1	SOIL FERTILITY LEVELS IN BANGLADESH FOR RICE CULTIVATION
2	Jatish C. Biswas ¹ , N. Kalra ² , M. Maniruzzaman ³ , M. M. Haque ^{3*} ,
3	U. A. Naher ³ , M. H. Ali ⁴ , W. Kabir ⁴ , S. Rahnamayan ⁵
4	
5	¹ Soil Sci. Div., BRRI & KGF, Bangladesh
6	² Agricultural Physics, ICAR, India
7	³ BRRI, Bangladesh
8	⁴ Krishi Gobeshona Foundation, Bangladesh
9	⁵ Nature Inspired Computational Intelligence, UOIT, Canada
10	
11	*Corresponding author
12	Md Mozammel Haque
13	E-mal: mhaquesoil@yahoo.com
14	Soil Science Division, Bangladesh Rice Research Institute
15	Gazipur-1701, Bangladesh
16	
17	

18 ABSTRACT

Determination of soil fertility with minimum data set for crop zoning and devising fertilizer 19 recommendations as well as soil fertility evaluation method based on soil properties. The 20 21 data were collected from existing literatures and scoring was done on 0-100 scale. The 22 lowest score was assigned for the minimum value of tested attributes and then gradually higher scoring values. Arithmetic, weighted, geometric and most minimum of mean scores 23 24 were calculated and their performances were compared with grain yield of dry season irrigated (Boro) rice. Soil fertility in 10-12 and 39-52% areas in Bangladesh are very low and 25 26 low, respectively. Medium fertile and fertile soils are distributed in 17-41% and in about 8% 27 areas of the country. About 55% soils scored 70-95 (medium to high SOC) and the rest belongs to inferior quality. In some areas P build up has taken place (25% areas), but widespread K 28 29 mining. Sulphur and Zn status in about 40% areas are low to very low (scored <35 and <40). 30 Soils of the major areas of the country are with low pH (5.0-6.0) and CEC in the range of 15-25 cmol_c kg⁻¹. Weighted mean score and most minimum of eight attributes score showed good 31 32 relationships with dry season irrigated rice yields than other tested methods indicating that this technique can be used for soil fertility rating in tropical countries. 33

Key words: Soil attributes, Score, Weighted mean, Most minimum mean, Maps

35

- .,
- 36
- 37
- 38
- 39
- 40

41 **1. INTRODUCTION**

Global population is increasing and so does the demand for food production, which has 42 already created tremendous pressure on soil, a finite resource for mankind. It is our obligation 43 to keep soil healthy and productive through appropriate amendments and crop management 44 practices [1]. Indigenous nutrient supplying capacity and fertilizer management may make a 45 46 soil fertile for one type of crop but could be deficient for the others. So, determination of soil fertility range would be important not only for producing healthy crops economically but also 47 for maintaining its productivity for future generations. Soils in Bangladesh are exposed to 48 49 high temperatures mostly; plenty of rainfall and greater pressure from growing two or more 50 crops in a year with or without balanced fertilizations [2] and thus nutrients mining are 51 widespread. New nutrient deficiencies are emerging [3], and there might be potential hidden 52 hunger for many others that need to be identified for efficient crop production.

53 Soil fertility varies among regions indicating that variable amounts of fertilizers need to be 54 applied for different types of crop production. Inadequate dose will impair crop yield, while 55 overdose can cause not only economic losses but also could be responsible for environmental 56 pollutions [4]. So, a broad knowledge on soil fertility can provide a better perception on 57 current nutrient status, distribution patterns and trends [5] that can be obtained through geo-58 statistical and geospatial analyses [6,7]. Such analyses help in decision making processes for 59 precision agriculture and thus for improvement of crop productivity [8,9].

60

Soil fertility can be determined in different ways [10,11] by using soil pH, SOC, P, K, exchangeable calcium (Ca), magnesium (Mg) and aluminium (Al), S, etc [12,13]. Mbogoni et al [14] evaluated soil fertility by using average weighted data on SOC, soil pH, total N, electrical conductivity, C/N ration, available P, exchangeable Ca, Mg and texture for rice based system productivity improvement. Khaki et al [15] utilized square-root method as parametric approach and Joint Fuzzy Membership functions to compute soil fertility index 67 (SFI). They found both the system suitable for soil fertility mapping and showed good relations with rice yield. Desavathu et al [7] used soil pH, EC, N, P and for soil fertility 68 evaluation through inverse distance weightage interpolation. Thus it is found that researchers 69 had taken initiative for making soil fertility maps for specific locations or regions but a 70 simple method for the country is still lacking. Therefore, the objective of this study was to 71 72 use geo-referenced data on selected soil attributes for preparation of soil fertility maps using average, weighted mean, geometric mean and most minimum value techniques for 73 74 Bangladesh and to establish their relationships with rice yields.

75 76

2. MATERIALS AND METHODS

Data on SOC, P, S, Zn, and B, CEC, soil pH and exchangeable K were collected from 77 78 Bangladesh Agricultural Research Council website, Soil Resource Development Institute and existing available literatures. Average Boro clean rice (dry season irrigated crop, hereafter as 79 Boro rice) yields from 2007 to 2013 were collected from different volumes of Bangladesh 80 Bureau of Statistics and its relationships were established with soil fertility scores. Although 81 82 crop yields vary depending on inherent soil fertility, some other factors like electrical 83 conductivity, water quality (such as salinity) and its availability, agronomic management 84 practices, other biotic and abiotic factors also greatly influences crop productivity. 85 Nonetheless, inclusion of all those factors that influence soil fertility is beyond the scope of 86 the present investigation.

