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Abstract

The present article was aimed at investigating the effects of variable viscosity
on natural convection flow between vertical parallel plates in the presence of
heat generation/absorption. The nonlinear differential equations governing
the flow were solved using Homotopy perturbation method. The impacts of
the several governing parameters on the velocity and temperature profiles
are presented graphically and values of skin friction, rate of heat transfer,
mass flux and mean temperature for various values of physical parameters
are presented through tables. In the course of computation, it was revealed
that viscosity contributes to decrease velocity and hence reduced resistance
to flow. It was also discovered that as the heat generation increases, fluid
temperature and velocity increase, while it decrease with the increase in heat
absorption. Finally, it was concluded that the skin friction on both plates
increase as viscosity increases.

Keywords: variable viscosity; natural convection; heat generation/absorption;
Homotopy perturbation

Nomenclature
g - acceleration due to gravity [ms−2]
h - width of the channel [m]
S - dimensionless heat generation/absorption parameter
Q0 - heat generation/absorption coefficient [kgm−1s−3K−1]
T ∗ - dimensional fluid temperature [K]
T ∗w - channel wall temperature [K]
T ∗0 - temperature of the ambience [K]
T - dimensionless fluid temperature
u∗ - dimensional velocity [ms−1]
u - dimensionless velocity
U - dimensional velocity of the moving plate [ms−1]
y∗ - co-ordinate perpendicular to the plate [m]
y - dimensionless co-ordinate perpendicular to the plate
Gr - Grashof number
cp - specific heat at constant pressure [m2s−2K−1]
ρ - density of the fluid [kgm−3]
α - thermal diffusivity [m2s−1]
p - embedding parameter

1Corresponding Author : mktafida.555@gmail.com
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β - coefficient of thermal expansion [K−1]
µ - coefficient of viscosity
ν - kinematic viscosity [m2s−1]

