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Abstract

In this research paper, we were able to study countable sets. To achieve this, funda-

mental ideas and concepts from set theory and mathematical analysis were considered.

Some important theorems on countable sets were reviewed and finally, the application of

the theorems studied were provided.
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1 INTRODUCTION

The concept of a set was rather elementary one that had been used implicitly since the be-

ginning of mathematics, dating back to the ideas of Aristotle. No one had realized that set

theory had nontrivial content. Before Cantor, there were only finite sets (which are easy to

understand) and “the infinite ” (which was considered a topic for philosophical, rather than

mathematical discussion). By Proving that there are (infinitely) many possible sizes for infinite

sets, Cantor established that set theory was not trivial and it needed to be studied. Set theory

has come to play the role of a foundational theory in modern mathematics, in the sense that it

interprets propositions about mathematical objects for example, numbers and functions. From

all the traditional areas of mathematics such as algebra, analysis and topology in a single theory

and provides a standard set of axioms to prove or disprove them. The basic concepts of set

theory are now used throughout mathematics.
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In one of his earliest papers, proved that the set of real numbers is “more numerous” than

the set of natural numbers; this showed, for the first time, that there exist infinite sets of differ-

ent sizes [2]. He was also the first to appreciate the importance of one to one correspondences

in set theory. He used this concepts to define finite and infinite sets, subdividing the latter

into denumerable (or countably infinite) sets and uncountable sets (nondenumerable infinite

sets). This notion of denumerable and nondenumerable sets led to the concept of countable

and uncountable sets, a concept which is of interest to us in this project. To study this concept

we shall first define some terms related to the notion.

The development of countability of sets was built upon the established concept of set theory.

Set theory had its beginning in the 19th century transformation of mathematics, a transforma-

tion beginning in analysis. Since the creation of calculus by Newton and Leibniz, the function

concept had been steadily extended from analytic expressions toward arbitrary correspondences

[13]. The first major expansion had been inspired by the explorations of Euler in the 18th cen-

tury and featured the infusion of infinite series methods and the analysis of physical phenomena,

like the vibrating strings.

In the 19th century the stress brought on by the unbridled use of series of functions led first

cauchy and then weierstress to articulate convergence and continuity.

Working out of this tradition, Georg Cantor in 1870 established a basic uniqueness theorem for

trigonometric series. If such a series converges to zero everywhere, then all of its coefficients are

zero [3]. To generalize, Cantor started to allow points at which convergence fails, getting to the

following formulations : for a collection p of real numbers, let p′ be the collection of limit points

of p, and p(n) the result of n iteration of this operation. If a trigonometric series converges

to zero everywhere except on p, where p(n) is empty for some n, then all of its coefficient are

zero [11]. It was in 1872 that Cantor provided his formulation of the real numbers in terms of

fundamental sequences of rational numbers and significantly, this was for the specific purpose

of articulating his proof. With the new results of analysis to be secured by proof and proof in

turn to be based on prior principles; the regress led in early 1870’s to the appearance of several

independent formulations of the real numbers in terms of the rational numbers. It is at first

quite striking that the real numbers came to be developed so late, but this can be viewed as

part of the expansion of the function concept which shifted the emphasis from the continuum

taken as a whole to its extensional construal as a collection of objects [2]. In mathematics,

objects have been traditionally introduced only with reluctance, but a more arithmetical rather

than geometrical approach to the continuum became necessary for the articulation of proofs.

The other well–known formulation of real numbers is due to Richard Dedekind, through his

cuts. Cantor and Dedekind, maintained a fruitful correspondence, especially during the 1870’s
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in which Cantor aired many of his results and speculations [9]. The formulations of the real

numbers advanced three important predispositions for set theory. The consideration of infinite

collections, their construal as unitatry objects, and the encompasing of arbitrary such possi-

bilities. Dedekind had infact made these moves in his creation of ideals, infinite collections of

algebraic numbers, and there is an evident similarity between ideals and cuts in the creation

of new numbers out of the old [5]. The algebraic numbers would soon be the focus of a major

breakthrough by Cantor [8]. Although both cantor and Dedekind carried out an arithmetical

reduction of the continuum, they each accommodated its antecedent geometric sense by assert-

ing that each of their real numbers actually corresponds to a point on the line. Neither theft

nor honest toil suffice; Cantor and Dedekind recognized the need for an axiom to this effect,

a sort of church’s thesis of adequacy for the new construal of the continuum as a collection of

objects. Cantor recalled that around this time he was already considering infinite iterations of

his p′ operation using “symbol of infinity” [7].