87

2.1.Scoring criteria and map preparation

Soil nutrient status in Bangladesh has been classified as very low, low medium, optimum and high based on different ranges (Table 1). This classification system was considered for assigning scoring values (Table 2) against each selected soil attribute. The scoring scale, as considered in the present investigation, was 0–100. Attribute-wise soil fertility ratings over different locations of Bangladesh were made by using MS-Excel Macros and IDRISI3.2.

93 94	Soil fertility scores, as determined by arithmetic mean (AM), geometric mean (GM),
95	weighted mean and (WM) and most minimum attribute (MAtrib _{score}) techniques, were used to
96	find out their relationships with Boro rice yields (64 districts of Bangladesh from 2007 to
97	2013) through regression analyses. Considering higher R^2 values, final soil fertility rating
98	maps were prepared based on weighted mean scores (Equa. I) and scores of the most
99	minimum of eight parameters for each district (Equa. II). Among soil attributes the most
100	limiting factors dictate crop yield, so we have provided weight to such factors in determining
101	WM as follows:
102 103	$WM = ([SOC_{score}]^*[P_{score}]^*[K_{score}]^*[CEC_{score}]^*[pH_{score}])^{(1/5)*0.5} + [S_{score}]^*0.25 + [S_{score}]^*(1/5)^{(1/5)*0.5} + [S_{score}]^{(1/5)*0.5} + [S_{score}]^{(1/5)$
104	$([Zn_{score}]^*[B_{sore}])^{(1/2)} = 0.25$ (I)
105 106	where, SOC_{score} is the soil organic carbon, P_{score} , K_{score} , CEC_{score} , pH_{score} , S_{score} , Zn_{score} and
107	B _{score} stand for P, K, CEC, soil pH, S, Zn and B scores, respectively.
108	MAtrib _{score} for selected eight soil parameters were determined as follows:
109	MAtrib _{score} = Geomean (Small(Atrib1:Atrib8,1),Small (Atrib1:Atrib8,2),, Small
110	(Atrib1:Atrib8,8))(II)
111 112	where, Atrib1, 2, 3,, 8 are the soil parameters considered first, second, etc.
113	GM score was calculated as follows:
114	$GM = ([B_{score}]*[K_{score}]*[P_{score}]*[CE_{Cscore}]*[pH_{score}]*[SOC_{score}]*[S_{score}]*[Zn_{score}])^{(1/8)} \dots (III)$
115 116	AM score was computed as follows:
117	$AM = ([B_{csore}] + [K_{score}] + [P_{score}] + [CEC_{score}] + [pH_{score}] + [SOC_{score}] + [S_{score}] + [Zn_{score}])/8 \dots (IV)$
118	

Scores for most minimum of 1, 2, 3, 4, 5, 6 and 7 soil attributes were also found out in similar fashion of Equa. II. The maps of tested attributes were prepared by using IDRISI3.2. Soil fertility rating maps on the basis of WM and most minimum of eight attributes were used for soil fertility delineation in Bangladesh. The other maps prepared based on different techniques were used as supplementary figures 1.

124 **3. RESULTS**

125 Soil organic carbon, a vital component of fertility index showed >95 score for about 25% areas in Bangladesh (Fig. 1a). About 55% soils had 70-95 score (medium to high SOC) and 126 the rest belongs to inferior quality. The scores for soil P varied from <10 to >75 in which 127 very low (<7 ppm), low (7-15 ppm), optimum (15-30 ppm) and high (>30 ppm) P levels 128 covered about 22.64, 47.74, 12.98 and 16.64 percent areas in the country (Fig. 1b). About 129 25% soils are with optimum/high (>80 score) K fertility. Majority areas (~43%) bear low K 130 $(0.091-0.18 \text{ meq } 100 \text{ g}^{-1} \text{ soil})$ and the rest belong to very low (<10 score) and medium (40-80 131 score) K categories y (Fig. 2a). The least score (<10) for S indicated that about 15.62% soils 132 133 are very poor (<7.5 ppm); 26.04% low and 14.54% medium and 43.79% areas are with optimum/high S fertility status (Fig. 2b). In about 37.61% areas (score >75), soil Zn contents 134 are optimum to high (>1.351 ppm), 20.77% areas (40-75 score) are with medium Zn 135 containing soils and 41.61% soils scored <10 to 40 indicating (Fig. 3a) that Zn application is 136 137 a must practice for Bangladesh. The content of B is very low to low in about 50% soils (score 138 <10 to 40) and rest of the soils had medium B content (Fig. 3b).