1 Introduction

The study of natural convection flow in a vertical channel has received a great deal of
attention due to its applications such as, engineering field, geophysics, oceanography
and environmental problems. A detailed review of natural convection flow and heat
transfer can be found in the following Abdou [1] studied the effect of radiation with
temperature dependent viscosity and thermal conductivity on an unsteady stretch-
ing sheet through porous media. He concluded that velocity and temperature across
the boundary layer increase with increasing viscosity variation parameter. Santana
and Hazarika [2] examined the effects of variable viscosity and thermal conductivity
on magnetohydrodynamics free convection and mass transfer flow over an inclined
vertical surface in a porous medium with heat generation. They concluded that
an increasing values of viscosity retard the velocity but enhances the temperature.
Adel et al. [3] worked on the similarity solution for steady magnetohydrodynamics
Falkner-Skan heat and mass transfer flow over a wedge in porous media consider-
ing thermal-diffusion and diffusion-thermo effects with variable viscosity and thermal
conductivity. They discovered that the velocity of the fluid is found to increase with
increase of the temperature dependent fluid viscosity. Makungu et al. [4] studied
the effects of variable viscosity of nanofluid flow over a permeable wedge embedded
in saturated porous medium with chemical reaction and thermal radiation. Sher
et al. [5] studied squeezing nanofluid flow between two parallel plates under the
influence of MHD and thermal radiation. They reported that temperature and con-
centration distributions vary inversely with Prandtl number, that is temperature
distribution drop with large number of Prandtl number and rise for lesser values of
Prandtl number. Syed et al. [6] considered a Bioconvection model for squeezing
flow between parallel plates containing Gyrotactic microorganisms with impact of
thermal radiation and heat generation/absorption. They concluded that the con-
vergence of the homotopy method along with the variation of different physical
parameters has been observed numerically. Ajibade and Tafida [7] studied viscous
dissipation effect on steady natural convection Couette flow of heat generating fluid
in a vertical channel. The outcome of their study showed that fluid temperature
and velocity increase with an increase in heat generation while it decreases with
the increase in heat absorption. Hazarika and Gopal [8] analyzed the effects of
variable viscosity and thermal conductivity on magnetohydrodynamics flow past a
vertical plate. They observed that the velocity profile decreases with the increase
of variable viscosity is not so prominent in case of temperature profile. Mohamed [9]
examined dissipation and variable viscosity on steady magnetohydrodynamics free
convective flow over a stretching sheet in presence of thermal radiation and chemical
reaction. He discovered that the velocity decreases with an increase in viscosity
parameter. Phukan and Hazarika [10] studied the effects of variable viscosity and
thermal conductivity on magnetohydrodynamics free convective flow of micropolar
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fluid past a stretching plate through porous medium with radiation, heat genera-
tion and Joule heating. They reported that velocity decreases with the increase
of the viscosity parameter. In another article, Noghrehabadi et al. [11] examined
the effects of variable viscosity and thermal conductivity on natural convection of
nanofluids past a vertical plate in a porous media. The outcomes showed that
an increase of variable viscosity parameter increases the velocity profiles whereas
decreases the concentration profiles. Moreover, variation of viscosity parameter does
not show the significant effect on the temperature profiles. All the above mentioned
studies did not consider the effect of heat generation/absorption.
The study of heat generation/absorption in moving fluids is important in several
physical problems dealing with chemical reactions and those concerned with dissoci-
ating fluids. Possible heat generation effects may alter the temperature distribution
and therefore, the particle deposition rate. Sher et al. [12] studied the rotating
flow of MHD carbon nanotubes over a stretching sheet with the impact of non-linear
thermal radiation and heat generation/absorption. They discovered that the rate of
heat is enhanced as the heat generation/absorption value is increased. Consequently,
He further discovered that the thermal thickness of boundary film is a function of
heat generation/absorption. Chamkha and Camille [13] solved hydromagnetic flow
with heat and mass transfer over a flat plate in the presence of heat generation or
absorption and thermophoresis. Mohammad et al. [14] studied entropy genera-
tion on nanofluid thin film flow of Eyring-powell fluid with thermal radiation and
MHD effect on an unsteady porous stretching sheet. They outcome of their study
showed that the growing behavior of Prandtl number increases the surface temper-
ature where the opposite effect is found for an unsteady parameter, that is, the
larger values of an unsteadiness reduce the surface temperature. Natural convection
with heat generation along a uniformly heat vertical wavy surface have been demon-
strated by Molla et al. [15]. Veena et al. [16] worked on heat transfer characteristics
in the laminar boundary layer flow of a viscoelastic fluid over a linearly stretching
continuous surface with variable wall temperature subjected to suction or blowing.
Jha and Ajibade [17] considered the case of unsteady free convective Couette flow
of heat generating/absorbing fluid. The outcome of their study showed that
the skin friction increased as the external heating/cooling increases, likewise an in-
crease in heat absorption increases the rate of heat transfer on the moving plate and
decreases the rate of heat transfer on the stationary plate.
The objective of this study is to investigates the effect of variable viscosity on nat-
ural convection flow between vertical parallel plates in the presence of heat genera-
tion/absorption. The equations governing the flow have some non linear terms in
them so that obtaining closed form solution is a daunting task. Such problems can
therefore be approached by numerical schemes or some approximate solution meth-
ods. One of the efficient methods is the perturbation method. However, solutions
obtained by perturbation method are restricted to small perturbation parameters,
therefore to overcome this restriction, another method called Homotopy perturba-
tion method was introduced.
He [18] was first studied to solve linear, non-linear and coupled problems in partial
or ordinary form. He [19] studied a coupling method of a Homotopy technique and
a perturbation technique for non-linear problems. In another article, He [20] stud-
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ied a new non linear analytical technique using Homotopy perturbation methods.
Da-Hua [21] studied Homotopy perturbation method for nonlinear oscillators.
From the computational point of view it is identified and proved be-
yond all doubts that the Homotopy perturbation method is very efficient
and powerful tool for solving coupled and nonlinear system of differen-
tial equations. In this paper, we extend the work of Jha and Ajibade
[17] to investigate the effect of variable viscosity on natural convection
flow through a vertical parallel plates in the presence of heat genera-
tion/absorption. The velocity and temperature field are obtained and
discussed for some carefully selected values of the flow parameters.

