
UP (X, Y) =US () +7U7 (X, Y)+rree
(28)
V(% y) =207 (X, )+
(29)
VP(X,Y) =7V (X, )+ e
(30)

p? (%, y)=7p@ (X, y)+erree
(31)
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0% (x,y) =607 (y)+787 (X, y) +.orveen
(32)

0" (X,y) =65 (Y)+76° (X, ¥)+.orure
RESULTS AND DISCUSSION

After substituting Egns. (23)-(33) in to Eqgns. (13)-(22), the obtained ordinary differential equations are
solved numerically using Perturbation method and the linear approximation theorem. In each graph,
Grashof number, viscosity ratio, width ratio and conductivity ratio are fixed at 6, 3, 3, and 3 respectively

except the temperature ratio, T0 and the parameter in question. The temperature ratio is increasing from -

2 to 2 in all the graphs.
From Fig. 4.1(a), it is observed that, as the Grashof number and the temperature ratio increases, the

zeroth order velocity of the dust particles and that of the fluid increases in both regions for T, =2 and

(33)

T,=0.ForT, =-2, the velocity decreases from the start of region Il (wavy wall) up to near the middle of
region | (flat wall) and again starts to increase as it approaches the end of region I. From Fig. 4.1(b), as
the Grashof number increases, the first order velocity diminishes sharply in both regions. ForT, = -2, the

velocity increases from the start of region Il (wavy wall) up to near the middle of region | (flat wall) and
again starts to decrease as it approaches the end of region |. Physically, increase in Grashof number is
an increase in the buoyancy force because, in the momentum equation, the Grashof number acts a
driving mechanism of the buoyancy force which supports the motion. From Figure 4.2 (a), it is observed
that, as the width ratio and temperature ratio increases, the zeroth order velocity increases in both
regions From Figure 4.2 (b), it is observed that, as the width ratio and temperature ratio increases, the
first order velocity decreases in both regions. For a larger width, physically this means an increase in
velocity.
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Figure 4.1 (a): Effect of Grashof number, Gr on the velocity profiles.
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Figure 4.2(b): Effect of width ratio, W, on the velocity profiles.

CONCLUSIONS

1.

As the Grashof number and temperature ratio increases, zeroth order velocity of the dust
particles and that of the fluid increases in both regions and first order velocity decreases in both
regions.

The zeroth order velocity increases significantly in region Il and starts to decrease at the start of
region | as the Grashof number increases.

The first order velocity decreases significantly in region Il and starts to increase at the start of
region | as the Grashof number increases.

As the width ratio and temperature ratio increases, the zeroth order temperature increases in

both regions as the first order velocity decreases in both regions.
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NOMENCLATURE
c(p') Specific heat capacity at constant pressure (J/kg/K)
c,  Dimensionless specific heat capacity at constant pressure (cfj) / cf))
C, Specific heat capacity of dust particles
g Acceleration due to gravity (ms*)
3 2

Gr  Grashof number (w(l) g pAt /v )
w,  Width ratio of the channel (W(Z) / W(l))
k®  Thermal conductivity (W /mk)
F Stokes's resistance (67urv)
K, Thermal conductivity ratio (k(z)/k(”)
4,  Viscosity ratio ( O/ ,u(z))
N Number density of dust particles per unit volume (m)
p Dimensionless pressure

@,,0 /1O
Pr Prandtl number (cp 7 /k )
r Average radius of dust particles
T Temperature of the fluid (K)
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T Temperature ratio (6’(2) / .9(1))

T, Temperature of the dust particles (K)

T, Static temperature (K)

u,v Velocity component of the fluid along X and Y direction
u,,v, Velocity component of the dust particles along X and Y direction

X,Y  Space coordinates (m)

X,y Dimensionless space coordinates

Greek symbols
y/] Dimensionless coefficient of thermal expansion

B Coefficient of thermal expansion (K™)
u Viscosity (kgms™)
% Kinematic viscosity (/p), m*s™

D Density (kgm*)

p,  Density ratio ( p?/ p(l))

po./p" Material density of dust particles
0 Fluid temperature

0, Dust temperature

A wavelength

2 Temperature relaxation time

7o Velocity relaxation time