139

Soil pH score varied from <25 to >85 depending on locations and soil types in the country.
Maximum area coverage was 44.59% followed by 32.25% in the pH range of 5.0-6.0 and 6.57.5, respectively (Fig. 4a). Soil pH below 5.0 and above 7.5 covers about 7.29% areas of the
country. The rest of the soils (15.22% areas) are with pH range of 6.0-6.5. The CEC scores
ranged from <25 to >85 depending on location in the country (Fig. 4b). The CEC of major

soils (47.46%) are 15-25 cmol_c kg⁻¹ followed by less than 15 cmol_c kg⁻¹ in 37.72% areas of the country. Higher CEC (>25 cmol_c kg⁻¹) was found in 14.81% areas only.

147

148

149 **3.1. Soil fertility relationships with rice yield**

Soil fertility score based on different techniques and their relationships with clean rice yields are shown in Fig. 5. About 49% yield variabilities are explained by the WM and most minimum of eight tested soil attributes score (MAttrib-8). The performances of AM and GM techniques in explaining yield variabilities were the least compared to others. Most minimum 1-7 soil attributes score explained Boro rice yield variabilities by about 23-42%.

155

3.2. Soil fertility status

Soil fertility scores varied from <35 to >60 with WM score technique and it was <35 to >55 with the 157 158 MAttrib-8 (Fig. 6). In the lowest soil fertility score (<35), area coverages are 10-12% of the country 159 based on above stated two techniques. The largest areas (28-30%) fall within the score of 40-45 under 160 both the techniques. Areas covered by higher scores (>55) were only about 16% of the country. Soil 161 fertility scores of 35-40 represented 9.41% and 24.08% areas under WM and MAttrib-8 techniques, respectively. Similarly, 45-50 and 50-55 scores under WM and MAttrib-8 represented about 20% and 162 163 11-16% areas, respectively of the country. Based on GM, AM and MAttrib-1 to MAttrib-7 soil fertility score varied greatly and represented different areas of the country, but major areas showed 164 165 low fertility score (data not shown). There were variations in the highest and the lowest scores 166 because of method employed (Table 3). The standard deviations were $\pm 8.52, \pm 7.19, 7.73$ and ± 8.52 for GM, AM, WM and MAttrib-8 means score, respectively having corresponding co-efficient of 167 168 variations of 19.62%, 14.22%, 16.58% and 19.62%.

169 **4. DISCUSSION**

In about 29% areas of the country, the SOC was at medium category; although there are high
and very high SOC in certain areas, especially with peat soils. In general, SOC was higher in
low lying areas, the single cropped zones, which remain 5–6 months under water in a year.

173 This level of SOC specifically in about 18% areas of the country is still inadequate for satisfactory crop production [16]. As population pressure is increasing, farmers are using 174 such lands to increase total production through cropping intensification resulting in depletion 175 of SOC along with other plant nutrients. The decrease rate of SOC is comparatively faster 176 with arable cropping over time [17] with or without addition of organic manures. So, we have 177 found lower SOC rating in intensely cropping zones of Bangladesh. Partial productivity of 178 applied fertilizers is also decreasing indicating that nutrients from organic matter (OM) need 179 to be added that has been observed in our experiments at BRRI. Most soils showed good 180 response when OM was incorporated either from poultry litter, cow dung, vernicompost 181 [18,19] or green manuring because SOC influences soil pH, buffering capacity, nutrient 182 supplies and soil biological activity [20]. 183

184

Although available P in the category of very low and low cover a larger area (about 70%), in 185 some areas its high has taken place (Fig. 1b) because of cropping patterns followed, fertilizer 186 187 management options and inherent characteristics of parent materials [16,21]. As a greater 188 area suffers from available P, corrective measures have to be taken for profitable production [22]. This scenario is also true for global perspective in which P is depleting by 5.1 kg ha⁻¹ yr⁻¹ 189 ¹ [23]. However, majority of the farmers in Bangladesh prefer to add N fertilizer because of 190 its immediate visible effects [2] and thus nutrient imbalance impose negative impact on soil 191 192 properties and crop production as a whole.

193

Potassium levels in major areas were very low to low (Fig. 2a) indicating that K mining was taking place because of its substandard dose used by the farmers. Since farmers generally use more N fertilizer and minimum K rate, the later is depleting rapidly in many areas of Bangladesh [21, 22, 24]. In the global perspective, K is also depleting by 38.8 kg ha⁻¹ yr⁻¹ 198 [23]; although its build up is not either uncommon in some areas because of excessive use199 with certain crops [16].

Though S and Zn deficiencies are widespread in the country, its wet and dry depositions are also taking place because of industrial development [25]; but S fertilizer application still improves rice yields in many areas of the country [36].

The scenario of B fertility is not healthy because in some areas it has depleted severely over time [16]. Yields of wheat, mustard and papaya reduce greatly in many parts of the country without B application. The depletion of soil fertility in areas with high cropping intensities [26] indicated that replenishment of removed nutrients were not taking place or it is beyond the capacity of the soils to supply major nutrients for growing high yielding crop varieties. There are evidences that Zn and B contents have been depleted severely from 1991 to 2012 in some selected areas of Bangladesh and thus crop productivity is declining [16].