P (∞) =
∞⋂
n

p(n), p(∞+1) = p(∞)′ , p(∞+2), . . . p(∞·2), . . . p(∞
2), . . . p(∞

∞), . . . p(∞
∞∞ )

In a crucial conceptual move, he began to investigate infinite collections of real numbers and

infinitary enumerations for their own sake, and this led first to a basic articulation of size for

the continuum and then to a new, encompassing theory of counting. Set theory was born on

that December 1873 day when Cantor established that the real numbers are uncountable [14].

In the next decades the subject was to blossom through the prodigious progress made by him

in the theory of transfinite and cardinal numbers.

The uncountability of the reals was established of course, via reductio ad absurdum as with the

irrationality of
√

2. Both impossibility results epitomize how a reductio can compel a larger

mathematical context allowing for the deniability of hitherto implicit properties. Be that as it

may, Cantor the mathematician addressed a specific problem, embedded in the mathematics of

time, in his seminar entitled “on a property of totality of all real algebraic numbers”. After first

establishing this property, the countability of the algebraic numbers, Cantor then established :

for any (countable) sequence of reals, every interval contains a real not in the sequence. Cantor

appealed to the order completeness of the reals: suppose that s is a sequence of reals and I an

interval. Let a < b be the first two reals of s, if any, in I. Then let a′ < b′ be the first two reals

of s, if any, in the open interval (a, b); a′′ < b′′ the first two reals of s, if any, in (a′, b′); and so

forth. Then however long this process continues, the (non-empty) intersection of these nested

intervals cannot contain any member of s.

By these means, Cantor provided a new proof of Joseph Liouville’s result that there are tran-

scendental numbers (real non-algebraic numbers) and only afterward did Cantor point out the

uncountability of the reals altogether.

This presentation is suggestive of Cantor’s natural caution in overstepping mathematical sense
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at the time [4].

Accounts of Cantor’s work have mostly reversed the order for deducing the existence of tran-

scendental numbers [13]. In textbooks the inversion may be inevitable but this has promoted

the misconception that Cantor’s argument are non constructive. It depends how one takes a

proof, and Cantor’s arguments have been implemented as algorithms to generate the successive

digits of new reals [6]. Motivated by the above literature, we seek in this work to understand

what countable sets are by studying the major theorems concerning countable sets.

The aim of this work is to show the applications of one of the most crucial concepts in mathemat-

ics, “countability of sets”; in order to achieve this, we studied the major theorems concerning

countable sets and some applications of the theorems on sets were shown.

DEFINITION OF TERMS

Definition 1.1 A set is a collection of well define objects, called the elements or members of

the set.

For the purpose of this work; these objects are mathematical objects such as numbers or sets

of numbers.

Thus, sets A,B are equal, written as A = B if, a ∈ A if and only if a ∈ B. It is convenient

to define the empty set, denoted by ∅, as the set with no elements, where the set of natural

numbers denoted as N, the set of integers denoted as Z, the set of rational numbers denoted as

Q, e.t.c are all examples of sets.

Definition 1.2 The union of sets A and B, is the set which consists of elements that are either

in A or B or both. The set notation for the operation of union is ∪. Thus A union B is written

as A ∪B. In set theoretical notation, A ∪B = {x : x ∈ A or x ∈ B or x ∈ both A and B}

Definition 1.3 The intersection of two sets A and B; is the set which consists of elements

that are in A as well as in B. The set notation for the operation of intersection is ∩. A ∩ B
means; A intersection B. In set theoretical notation, the set A ∩B = {x : x ∈ A and x ∈ B }

Definition 1.4 A set A is a subset of a set B, written as A ⊂ B or B ⊃ A, if every element

of A belongs to B.