2 Mathematical analysis

We considers a steady natural convection flow of an incompressible viscous fluid in
a vertical channel of width h. The flow is assumed to be in the x∗ - direction which
is taken vertically along one of the plates while y∗ - axis is taken normal to it. The
second is placed h distance away from the first. The temperature of the fluid and
one of the channel plates are kept at T0 while the temperature of the plate y∗ = 0
is raised or fell to Tw and thereafter maintained constant. Also, the plate y∗ = 0
moves in its own plane impulsively at a uniform velocity u∗ = U while the other
plate remains at rest. The flow configuration and coordinates system is shown in
figure 1.

Figure 1: Schematic diagram of the problem

Under the usual assumption of Boussinesq’s approximation, the governing equa-
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tions of the continuity, momentum and energy are as follows:

du∗

dx∗
= 0, (1)

1

ρ

d

dy∗

(
µ∗
du∗

dy∗

)
+ gβ(T ∗ − T0) = 0, (2)

α
d2T ∗

dy∗2
− Q0

ρcp
(T ∗ − T0) = 0. (3)

The viscosity of the working fluid is assumed to vary linearly with temperature as
follows

µ∗ = µ0(1− λ∗(T ∗ − T0))

while the boundary conditions are:

u∗ = U, T ∗ = Tw at y∗ = 0,

u∗ = 0, T ∗ = T0 at y∗ = h.
(4)

Due to the nature of the quantities that are given in different dimensions, we intro-
duce some dimensionless quantities that can transform the governing equations and
their boundary conditions into dimensionless form. The dimensionless quantities
used in equations (1) - (3) and the boundary condition (4) are:

y =
y∗

h
, u =

u∗

U
, T =

T ∗ − T0
Tw − T0

, S =
Q0h

2

k
,

Gr =
gβh2(Tw − T0)

vU
, λ = λ∗(Tw − T0).

(5)

By using the dimensionless quantities, the governing equations and the boundary
conditions are transformed into non-dimensional form as

du

dx
= 0, (6)

(1− λT )
d2u

dy2
− λdu

dy
· dT
dy

+Gr(1− λT )T = 0, (7)

d2T

dy2
− ST = 0. (8)

And the boundary conditions are:

u = 1, T = 1 at y = 0,

u = 0, T = 0 at y = 1.
(9)

2.1 Homotopy perturbation method

In order to illustrate the basic ideas of the Homotopy Perturbation Method (HPM),
we consider the following nonlinear differential equation

A(u)− f(r) = 0, r ∈ Ω, (10)
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with the boundary conditions

B(u,
∂u

∂n
) = 0 r ∈ Γ, (11)

where A is a general differential operator, B is a boundary operator, f(r) is known
analytical function and Γ is the boundary of the domain Ω, respectively. Generally
speaking, the operator A can be divided into two parts which are L and N , where
L is linear part and N is nonlinear part. Therefore (10) can be written as:

L(u) +N(u)− f(r) = 0, r ∈ Ω, (12)

By the homotopy techniques, we construct a homotopy as follows
v(r, p) : Ω× [0, 1]→ R which satisfies:

H(v, p) = (1− p)[L(v)− L(u0)] + p[A(v)− f(r)] = 0, (13)

in equation (13), p ∈ [0, 1] is an embedding parameter, while u0 is an initial approx-
imation of equation (10), which satisfies the boundary conditions. Clearly from eqn
(13), we have

H(v, 0) = L(v)− L(u0) = 0, (14)

H(v, 1) = A(v)− f(r) = 0. (15)

We can assume that the solution of equation (13) can be written as a power series
in p:

v = v0 + pv1 + p2v2 + ..., (16)

setting p = 1 gives the approximate solution of eqn (10) as

u = lim
p→1

v = v0 + v1 + v2 + .... (17)

Applying the Homotopy perturbation technique to solve the governing equations in
the present problem, we construct a convex Homotopy on eqs. (7) and (8) to get

H(u, p) = (1− p)
[
d2u

dy2

]
+ p

[
d2u

dy2
+ λT

d2u

dy2
+ λ

du

dy
· dT
dy
−GrT + λGrT 2

]
= 0,(18)

H(T, p) = (1− p)
[
d2T

dy2

]
+ p

[
d2T

dy2
− ST

]
= 0, (19)

using infinite series (18) and (19) to define u and T as follows

u = u0 + pu1 + p2u2 + ...,

T = T0 + pT1 + p2T2 + ....
(20)
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Substituting eqn. (20) into eqns. (18) and (19), we have

d2u0
dy2

+ p
d2u1
dy2

+ p2
d2u2
dy2

+ p3
d2u3
dy2

+ ... = pλT0
d2u0
dy2

+ p2
[
λT0

d2u1
dy2

+ λT1
d2u0
dy2

]
+ p3

[
λT0

d2u2
dy2

+ λT2
d2u0
dy2

+ λT1
d2u1
dy2

]
+ ...