210

211 Lower soil pH covers quite larger areas in the north and north-east part and higher pH in the 212 southern part of the country where plant nutrients availability is a limiting factor for 213 satisfactory crop production without proper amendment. In some cases soil pH is increasing, 214 especially in northern part of the country and thus playing a negative role on nutrient 215 availability. It was reported that nutrient availability from applied fertilizers may be unavailable by more than 33-75% if soil pH ranges from 4.5 to 5.5 [27]. Generally, major 216 217 nutrients are available for plants when soil pH varies from 6.5 to 7.5 [28]. Among others, soil 218 P and many micronutrients become unavailable when pH exceeds 7.5, but molybdenum (Mo) availability increases in alkaline pH. Moreover, CEC also depends on soil pH in a neutral soil 219 220 will have higher CEC than acidic soils [29]. Low CEC indicates silty loam soils having tendency of K and Mg deficiencies and faster decrease in soil pH [29, 30]. In such situations 221 222 frequent liming is needed for sandy type soils for profitable crop cultivation.

We have seen good relationships ($R^2 = 0.49$) of WM and MAttrib-8 scores with rice yields, 224 which is similar to the findings of Vasu et al. [31]. In Bangladesh, no groping of soils has 225 been made based on combine scores or combine effects of different soil attributes; but 226 227 component-wise soil fertility delineations are available [22,26, 32]. So, our efforts are to group soil fertility status combining all tested attributes as score <35 (very low fertility), 35-228 45 (low fertility), 45-55 (medium fertile) and >55 (fertile). Accordingly, 10-12 and 39-52% 229 areas of the country represented very low and low soil fertility, respectively (Fig. 6). Medium 230 fertile and fertile soils are distributed in 17-41% and in about 8% areas of the country. These 231 232 findings clearly indicate that special cares are needed for efficient and economic crop production in major areas of Bangladesh. However, crop yields not only depend on soil 233 fertility, but also on other factors like water availability, temperature, and so on. Moreover, 234 235 soil fertility scores alone cannot explain yield variability of a crop rather it can provide an 236 indication for fertilizer rate determination and crop zoning for profitable farming.

237

238 Population pressure is increasing in Bangladesh, while soil fertility is decreasing indicating that we are manipulating our soils beyond its bearing capacity. In general, nutrient mining is 239 taking place in Bangladesh at about 100 kg ha⁻¹ yr⁻¹ [22, 33] also reported low to very low 240 soil fertility for most of the studied soils in Bangladesh. This scenario is also true in terms of 241 global scale where soil fertility problems are associated with human-induced nutrient 242 243 depletion [23]. Besides, soil nutrient availability is limiting in cultivated lands of tropical 244 countries because of low inherent soil fertility [34]. Calcium deficiencies are emerging in some agro-ecological zones (AEZ-3 and 21) of Bangladesh [3] and there might be hidden 245 hunger for micronutrients and thus reducing soil fertility and ultimately crop yield, but not 246 247 considered in the present investigation because of unavailability of data for the whole country. In time series analyses for nutrient depletion, it was found that the contents of 248 249 exchangeable K, Ca and Mg have declined in all physiographic units except Old Himalayan 250 Piedmont and Madhupur Tract after 27 years of crop cultivation [35]. In one of our study, it 251 was also found that soil nutrient ratios have been changed in many places of Bangladesh because of over exploitation of inherent soil fertility and thus Ca:P and N:Zn were playing 252 253 significant negative role with wet season rice yields under unfavourable ecosystems of Bangladesh [36]. Similarly P: K ratio was acting antagonistically in agricultural ecological 254 255 zone 3, 18 and 26 of Bangladesh. All these factors indicate that we have to know our soils before its use for crop production. Determination of soil fertility status by combining 256 257 important but minimum attributes can help in this regard for profitable farming and to recuperate soil fertility through crop and fertilizer management. 258

259

260 **5. CONCLUSION**

A simple method of soil fertility evaluation for a country with minimum data sets is very 261 262 much desirable for proper crop zoning and delineating agronomic management options for 263 satisfactory crop production. We have determined soil fertility scores using pH, CEC, SOC, 264 available P, S, Zn, B and exchangeable K and following geometric, arithmetic, weighted and 265 mean approaches along with most minimum of tested attributes score. Weighted mean and most minimum of soil attribute scoring methods showed better relationships with dry season 266 267 irrigated rice yields in Bangladesh indicating that this technique can be employed for soil 268 fertility assessment and its subsequent use for crop zoning and for determination of fertilizer rates in similar environments around the globe. 269

270

271 ACKNOWLEDGEMENT

We greatly acknowledge Krishi Gobeshona Foundation for their financial support in this
research activity through Modelling Climate Change Impact Assessment in Bangladesh
(CRP-II) project.