Definition 1.5 Two sets A and B are said to be equal, if A is a subset of B and B is a subset

of A. Thus the elements of set A are the same as the elements of set B, if the sets A and B

are equal.
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Definition 1.6 The Cartesian products of n sets X1 ×X2 × · · · ×Xn is the set of ordered n-

tuples, X1×X2×· · ·×Xn = { (x1, x2, . . . , xn) : xi ∈ Xi }, where (x1, x2, . . . , xn) = (y1, y2, . . . , yn)

⇐⇒ xi = yi ∀ i = 1, 2, · · ·n

Definition 1.7 The power set P(X) of a set X is the set of all subsets of X.

For example, if A = { 1, 2 } then P(A) = { θ, { 1 }, { 2 }, { 1, 2 } }. The power set of a finite set

with x elements has 2x elements. Also the power set of an infinite set, such as N, consists of

all finite and infinite subsets and it is infinite.

Definition 1.8 A set X is said to be finite, if X is empty ( i.e X = ∅) or there is a bijection

f : X 7→ { 1, 2, . . . n }; for some n ∈ N. Otherwise it is called infinite.

Definition 1.9 A function f : X 7→ Y between sets X, Y assigns to each x ∈ X a unique

element f(x) ∈ Y.

A function can also be called maps, mapping or transformations. The set X on which f

is defined is called the domain of f and the set Y in which it takes its values is called the

codomain. Also the range of f denoted as ranf is the set of all possible values of f(x) as x runs

through the domain X of f ; and it is generally a subset of the codomain Y .

We write f : x 7→ f(x) to indicate that f is the function that maps x to f(x). For example, the

identity function idx : X 7→ X on a set X is the function idx : x 7→ x that maps every element

to itself.

Functions are classified in numerous ways, however we shall concentrate on some classifications

which are important for the purpose of our work.

Definition 1.10 A function f : X 7→ Y is injective (or one to one) if f(x1) = f(x2) =⇒
x1 = x2

We call an injective function an injection. For example, the functions f, g, h : R 7→ R given by

f(x) = x, g(x) = x3 and h(x) = ex are all injective.

Proof:

We show that the functions defined above are all injectives.

First, we show that f(x) = x, x ∈ R is injective. Let f(x1) = f(x2) ∀ x ∈ R, since f(x) = x

we have that x1 = x2. Therefore f(x1) = f(x2) =⇒ x1 = x2. Hence f is injective. Second,

we show that g(x1) = g(x2) is injective. Let g(x1) = g(x2) ∀ x ∈ R, since g(x) = x3 we have

that x31 = x32 =⇒ x1 = x2 . Therefore g(x1) = g(x2) =⇒ x1 = x2, hence g is injective.

Finally, let h(x1) = h(x2) ∀ x ∈ R, since h(x) = ex we have that ex1 = ex2 =⇒ x1 = x2 .

Therefore h(x1) = h(x2) =⇒ x1 = x2, hence h is injective.

While the functions p, q, r : R 7→ R given by p(x) = 1, q(x) = x2, and r(x) = sin x are not

injective since p(0) = p(1) but 0 6= 1, q(−1) = q(1) but −1 6= 1, and r(0) = r(π) but

0 6= π.
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Definition 1.11 A function f : X 7→ Y is surjective (or onto) if for each y ∈ Y we can find

x ∈ X : f(x) = y.

A surjective function is called a surjetion. For example, the functions f, g, h : R 7→ R given by

f(x) = x, g(x) = x3, h(x) = ex
2

sin(x) are all surjective.

Proof:

We show that the functions defined above are all surjectives.

First, we show that f(x) = x, x ∈ R is surjective. It is clear that ∀ x ∈ R ∃ x ∈ R : f(x) = x.

Second, we show that g(x) = x3, x ∈ R is surjective. It is also clear that ∀ x3 ∈ R ∃ x ∈ R :

g(x) = x3.

Finally, we show that h(x) = ex
2

sinx, x ∈ R is surjective. It is easy to see that ∀ ex2
sinx ∈ R

∃ x ∈ R : h(x) = ex
2

sinx

While the functions p, q, r : R 7→ R given by p(x) = 1, q(x) = ex and r(x) = arctan(x) are

not surjective.

Proof:

We prove that the above functions are not surjectives. Let p(x) = 1, x ∈ R. Observe that @ x
∈ R : p(x) = 2 but 2 ∈ R.