+ pλ
du0
dy
· dT0
dy

+ p2
[
du0
dy
· dT1
dy

+ λ
du1
dy
· dT0
dy

]
+ p3

[
λ
du0
dy
· dT2
dy

+ λ
du2
dy
· dT0
dy

+ λ
du1
dy
· dT1
dy

]
+ ...

− pGrT0 − p2GrT1 − p3GrT2 − ...
+ pλGrT 2

0 + p2 [2λGrT0T1]

+ p3
[
2λGrT0T2 + λGrT 2

1

]
+ ...

(21)

d2T0
dy2

+ p
d2T1
dy2

+ p2
d2T2
dy2

+ p3
d2T3
dy2

+ ... = pST0 + p2ST1 + p3ST2 + ... (22)

By comparing the coefficient of p0, p1, p2 and p3 of eqns. (21) and (22), we have

P 0 :
d2u0
dy2

= 0, (23)

P 0 :
d2T0
dy2

= 0, (24)

P 1 :
d2u1
dy2

= λT0
d2u0
dy

+ λ
du0
dy
· dT0
dy
−GrT0 + λGrT0

2, (25)

P 1 :
d2T1
dy2

= ST0, (26)

P 2 :
d2u2
dy2

= λT0
d2u1
dy2

+ λT1
d2u0
dy2

+ λ
du0
dy
· dT1
dy

+ λ
du1
dy
· dT0
dy
−GrT1

+ 2λGrT0T1,

(27)

P 2 :
d2T2
dy2

= ST1, (28)

P 3 :
d2u3
dy2

= λT0
d2u2
dy2

+ λT2
d2u0
dy2

+ λT1
d2u1
dy2

+ λ
du0
dy
· dT2
dy

+ λ
du2
dy
· dT0
dy

+ λ
du1
dy
· dT1
dy
−GrT2 + 2λGrT0T2 + λGrT 2

1 ,

(29)

P 3 :
d2T3
dy2

= ST2. (30)
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The boundary conditions are transformed also as

T0(0) = 1, T1(0) = T2(0) = T3(0) = ... = 0,

T0(1) = T1(1) = T2(1) = ... = 0,

u0(0) = 1, u1(0) = u2(0) = u3(0) = ... = 0,

u0(1) = u1(1) = u2(1) = ... = 0.

(31)

Since the zeroth order of the Homotopy gives a linear ordinary differential equations,
it is easily solvable without making recourse to initial guess. Therefore solving eqs.
(23) and (24) and applying the boundary conditions T0(0) = 1 and T0(1) = 0,
u0(0) = 1 and u0(1) = 0, we obtain eqs. (32) and (33) as

u0 = A1y + A2, (32)

T0 = B1y +B2. (33)

Solving eqs. (25) and (26) and applying the boundary conditions T1(0) = 0 and
T1(1) = 0, u1(0) = 0 and u1(1) = 0, we obtain eqs. (34) and (35) as

u1 =
λy2

2
+ λGr

[
y2

2
− y3

3
+
y4

12

]
−Gr

[
y2

2
− y3

6

]
+ A3y + A4, (34)

T1 = S

[
y2

2
− y3

6

]
+B3y +B4. (35)

Solving eqs. (27) and (28) and applying the boundary condition T2(0) = 0 and
T2(1) = 0, u2(0) = 0 and u2(1) = 0, we obtain eqs. (36) and (37) as

u2 = λ2
[
y2

2
− y3

6

]
+ λ2Gr

[
y2

2
− y3

2
+
y4

4
− y5

20

]
− λGr

[
y2

2
− y3

3
+
y4

12

]
− λS

[
y3

6
− y4

24

]
+
λSy2

6
− λ2y3

6
− λ2Gr

[
y3

6
− y4

24
+
y5

60

]
− λGry2

6

+ λGr

[
y3

6
− y4

24

]
+
λ2y2

4
+
λ2Gry2

8
−GrS

[
y4

24
− y5

120

]
+
GrSy3

18

+ 2λGrS

[
y4

24
− y5

30
+

y6

180

]
− 2λGrS

3

[
y3

6
− y4

12

]
+ A5y + A6,

(36)