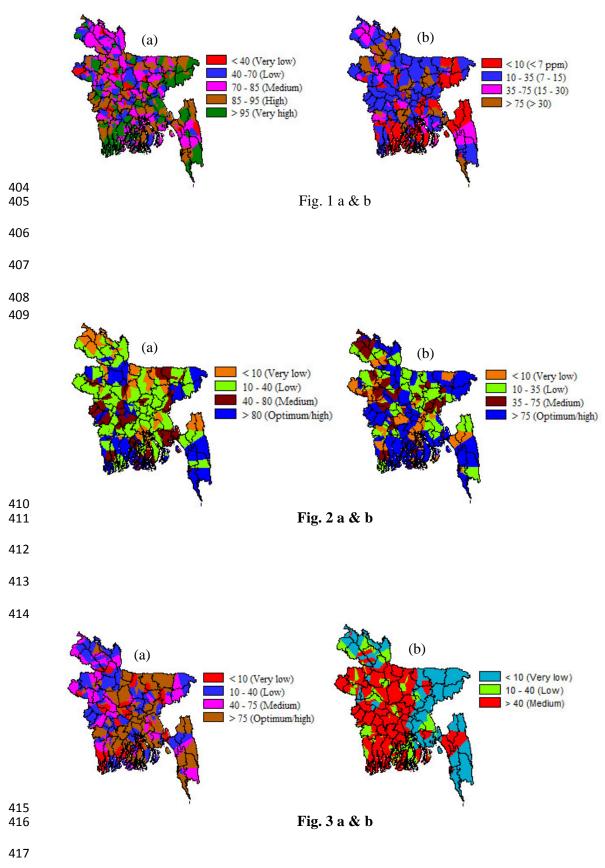
275

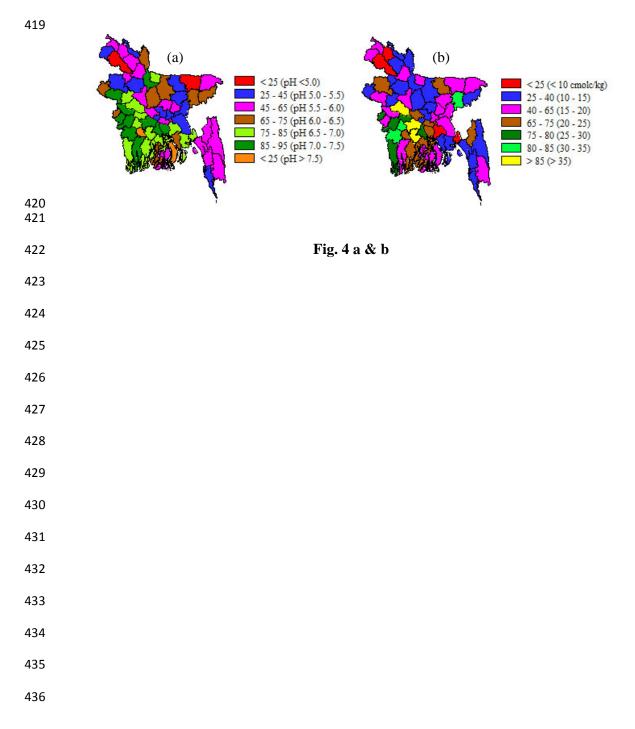
276 **REFERENCES**

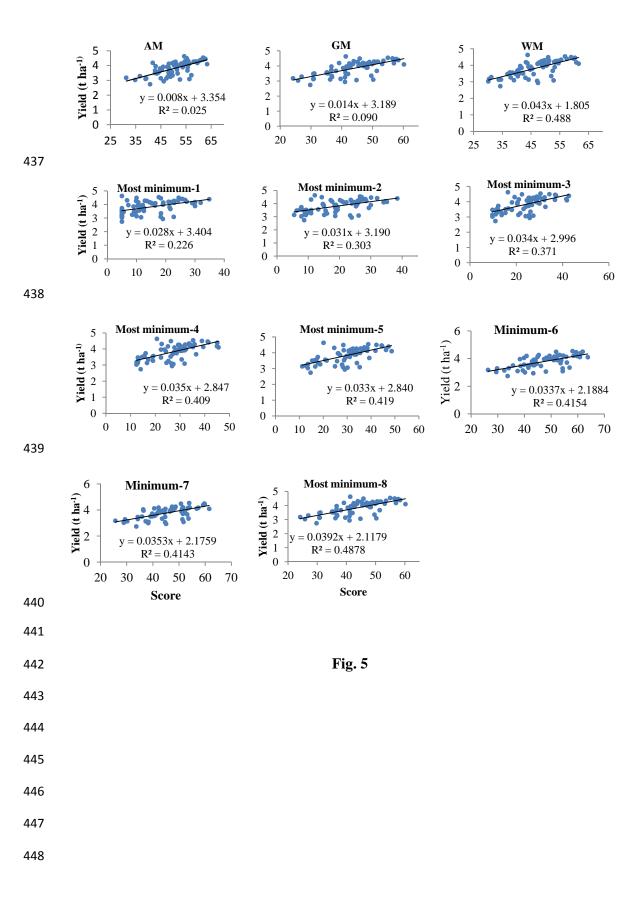
1. MacCarthy DS, Agyare WA, Vlek PLG, Adiku SGK. Spatial variability of some soil 278 chemical and physical properties on agricultural ladscape. West Afr. J. Appl. Ecol. 279 280 2013; 21: 47-61. Biswas JC, Maniruzzaman M, Sattar MA, Neogi MG. Improvement of rice yield 281 2. 282 through fertilizer and cultural management at farmer's field. Bangladesh Rice J. 2008; 13:9-14. 283 284 3. Saha PK, Islam S, Islam MN, Biswas JC, Haque MM. Soil plant nutrient status under intensive rice-farming systems in unfavourable eco-system of Bangladesh. Intl. J. 285 Biol. Pharma. Sci. 2016; 2: 1-11. 286 4. Yang Y, Zhang S. Approach of developing spatial distribution maps of soil nutrients. 287 288 In L. Daoliang (ed.) Proc IFIPTC on Computer and Computing Tech. Agric. 2008; 289 1:565-571. 5. Dafonte JD, Ulloa GM, Jorge P, Glécio S, Vázquez M, Vidal E. Mapping of soil 290 291 micronutrients in an European Atlantic agricultural landscape using ordinary kriging and indicator approach. Bragantia 2010; 69: 175-186. 292 6. Behera SK, Shukla AK. Spatial distribution of surface soil acidity, electrical 293 294 conductivity, soil organic carbon content and exchangeable potassium, calcium and 295 magnesium in some cropped acid soils of India. Land Degrad. Dev. 2015; 26: 71-79. 296 7. Desavathu RN, Nadipena AR, Peddada JR. Assessment of soil fertility status in Paderu Mandal, Vaisakhapatnam district of Sndra Pradesh through Geopspatial 297 techniques. The Egyptian J. Remote Sensing Space Sci. 2018; 21: 73-81. 298 8. Markoski M, Arsov S, Mitkova T, Stamenkovska J. The benefit of GIS technologies 299 and precision agriculture principles in soil nutrient management for agricultural crop 300 301 production. Bulg. J. Agric. Sci. 2015; 21: 554-559.