Second, let q(x) = ex, x ∈ R. Observe that @ x ∈ R : q(x) = 0 but 0 ∈ R.

Finally, let r(x) = arctan(x), x ∈ R. Observe that @ x ∈ R : r(x) = 90 but 90 ∈ R.

Definition 1.12 A function f : X 7→ Y is bijective (or a one to one correspondence) if it is

both injective and surjective.

A bijective function is called a bijection. For example, the identity function idx : X 7→ X

defined as idx(x) = x, the function f : R 7→ R defined as g(x) = x3 are all bijective.

Proof:

We prove that the above functions are bijectives. In the above examples we have shown that

idx(x) = x and g(x) = x3 are both injective and surjective, therefore the functions are

bijectives.

Definition 1.13 let f : X 7→ Y be a bijection. we define f−1 : Y 7→ X by the rule f−1(y) =

x ⇐⇒ f(x) = y; we call this the inverse function of f .

Definition 1.14 The composition of function f : X 7→ Y and g : Y 7→ Z is the function

g ◦ f : X 7→ Z define by (g ◦ f)(x) = g(f(x)).

The order of application of the function in a composition is crucial and is read from right to

left.

Remark 1.1 f−1 ◦ f = idx and f ◦ f−1 = idy
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Compostions: The composition of bijection is a bijection.

Injection: the restriction of an injection to a subset of its domain is still an injection

Inverse functions: The inverse function of a bijection is a bijection.

Definition 1.15 A set X is said to be indexed by a set I or equivalently, X is an indexed

set if there is an onto function f : I 7→ X. We then write X = {xi : i ∈ I }, where xi = f(i).

For example, { 1, 4, 9, 16, . . . } = {n2 : n ∈ N }. The set X itself is the range of the indexing

function f .

Definition 1.16 let C = {Xi : i ∈ I } be an indexed collection of sets Xi; then we denote the

union and intersection of sets in C by

⋃
i∈I

Xi = {x : x ∈ Xi for some i ∈ I },
⋂
i∈I

Xi = {x : x ∈ Xi ∀ i ∈ I }

For example, let An = [ 1
n
, 1− 1

n
] for some n ∈ { 3, 4, 5, . . . } then

⋃
n∈NAn =

⋃∞
n=3An = (0, 1).

Also let Bn = (− 1
n
, 1
n
) for n ∈ { 1, 2, 3, . . . } then

⋂
n∈NBn =

⋂∞
n=1Bn = { 0 }.

Definition 1.17 A set X is said to have a cardinality or size n, if there is a bijection

f : X 7→ { 1, 2, 3, . . . , n }.

Two sets A and B are said to have the same cardinality (or equivalent) written as |A| = |B|
or A ∼ B; if ∃ a bijection from A to B.

Proposition 1.1 Two sets having the same cardinality defines an equivalence relation between

sets.

Proof:

|A| = |A| (Reflexivity)

The identity map f(a) = a; ∀ a ∈ A is a bijection from A to itself.

If |A| = |B|, then |B| = |A| (Symmetry)

Since |A| = |B| then ∃ a bijection f : A 7→ B, but the inverse function f−1 : B 7→ A is also a

bijection (since the inverse function of a bijection is a bijection). Implying that |B| = |A|.
Finally,

If |A| = |B| and |B| = |C| then |A| = |C| (Transitivity)

If |A| = |B| then ∃ a bijection f : A 7→ B, also if |B| = |A| then ∃ a bijection g : B 7→ C.

But the composition of a bijection is again a bijection, it therefore follows that g ◦ f : A 7→ C

is again a bijection. Implying that |A| = |C|
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Definition 1.18 A set X is said to be countable if :

• X is finite

or

• there exists a bijection between X and the set of natural numbers N.