T2 = S2

[
y4

24
− y5

120

]
− S2y3

18
+B5y +B6. (37)
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Solving eqs. (29) and (30) and applying the boundary condition T2(0) = 0 and
T2(1) = 0, u2(0) = 0 and u2(1) = 0, we obtain eqs. (38) and (39) as

u3 = λ3
[
y2

2
− y3

3
+
y4

12

]
+ λ3Gr

[
y2

2
− 2y3

3
+
y4

2
− y5

5
+
y6

30

]
− λ3

[
y3

6
− y4

12

]
− λ2Gr

[
y2

2
− y3

2
+
y4

4
− y5

20

]
+
λ2S

3

[
y2

2
− y3

6

]
− λ2S

[
y3

6
− y4

8
+
y5

40

]
− λ3Gr

[
y3

6
− y4

6
+
y5

15
− y6

90

]
+ λ2Gr

[
y3

6
− y4

8
+
y5

40

]
+
λ3

2

[
y2

2
− y3

6

]
− λ2Gr

3

[
y2

2
− y3

6

]
+
λ3Gr

4

[
y2

2
− y3

6

]
+
λS2y2

72
+
λGrS

3

[
y3

6
− y4

12

]
− λGrS

[
y4

24
− y5

30
+

y6

180

]
+ 2λ2GrS

[
y4

24
− 7y5

120
+
y6

36
− y7

252

]
− λS2y2

90

− 2λ2GrS

3

[
y3

6
− y4

6
+
y5

20

]
+ λ2S

[
y4

24
− y5

120

]
− λGrS

[
y4

24
− y5

30
+

y6

180

]
+ λ2GrS

[
y4

24
− 7y5

120
+
y6

36
− y7

252

]
− λ2Sy3

18
− λ2GrS

3
+

[
y3

6
− y4

6
+
y5

20

]
+
λGrS

3

[
y3

6
− y4

12

]
− λS2

[
y5

120
− y6

720

]
− λ3

[
y3

6
− y4

24

]
+
λ2Gry3

18
− λ3y3

12

− λ3Gr
[
y3

6
− y4

8
+
y5

20
− y6

120

]
+ λ2S

[
y4

24
− y5

120

]
+ λ2Gr

[
y3

6
− y4

12
+
y5

60

]
+ λ3Gr +

[
y4

24
− y5

60
+

y6

360

]
− λ2Gr

[
y4

24
− y5

120

]
+ λGrS

[
y5

120
− y6

720

]
+
λ3y4

24
− λ3Gry3

24
− λ2Sy3

18
− 2λ2GrS

[
y5

120
− y6

180
+

y7

1260

]
− λGrSy4

72

+
2λ2GrS

3

[
y4

24
− y5

60

]
+

5λ3y2

24
+

9λ3Gry2

80
− 7λ2Gry2

48
+
λ2Sy2

48
+
λGrSy2

90

− λ2GrSy2

72
+ λ2S

[
y4

12
− y5

40

]
− λ2Sy3

18
+ λ2GrS

[
y4

12
− 3y5

40
+
y6

36
− y7

252

]
− λ2GrS

3

[
y3

6
− y4

12
+
y5

60

]
− λGrS

[
y4

12
− y5

20
+

y6

120

]
− λ2S

2

[
y3

6
− y4

24

]
+
λGrS

3

[
y3

3
− y4

12

]
− λGrSy2

18
+
λ2Sy2

12
− λ2GrS

4

[
y3

6
− y4

24

]
+
λ2GrS

24

−GrS2

[
y6

720
− y7

5040

]
+
GrS2y3

360
− GrS2y3

270
− λGrS2

9

[
y5

20
− y6

30

]
− λ2Sy3

18

+ λGrS2

[
y6

120
− y7

252
+

y8

2016

]
+ 2λGrS2

[
y6

720
− y7

840
+

y8

6720

]
+
λGrS2y4

108

− 2λGrS2

3

[
y5

40
− y6

180

]
+ A7y + A8,

(38)