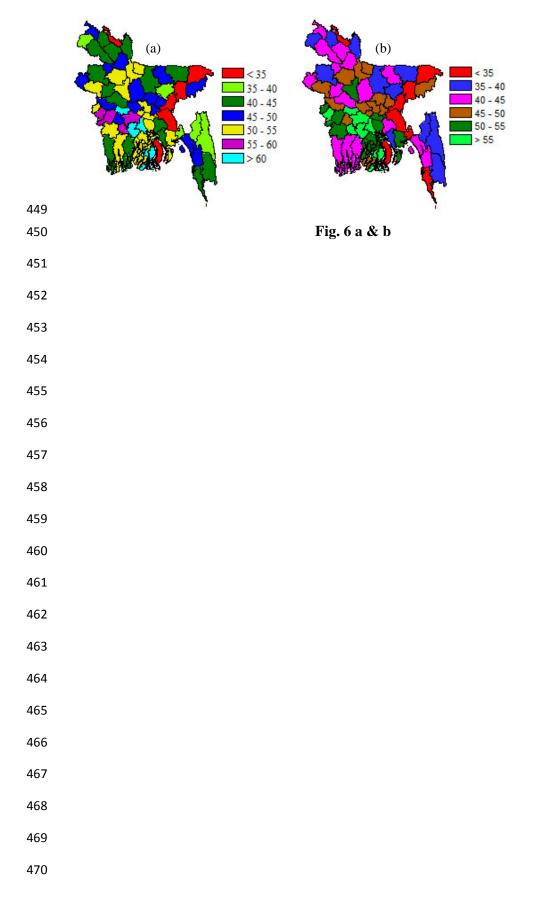
277

- Rahman AMAE, Natarajan A, Hedge R. Assessment of land suitability and capability
 by integrating remote sensing and GIS for agriculture in Chamarajanagar district,
 Karnataka, India. Egypt. J. Remote Sensing Space Sci. 2016; 19: 125-141.
- 10. Khalid R, Mahmood T, Bibi R, Siddique MT, Alvi S, Naz SY. Distribution and
 indexation of plant available nutrients of rainfed calcareous soils of Pakistan. Soil
 Environ. 2012; 31: 146-151.
- 308 11. Salehi N, Sepanlow MG, Gorzin BJ. An evaluation of soil fertility using soil organic
 309 carbon, potassium, phosphorus and salinity factors for rice cultivation by fuzzy logic
 310 and AHP technique. Int. J. Agri. Crop Sci. 2013; 5: 2233-2241.
- 311 12. Moran EF, Brondizio ES, Tucker JM, da SilvaForsberg MC, McCracken S, Falesi I.
 312 Effects of soil fertility and land use on forest succession in Amazonia. For. Ecol.
 313 Manag. 2010; 139: 93-108.
- **13.** Panwar P, Pal S, Reza SK, Shama B. Soil fertility index, soil evaluation factor, and
 microbial indices under different land uses in acidic soil of humid subtropical India.
 Commun. Soil Sci. Plan Anal. 2011; 42: 2724-2737.
- 14. Mbogoni JDJ, Kiwambo BJ, Urassa GJ, Assenga SV. Soil fertility appraisal for
 enhancing productivity in rice-based system of Ruvu basin, Agricultural Research
 Institute Mlingano, Tanga, Tanzania; 2011.
- **15.** Khaki BD, Honarjoo N, Davatgar N, Jalalian A, Golselfidi HT. Assessment of two
 soil fertility indexes to evaluate paddy fields for rice cultivation. Sustainability 2017;
 9: 1299b (doi:10.3390/su9081299).
- 16. Siddique MMNEA, Halim MA, Kararuzzaman M, Karim D, Sultana J. Comparative
 insights for investigation of soil fertility degradation in a piedmont area which cover
 the Anjamkhor union of Baliadangi upazila, Thakurgaon, Bangladesh. IOSR J.
 Environ. Sci. Toxico Food Tech. 2014; 8: 82-87.