2 COUNTABILITY OF SETS

In this section, we only focus on the study of the major theorems in respect to countability of

sets. The following are some of the theorems:

THEOREMS

Theorem 2.1 Any subset of N is countable

Proof:

Without loss of generality, assume that A is an infinite subset of N. Define a function f : N 7→ A

as follows let f(1) be the smallest element of A (in the usual ordering of N). This exists by

well-ordering principle, since A 6= ∅. Then let f(2) be the smallest element in A\{ f(1) }.
Note that this set is also non-empty (since A, being infinite, cannot be equal to { f(1) }),
so the well ordering principle applies again. In general, given { f(1), f(2), . . . , f(n) }, we let

f(n+ 1) be the smallest element in A\{ f(1), f(2), . . . , f(n) } (which is a non-empty subset of

N). This defines the function f inductively; f is injective, since from the construction we have

: f(1) < f(2) < f(3) < · · · < f(n) < f(n+ 1) < · · ·
Next, we show that f is surjective, suppose for contradiction that f is not onto, assume that

A\f(N) 6= ∅ and let a be the smallest element in this set. Thus a− 1 = f(N) for some N ∈ N.

Then f(N + 1) is the smallest element in A\{ f(1), f(2), . . . , f(n) }, so f(N + 1) > a− 1 (since

a− 1 = f(N) in this set). Thus f(N + 1) > a, but since a ∈ A\{ f(1), f(2), . . . , f(n) } we can’t

have f(N + 1) > a thus f(N + 1) = a, contradicting a /∈ f(N).

Corollary 2.1 If B is countable and A ⊂ B, (A 6= ∅), then A is countable

Proof:

If B is finite, A is clearly finite. If B is countably infinite, there is a bijection f : B 7→ N. Then

f(A) ⊂ N, so by theorem 2.1; f(A) is either finite or countably infinite. Since A ∼ f(A) (given

that f is injective), it follows that A is countable.

Corollary 2.2 If A is uncountable and A ⊂ B, then B is uncountable.
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Proof:

Suppose for contradiction that B is countable,

Case 1: If B is finite, then A ⊂ B is a contradiction (since A is uncountable).

Case 2: If B is infinitely countable, then ∃ a bijection f : B 7→ N, it follows that f : A 7→ f(A)

is also a bijection. But f(A) ⊂ f(B) = N =⇒ f(A) ⊂ N, therefore f(A) is countable. Since

there is a bijection from A to f(A) it holds that |A| = |f(A)|, which is also a contradiction.

(since an uncountable set can never be equivalent with countable set).

Corollary 2.3 The intersection of finitely many countable sets is countable

Proof:

Let Ai, i = 1, 2, . . . , n be countable sets for each i; then⋂n
i=1Ai ⊂ Ai for each i = 1, 2, . . . , n. but, Ai, i = 1, 2, . . . , n. is countable for each i.

Hence, by theorem 2.1;
⋂n

i=1Ai, i = 1, 2, . . . , n. is countable.

Theorem 2.2 If f : X 7→ Y is injective and Y is countable; then X is countable

Proof:

If X is finite, then we have nothing to prove. So let X be infinite, now X is equivalent to

f(X) (since f is injective), where f(X) is the range of f . So f(X) is infinite. Also f(X) ⊆ Y ,

therefore Y is infinite. By hypothesis Y is countable so Y is countably infinite. By corollary 2.1

f(X) is countable. Since X ∼ f(X). Hence X is countable.

See also [10]

Proposition 2.1 Let X be a non-empty set. Then the following are equivalent

1. X is countable

2. There exists a surjective function f : N 7→ X

3. There exists an injective function g : X 7→ N

Proof:

(1) =⇒ (2). If X is countably infinite, then ∃ a bijection f : N 7→ X; then (2) follows. If

X is finite; then there is a bijection h : { 1, . . . , n } 7→ X for some n ∈ N. Then the function

f : N 7→ X defined by

f(i) =

h(i); if 1 ≤ i ≤ n

h(n); if i > n

is a surjection.

we show that the above function is surjective. Let i ∈ { 1, 2, 3, . . . , n }, then f(i) = h(i), but

9



by hypothesis h : { 1, . . . , n } 7→ X is a bijection. It therefore follows that h(i) is a surjection

and so is f(i); since f(i) = h(i).

Next, let i ∈ {n+ 1, n+ 2, n+ 3, . . . , n+ j, . . . }, j ∈ N then f(i) = h(n).

Without loss of generality, h : { 1, . . . , n } 7→ X is bijective =⇒ h(1) = k1, h(2) = k2,

h(3) = k3, . . . , h(n− 1) = kn−1, h(n) = kn. Where { k1, k2, k3, . . . , kn } ∈ X , ki ∈ R for each

i ∈ { 1, 2, 3, . . . , n }. So that |X| = n.