T3 = S3

[
y6

720
− y7

5040

]
− S3y5

360
+
S3y3

270
+B7y +B8. (39)
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Eqns (32) - (39) gives the expressions for the velocity and temperature as

u = u0 + u1 + u2 + u3 + ..., (40)

T = T0 + T1 + T2 + T3 + .... (41)

where,

A1 = B1 = −1, A2 = B2 = 1, A3 =
Gr

3
− λ

2
− λGr

4
, B3 = −S

3
,

A4 = B4 = A6 = B6 = A8 = B8 = 0,

A5 = −5λ2

12
− 9λ2Gr

40
+

7λGr

24
− λS

24
− GrS

45
+
λGrS

36
, B5 =

S2

45
,

A7 = −3λ3

8
− 151λ3Gr

720
+

193λ2Gr

720
− 2λ2S

45
− 13λGrS

720
+

1673λ2GrS

70560

+
λS2

240
+

2GrS2

945
− λGrS2

270
, B7 = −2S3

945
.

To obtain the skin friction and rate of heat transfer at the surfaces of the channel
boundaries, the expressions for velocity and temperature are differentiated with
respect to y, that is τ = (1− λT )du

dy
|y=0,y=1 and Nu = dT

dy
|y=0,y=1 so that,

du

dy
|y=0 = −1 + A3 + A5,

τ0 = (1− λT )
du

dy
|y=0, (42)

du

dy
|y=1 = −1 + λ− Gr

2
+ A3 +

λ2

2
+
λ2Gr

12
+
GrS

24
− 2λGrS

45
+ A5,

τ1 = (1− λT )
du

dy
|y=1, (43)

dT

dy
|y=0 = −1 +B3 +B5, (44)

dT

dy
|y=1 = −1 +

S

2
+B3 −

S2

24
+B5, (45)

To obtain the mass flux Q, we have

Q =
1

2
+
λ

6
− λGr

45
− Gr

8
+
A3

2
+
λ2

6
+

4λ2Gr

45
+
GrS

144
− λGrS

840
+
λS

45
+
A5

2
, (46)

and mean temperature θm, we have

θm =

∫ 1

0
uT (y)dy∫ 1

0
u(y)dy

, (47)
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3 Results and discussion

The present work analyses the effects of variable viscosity on natural convection flow
between vertical parallel plates in the presence of heat generation/absorption using
Homotopy perturbation method. The velocity and temperature fields are presented
graphically in figures 2-5 for various values of Grashof number (Gr), heat genera-
tion/absorption parameter (S) and variable viscosity (λ). For the purpose of this
discussion, the parameters of interest are carefully selected between 1 ≤ Gr ≤ 10,
−2 ≤ S ≤ 2 and −1 ≤ λ ≤ 1.
Figures 2 and 3 display temperature and velocity profiles for different values of heat
generation/absorption parameter (S). It should be noted that positive values of S
signifies heat absorption while negative values of S signifies heat generation. It is
seen from the figures that as the heat generation (S < 0) increases, fluid temperature
and velocity increase while, fluid temperature and velocity decrease with increase in
heat absorption (S > 0). Increasing the heat generation parameter causes the fluid
temperature to increase and it strengthens the convection current within the channel
which in turn increases the fluid velocity. In addition, fluid temperature drop as a
result of increasing the heat absorption parameter and the thermal boundary layer
becomes thinner thereby reduces the velocity distribution of the fluid as shown in
figure 3.
Figure 4 shows the influence of thermal buoyancy parameter (Gr) on the fluid ve-
locity for fixed values of heat generation/absorption parameter (S) and variable
viscosity parameter (λ). It is clear from this figure, the velocity profile increases
with increases in the values of thermal buoyancy. Increasing the buoyancy parame-
ter is made possible by decreasing the fluid viscosity which lead to thickening of the
momentum boundary layer and hence an increase in velocity with growing Gr.
Figure 5 depict the effect of viscosity parameter (λ) on the velocity profile for fixed
values of heat generation/absorption parameter (S) and Grashof number (Gr). It
is seen from the figure that velocity decreases with the increase of the viscosity pa-
rameter and hence reduced resistance to flow.
The skin friction on both plate is simulated and presented in Table 1. From Table
1 it is evident to show that growing buoyancy parameter, heat generation as well
as viscosity have tendency to increase the skin friction on both plates. However,
heat absorption contributes a decrease in the skin friction and this due to velocity
decrease caused by increasing heat absorption which consequently leads to decrease
in the skin friction on both plates.
Table 2 reveals the numerical values of rate of heat transfer on both plates. A gen-
eral view of this table indicates that growing buoyancy parameter, heat generation
as well as viscosity leads to a significant changes in the rate of heat transfer, this can
be attributed to decrease on the heated plate while the opposite trend is observed on
the cold plate. Furthermore, heat absorption leads to increase in the heat transfer
on the heated plate.
Table 3 presents the mass flux Q within the channels. It is clearly seen that the
mass flux increases with the increase in heat generation and decreases with increas-
ing heat absorption. The table further shows that growing buoyancy parameter and
viscosity leads to increase the mass flux.
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Table 4 shows the numerical values of mean temperature θm. It is observed that
with the increase in heat generation, mean temperature decreases and the reverse
trend is observed in heat absorption.
To validate this problem, we compare our results obtained for temperature as well
as velocity are in good agreement with those of Jha and Ajibade [17] as shown in
table 5 which shows that the Homotopy perturbation method is an efficient tool for
solving coupled and nonlinear system of differential equations.