- **17.** Zahid AM, Hossain MB, Halim MA, Hossain MA, Shahreen F. Organic matter and
 plant nutrient depletion in major soil series in the high Ganges river floodplain. Intl. J.
 Sustain. Agric. Tech. 2011; 7: 30-37.
- **18.** Saleque MA, Abedin MJ, Bhuiyan NI, Zaman SK, Panaullah GM. Long-term effects
 of inorganic and organic fertilizer sources on yield and nutrient accumulation of
 lowland rice. Field Crop Res. 2004; 86: 53-65.
- **19.** Haque MM, Akter M, Biswas JC. Performance of vermicompost and poultry manure
 on rice yield and soil health. Annual Research Review Workshop 2016-17. Soil
 Science Division, Bangladesh Rice Research Institute, Gazipur. 75pp; 2017.
- 20. Karlen DL, Andrews SS, Wienhold BJ, Zobeck TM. Soil quality assessment: past,
 present and future. J. Integrated Biosci. 2008; 6: 3-14.
- 338 21. FRG (Fertilizer Recommendation Guide). Bangladesh Agricultural Research Council,
 339 Farmgate Dhaka, 1215. In press; 2018.
- 22. Shil NC, Saleque MA, Islam M R, Jahiruddin M. Soil fertility status of some of the
 intensive crop growing areas under major agro-ecological zones of Bangladesh.
 Bangladesh J. Agril. Res. 2016; 41: 735-757.
- 343 23. Tan ZX, Lal R, Wiebe KD. Global soil nutrient depletion and yield reduction. J.
 344 Sustainable Agric. 2005; 26: 123-146.
- 24. Rahman MH, Islam MR, Jahiruddin M, Rafii MY, Ismail MR, Malek MA.
 Fertilization for increased crop production and nutrient balance in the maize-legumerice cropping pattern. J. Food Agric. Environ. 2013; 11: 653-656.
- 348 **25.** Biswas JC, Haque MM, Akter M, Hossain ATMS, Khan FH, Baki MZI, Sarker ABS,
- Islam MR. Element Composition of the Atmospheric Depositions in Bangladesh. J.
 Environ. Protec. 2018; 9:948–956.
- 351 26. Jahiruddin M, Satter MA. Land and soil resource management report, in: Research
- 352 Priority in Agriculture and Development Vision Document-2030 and Beyond; 2010.


- 27. CU (Cornell University). How dose soil pH affect fertilizers and fertility. Cornell
 University Cooperative Extension of Suffolk County. Extension Education Center,
 423 Griffing Avenue, NY (https://s3.amazonaws.com/assets.cce.cornell.edu/
 attachments/ 3271/ow_does_soil_pH_affect_fertilizers_and_fertility.pdf?1413386058
 (Access on 6-2-2019).
- **28.** IPNI (International Plant Nutrition Institute). Soil pH and the availability of plant
 nutrients. IPNI, Georgia 30092-2806 USA (www.ipni.net); 2010.
- 29. CU (Cornell University). Cation exchange capacity (CEC). Agronomy fact sheet
 series, Fact sheet number 22. Cornell University Cooperative Extension, College of
 Agriculture and Life Sciences (<u>http://nmsp.css.cornell.edu</u>); 2007.
- 363 30. Noble AD, Gillman GP, Ruaysoongnern S. A cation exchange index for assessing
 364 degradation of acid soil by further acidification under permanent agriculture in the
 365 tropics. European J. Soil Sci. 2007; 51: 233-243.
- 366 31. Vasu D, Singh SK, Ray SK, Duraisami VP, Tiwary P, Chandran P, Nimkar AM,
 367 Anantwar SG. Soil quality index (SQI) as a tool as a tool to evaluate crop productivity
 368 in semi-arid Deccan plateau, India. Geoderma 2016; 282: 70-79.
- 369 32. Rijmpa J, Jahiruddin M. Final; report on national strategy and p[lan for use of soil
 nutrient balance in Bangladesh. SFFP consultancy report, DAE, Khamarbari, Dhaka;
 2004.
- 372 **33.** Hossain M, Bayes A Islam SMF. A Diagnostic Study on Bangladesh Agriculture.
 373 RED Working Paper Series, BRAC; 2017.
- 374 34. FAO (Food and Agriculture Organization). Status and trends in land and water
 375 resources. Pages 19-60 in The State of the World's land and Water Resources for
 376 Food and Agriculture: Managing Systems At Risk. FAO, UN and Earthscan; 2011.


- 377 **35.** Ali MM, Shaheed SM, Kubota D, Masunaga T, Wakatsuki T. Soil degradation during
- the period 1967 1997 in Bangladesh. II. Selected chemical characters. Soil Sci.
 Plant Nut. 1997; 43: 879-890.
- 36. Biswas JC, Haque MM, Saha PK. Rice yield potential under unfavorable soil
 ecosystems in Bangladesh. Asian J. Soil Sci. Plant Nutr. 2017;1: 1-10.
- 382
- 383