From definition of f , f(i) = kn for each i > n =⇒ f(n + 1) = kn, f(n + 2) = kn, . . . ,

f(n+ j) = kn, . . .

This implies that the function f has the same codomain as h , which is X. but X = ranh =

ranf =⇒ the ranf is the same as the coodomain. Hence f is a surjection.

(2) =⇒ (3). let f : N 7→ X be surjective. We claim that there is an injection g : X 7→ N.

Given x ∈ X, the preimage f−1({x }) 6= ∅ (since f is surjective). By well-ordering principle,

this set has a smallest element, we let g(x) be this smallest element (i.e g(x) = minf−1({x }) ).

g is injective since for two elements x 6= x′ ∈ X the preimages f−1({x }) and f−1({x′ }) are

disjoint ( i.e f−1({x })∩ f−1({x′ }) = ∅ ) =⇒ g(x) = minf−1({x }) 6= minf−1({x′ }) = g(x′)

and hence their smallest elements are distinct.

(3) =⇒ (1). Let g : X 7→ N be an injective, we show that X is countable.

Since g : X 7→ g(X) is a bijection and g(X) ⊂ N, hence X is countable.

Corollary 2.4 If the function f : X 7→ Y is surjective and X is countable then Y is countable

Proof:

By hypothesis, f is surjective. Therefore f has right-inverse g : Y 7→ X, that is f ◦ g(y) = y ∀
y ∈ Y . The function g is injective since it has a left - inverse f , so by theorem 2.2 and from

our hypothesis that X is countable we conclude that Y is countable.

Theorem 2.3 A countable union of countable sets is countable

Proof:

Consider sets Ai = { a1i, a2i, a3i, . . . , }, i = 1, 2, 3, . . . where each Ai for i = 1, 2, 3, . . . is count-

able. The kth element of Ai is aki.

Now; it follows that

∞⋃
i=1

Ai = { a11, a12, a21, a13, a22, a31, a14, a23, . . . , anm, . . . }

Note that the order has been taken according to the sum m + n = l where l = 2, 3, . . . , n,m

being the suffices of the element anm ∈ Ai

See also [10]
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let
∞⋃
i=1

Ai = {x1, x2, x3, x4, x5, . . . , xn, . . . }

where
∞⋃
i=1

Ai = { a11︸︷︷︸
x1

, a12︸︷︷︸
x2

, a21︸︷︷︸
x3

, a13︸︷︷︸
x4

, a22︸︷︷︸
x5

, a31︸︷︷︸
x6

, a14︸︷︷︸
x7

, a23︸︷︷︸
x8

, . . . , anm︸︷︷︸
xn

, . . . }

then, the function f :
⋃∞

i=1Ai 7→ N defined as f(xi) = i; i ∈ { 1, 2, 3, . . . } is a bijection between

the elements of
⋃∞

i=1Ai and N, the set of natural numbers. Now, we show that the function

defined above is injective. Suppose for contradiction that f(xi) = i; i = 1, 2, 3, . . . is not

injective; then f(xj) = f(xi) =⇒ xi 6= xj for some i, j ∈ N. But f(xi) = i and f(xj) = j.

Also, f(xj) = f(xi) =⇒ i = j. Let i = j := j∗, then xj = xj∗ ; xi = xj∗ . From our

assumption we have that xj 6= xi = xj∗ = xj =⇒ xj 6= xj which is a contradiction, hence f is

injective.

Next, the function f is surjective since the codomain of f is equal to its range. Hence, the

function f :
⋃∞

i=1Ai 7→ N define as f(xi) = i; i ∈ { 1, 2, 3, . . . } is a bijection. Therefore, the set⋃∞
i=1Ai is countable.

Theorem 2.4 The Cartesian product of finitely many countable sets is countable.

Proof:

We prove this theorem by induction. Let p(n) be a statement that depends on our theorem

(i.e if Ai is a countable set for each i ∈ { 1, 2, . . . n } then, A1 ×A2 × · · · ×An is countable), let

n = 2, then we show that A1×A2 is countable: if any of the two sets is empty then A1×A2 = ∅
and we have nothing to prove. If one of the sets is finite, say A is finite with k elements, then

the product of A1 = { a1, a2, . . . , ak } and A2 = { b1, b2, . . . , bn, . . . } is

A1 × A2 = { (a1, b1), (a1, b2), . . . , (a1, bn), . . .