4 Conclusion

In this paper we have studied the effect of variable viscosity on natural convection
flow between vertical parallel plates in the presence of heat generation/absorption,
the work concluded that as the heat generation increases, fluid temperature and
velocity increase while fluid temperature and velocity decreases with increase in heat
absorption and also the velocity profile increases with increase in thermal buoyancy
parameter. In addition, velocity decreases with the increase of the viscosity and
hence reduced resistance to flow. Finally, it is concluded that the skin friction on
both plates increase as viscosity increases.
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Figure 2: Velocity profile for different values of S (Gr = 8.0, λ = −0.2)

Figure 3: Temperature profile for different values of S (Gr = 8.0, λ = −0.2)
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Figure 4: velocity profile for different values of Gr (S = 2.0, λ = −0.2)

Figure 5: Velocity profile for different values of λ (S = 2.0, Gr = 8.0)
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Table 1: Estimated numerical values of skin friction τ0 and τ1
Gr = 5.0, λ = −0.3 Gr = 8.0, λ = −0.1

S τ0 τ1 τ0 τ1
-1 0.98240 2.23681 2.04270 2.60022

-0.5 0.89122 2.16944 1.93499 2.51369
0.5 0.70886 2.03472 1.71958 2.34064
1 0.61768 1.96736 1.61187 2.25411

Table 2: Estimated numerical values of rate of heat transfer Nu0 and Nu1
Gr = 5.0, λ = −0.3 Gr = 8.0, λ = −0.1

S Nu0 Nu1 Nu0 Nu1
-1 0.64444 1.18611 0.64313 1.93121

-0.5 0.82778 1.08819 0.81146 1.96662
0.5 1.16111 0.92153 1.16010 1.99301
1 1.31111 0.85278 1.29000 2.03011

Table 3: Estimated numerical values of mass flux Q
Gr = 5.0, λ = −0.3 Gr = 8.0, λ = −0.1

S Q Q
-1 0.64444 0.64513

-0.5 0.82778 0.83146
0.5 1.16111 1.18210
1 1.31111 1.41000

Table 4: Estimated numerical values of mean temperature θm
Gr = 5.0, λ = −0.3 Gr = 8.0, λ = −0.1

S θm θm
-1 0.49416 0.40148

-0.5 0.55081 0.50380
0.5 0.67386 0.72479
1 0.74085 0.84436
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Table 5: Comparison of numerical values between the present problem and of Jha
and Ajibade (17)

Jha and Ajibade (17) Present work
Gr = 8.0, y = 0.5 Gr = 8.0, λ = 0, y = 0.5

S Temperature V elocity Temperature V elocity
-1 0.56974696 1.05797571 0.56967230 1.05737847

-0.5 0.53296476 1.02743612 0.53289252 1.02736545
0.5 0.47029886 0.97521826 0.47029486 0.97528212
1 0.44340944 0.95272446 0.44348524 0.95321181
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