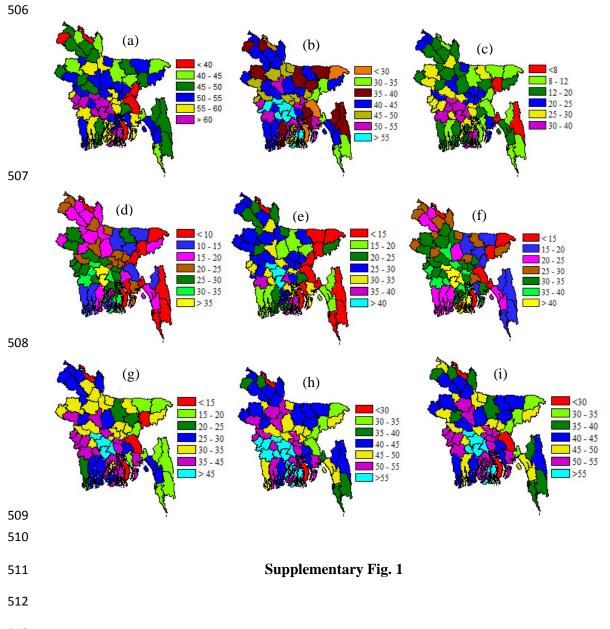

384 **Figure titles**

- Fig. 1. Status of (a) soil organic carbon and (b) phosphorus in Bangladesh
- 386 Fig. 2. Status of (a) soil potassium and (b) sulphur in Bangladesh
- 387 Fig. 3. Status of (a) soil zinc and (b) boron in Bangladesh
- 388 Fig. 4. Distribution patterns of (a) soil pH (b) CEC in different parts of Bangladesh
- Fig. 5. Relationships of clean Boro rice yields with scores of different soil attributes,Bangladesh
- Fig. 6. Soil fertility variations in Bangladesh as per (a) weighted mean and (b) most minimum
- 392 of eight soil-attributes scores
- 393 Supplementary. Fig. 1. Soil fertility for Bangladesh according to (a) arithmetic mean, (b)
- 394 geometric mean, (c) one most minimum, (d) two most minimum, (e) three most minimum, (f)
- four most minimum and (g) five most minimum, (h) six most minimum and (i) seven most
- 396 minimum attributes
- 397
- 398
- 399
- 400
- 401
- 402

	Critical	Very	Low	Medium	Optimum	High
	limit	low				
SOC (%)	-	< 0.336	0.337-0.574	0.575-1.148	1.489-2.308*	>2.308**
Olsen P (mg dm ⁻³)	10	<7.50	7.51-15.00	15.1-22.5	22.51-30.00	30.1-37.50
Bray P (mg dm ⁻³)	7	<5.25	5.25-10.50	10.51-15.75	15.76-21.00	21.10-26.25
S (mg dm ⁻³)	10	<7.50	7.51-15.00	15.1-22.5	22.51-30.00	30.1-37.50
K (cmol _c dm ⁻³)	0.12	< 0.09	0.091-0.18	0.181-0.27	0.271-0.36	0.361-0.4
Ca (cmol _c dm ⁻³)	2	<1.50	1.51-3.00	3.1-4.50	4.51-6.00	6.1-7.50
Mg (cmol _c dm ⁻³)	0.5	< 0.0375	0.376-0.75	0.751-1.25	1.16-1.50	1.51-1.87
Cu (mg dm ⁻³)	0.6	< 0.15	0.151-0.30	0.31-0.45	0.451-0.60	0.61-0.7
Zn (mg dm ⁻³)	0.2	< 0.45	0.451-0.90	0.91-1.35	1.351-1.81	1.81-2.2
Fe (mg dm ⁻³)	4	<3.00	3.10-6.00	6.1-9.00	9.1-12.00	12.1-15.0
Mn (mg dm ⁻³)	1	< 0.75	0.756-1.50	1.51-2.25	2.56-3.00	3.1-3.7
B (mg dm ⁻³)	0.2	< 0.15	0.151-0.30	0.31-0.45	0.451-0.60	0.61-0.7
Mo (mg dm ⁻³)	0.1	< 0.075	0.076-0.15	0.151-0.225	0.226-0.30	0.31-0.37

Table 1. Soil nutrient status and its classifications in Bangladesh

FRG, 2012; *High and **Very high


476 477

Soil nutrien	nts	Soil pH		SOC		CEC	
Status	Score	Range	Score	Range	Score	Range	Score
Very low	5	<5.0	25	< 0.336	40	<5	25
Low	30	5.0-5.5	45	0.337-0.574	70	5-10	40
Medium	70	5.5-6.0	65	0.575-1.148	85	10-20	65
Optimum	100	6.0-6.5	75	1.489-2.308	95	20-30	75
High	100	6.5-7.0	85	>2.308	100	30-40	80
		7.0-7.5	95			40-50	85
		>7.5	25			>50	100

479 Table 2. Scoring criteria for different nutrient levels

		Geometric	Arithmetic	Weighted	MAttrib-8
		mean	mean	mean	
	Maximum	60.19	63.38	61.55	60.19
	Minimum	24.20	31.20	30.10	24.20
	Mean	43.42	50.57	46.60	43.42
	Sd (±)	8.52	7.19	7.73	8.52
	CV(%)	19.62	14.22	16.58	19.62
485					
486					
487					
488					
489					
490					
491					
492					
493					
494					
495					
496					
497					
498					
499					
500					
501					
502					
503					
504					

484 Table 3. Soil fertility scoring variations due to methods