(a2, b1), (a2, b2), . . . , (a2, bn), . . .
...

...
...

...

(ak, b1), (ak, b2), . . . , (ak, bn), . . . }

can be seen to be equivalent to N by listing the elements as

{ (a1, b1), (a2, b1), . . . , (ak, b1); (a1, b2), (a2, b2), . . . , (ak, b2); . . . ; (a1, bn), (a2, bn),

. . . , (ak, bn); . . . }
Next, let A and B be both countably infinite: A = { a1, a, . . .}, B = { b1, b2, . . .}. Then A×B
is equivalent to N can be exhibited as
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A1 × A2 = { (a1, b1), (a1, b2), . . . , (a1, bn), . . .

(a2, b1), (a2, b2), . . . , (a2, bn), . . .
...

...
...

...

(ak, b1), (ak, b2), . . . , (ak, bn), . . .
...

...
...

... . . . }
putting or arranging in order, we have:

A1 × A2 = { (a1, b1); (a2, b1), (a1, b2); (a3, b1), (a2, b2), (a1, b3); (a4, b1), (a3, b2),

(a2, b3), (a1, b4); . . . }
The function f : A1 × A2 7→ N define as f(a1, b1) = 1, f(a2, b1) = 2, f(a1, b2) = 3, f(a3, b1) =

4,. . . is a bijection; hence A1 × A2 is countably infinite. Therefore p(2) is true.

See also [10]

Assume that the statement is true for p(n− 1), that is A1 × A2 × · · · × An−1 is countable.

We now move further to prove that p(n) is true ∀ n ∈ N. That is we show that A1×A2×· · ·×An

is countable.

let A1 ×A2 × · · · ×An−1 = K, we now show that A1 × A2 × · · · × An−1︸ ︷︷ ︸
K

×An is countable. But

this reduces to only showing that K×An is countable. K is countable by induction assumption

and An is also countable by hypothesis. Hence K × An is countable, which has already been

established in the first step of our proof (that is p(2) is true). Implying that p(n) is true if

p(n− 1) is true ∀ i ∈ { 1, 2, . . . n }. Therefore the above theorem is true.

Theorem 2.5 There is no surjection from a set A to P(A).

Proof:

Consider any function f : A 7→ P(A) and let B = { a ∈ A | a /∈ f(a) }. We claim that there is

no b ∈ A : f(b) = B. Indeed, assume f(b) = B for some b ∈ A, then either b ∈ B hence b /∈ f(b)

which is a contradiction or b /∈ B = f(b) implying that b ∈ B which is again a contradiction.

Hence the map f is not surjective as claimed.

3 APPLICATIONS OF THEOREMS ON SETS

In these section, we show the applications of the theorems studied in the previous section.

EXAMPLES

Example 3.1 Every finite set is countable

Proof:

This follows from the definition of countable sets

12



Example 3.2 The set of all integers Z is countable

Proof:

Let f : N 7→ Z be define as:

f(n) =

n
2
; if n is even

1−n
2

; if n is odd

It suffice to show that f(n) define above is a bijection. We progress as follows: Observe that

f(n1) = f(n2) =⇒ n1

2
= n2

2
∀ n1, n2 even. So n1 = n2. Hence f(n1) = f(n2) =⇒ n1 = n2 ∀ n

even. Also let f(n1) = f(n2) =⇒ 1−n1

2
= 1−n2

2
; ∀ n1, n2 odd =⇒ 1−n1 = 1−n2 =⇒ n1 = n2.

Hence f(n1) = f(n2) =⇒ n1 = n2 ∀ n odd. Therefore, f is injective. Next, ∀ n
2
, 1−n

2
∈ Z,

∃ n ∈ N : f(n) = n
2

and f(n) = 1−n
2

. Hence f is surjective. In conclusion, f is a bijection,

Implying that Z is countable.

Example 3.3 The set of all rational numbers is countable

Proof:

Let the set of all rational numbers be denoted as
⋃∞

i=1Ai, where Ai is the set of rational

numbers which can be written with denominator i. Let such sets be Ai =
{

0
i
, −1

i
, 1
i
, −2

i
, 2
i
, . . .

}
,

i ∈ { 1, 2, . . . }. But each Ai is equivalent to the set of all positive integers and by theorem 2.3,

countable.

See also [10]

Example 3.4 The set R of real numbers is uncountable

Proof:

Suppose for contradiction that the set R is countable. Then R = {x1, x2, x3, x4, . . . }. En-

close each member xn of R in an open interval In =
(
xn − 1

2n+1 , xn + 1
2n+1

)
of length 1

2n

( i.e L(In) = xn + 1
2n+1 − xn − 1

2n+1 = 1
2n

), n = 1, 2, 3, . . . The sum of the lengths of In’s is
1
2

+ 1
22

+ 1
23

+ · · · =
1
2

1− 1
2

= 1 (that is sum to infinity of a geometric progression). But xn ∈ R
and R =

⋃∞
n {xn } ⊆

⋃∞
n In implies that the whole real line (whose length is infinite) is

contained in the union of intervals whose lengths add up to 1. Which is a contradiction, hence

R is uncountable.

See also [10]

Example 3.5 The set P(N) is uncountable

Proof:

By theorem 2.5 and corollary 2.4 we get that P(N) is uncountable.

Example 3.6 The set N× N is countable
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Proof:

By proposition 2.1; it suffices to construct an injective function f : N×N 7→ N. Let f : N×N 7→
N be define as f(a, b) = 2a3b. Assume that 2a3b = 2x3y . If a < x then 3b = 2x−a3y.The left

side of this equality is an odd number whereas the right side of the equation is an even number,

which implies that x = a and 3b = 3y. Hence b = y, therefore f is injective. Therfore by

theorem 2.2, the set N× N is countable.

Example 3.7 The set of real numbers in [0, 1] is uncountable.

Proof:

Let the set of all real numbers in [0, 1] be countable, that is {x : 0 ≤ x ≤ 1 } = {x1, x2, . . . , xn, . . . }.
Each real numbers in [0, 1] has a decimal expansion 0, a1, a2,. . . ,an,. . . where ai, i ∈ N, are any

of the digits 0, 1, 2, . . . ,9. We assume that the numbers whose decimal expansion terminate

such as 0.0573 are written as 0.0573000 . . . which is the same as 0.0572999 . . ., since all real

numbers in [0, 1] are countable, therefore, we can establish a one to one correspondence of the

members of [0, 1] with the set of positive integers in the following manner:

1↔ 0.a11a12a13 . . .

2↔ 0.a21a22a23 . . .

3↔ 0.a31a32a33 . . .

4↔ 0.a41a42a43 . . .

· · · · · · · · · · · · · · · · · ·
We now construct a number 0.b1b2b3 . . ., where

bi =

4; if aii = 5;

5; if aii 6= 5; i = 1, 2, 3, . . .

(any two digits can be used instead of 4 and 5). Then the number 0.b1b2b3 . . ., lies between 0

and 1 and is different from the numbers in the above list and therefore cannot be in the list,

contradicting the assumption that the set of all real numbers in [0, 1] is countable.

See also [10]

Example 3.8 The set of rational numbers in [0, 1] is countable.

Proof:

In order to show that the set of rational numbers in [0, 1] is countable, we must show that there

exists a one to one correspondence between the set of rationals of [0, 1] and the set of natural

numbers N.

Arrange the set of rationals according to increasing denominators as : 0, 1, 1
2
, 1

3
, 2

3
, 1

4
, 3

4
, 1

5
, 2

5
,

3
5
, 4

5
, 1

6
, 5

6
, 1

7
, 2

7
, 3

7
, 4

7
, 5

7
, 6

7
, . . . e.t.c. Then the one to one correspondence can be indicated as:
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1↔ 0 5↔ 2
3

9↔ 2
5

2↔ 1 6↔ 1
4

10↔ 3
5

3↔ 1
2

7↔ 3
4

11↔ 4
5

4↔ 1
3

8↔ 1
5

· · · · · · · · ·
See also [10]

4 CONCLUSION

The authors studied the major theorems concerning countable sets and showed their applica-

tions on sets.
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