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ABSTRACT  9 
 10 
This paper presents the one-dimensional, positive temperature coefficient (PTC) thermistor 
equation, using the hyperbolic-tangent function as an approximation to the electrical 
conductivity of the device. The hyperbolic-tangent function describes the qualitative 
behaviour of the evolving solution of the thermistor in the entire domain. The steady state 
solution using the new approximation yielded a distribution of device temperature over the 
spatial dimension and all the phases of the temperature distribution of the device without 
having to look for a moving boundary. The analysis of the steady state solution and the 
numerical solution of the unsteady state is presented in the paper. 
 11 
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1. INTRODUCTION  15 
 16 
Thermistors are thermo-electric devices made from ceramic materials. The electrical 17 
conductivity of the device varies strongly with temperature; this effect has enabled 18 
thermistors to be used as switching devices in many electronic circuits. The study of the 19 
thermistor problems in heat and current flow has a long history of applications in several 20 
areas of electronics and its related industries [1]. There are generally two kinds of 21 
thermistors; one is the positive temperature coefficient (PTC) thermistor in which the 22 
electrical conductivity decreases with increasing temperature, and the other is the negative 23 
temperature coefficient thermistor for which the electrical conductivity increases with 24 
increasing temperature [2]. 25 
 26 
The current flows through the PTC thermistor heating it to above a critical temperature, at 27 
which its conductivity decreases substantially. This leads to a steady state where the heat 28 
generated is balanced by the heat lost to the surroundings. For the device to be useful, the 29 
steady state current need to be much less than the original current.  30 
Mathematical problems related to the heat and current flow in the thermistor under the title 31 
‘‘the thermistor problem’’ have been studied by several authors. The aspects of modelling, 32 
existence, uniqueness, and behaviour of solutions have also been presented [4, 5, 6, and 7]. 33 
Wood and Kutluay [8] gave an approximate functional solution for the one-dimensional 34 
thermistor problem with a step function electrical conductivity, using the heat balance 35 
integral method. They showed that the solution exhibits all the correct physical 36 
characteristics and that the simple model also exhibits a possible mechanism by which the 37 
observed cracking of the thermistor might be initiated. Bahadir [9] solved the PTC thermistor 38 
problem numerically by finite element method using quadratic splines as shape functions 39 
and also obtained the steady state solutions. The result obtained was compared with the 40 
analytical solution and found to exhibit correct physical characteristics of the PTC thermistor. 41 



 

 

Kutluay [8] gave the description of the three phases of steady state solutions obtainable 42 
assuming monotonicity of the temperature profile such that the point 0x will always be 43 

the hottest and the first point to reach the critical temperature 1cU above which  drops. 44 

Due to the decrease in , the rate of heat loss at 1x will ultimately equal the internal heat 45 

generation and a steady-state will be reached [7, 8].  46 
 47 
1.1. Mathematical Approximation of the Electrical Conductivity 48 

Traditionally, the step function was used as an approximation for the electrical conductivity 49 
though it does not completely reflect its qualitative behaviour. This has necessitated the 50 
search for a more representative approximation of the PTC conductivity characteristics for 51 
use in solving the PTC thermistor problem. Many researchers have therefore sought to find 52 
an approximate representation for the electrical conductivity. 53 
Fowler et al [10] represented the variation of  with u  (electrical conductivity) as an 54 
exponential function which is continuous but with discontinuous derivatives at 1u and55 

2u . 56 
Kutluay et al [11] observed from the step function conductivity that the electrical conductivity 57 
in the warm phase drops sharply from 1 at the temperature 10 u   to at the 58 

temperature 1u  and that the decrease can cause oscillation in the predicted temperature 59 
when the finite difference methods are applied to the problem. In order to avoid unwanted 60 
oscillations in the numerical solution, they presented a modification to the electrical 61 
conductivity depending on the location of the interface unknown a priori.   62 
Kutluay and Wood [12] introduced a slightly more realistic model for the electrical 63 
conductivity ( )(u ) whose value decreases linearly from 1 at the critical temperature 64 

1critu  to at a temperature 1  which is mathematically equivalent to a ramp function. 65 

In the limit as  approaches zero, the ramp model approaches the step model. In other 66 
words, its behaviour is a ‘‘mushy'' form of the step function conductivity. In their analysis, 67 
they concluded that the ramp function is also not particularly a good model for electrical 68 
conductivity since it is, of course, a stretched form of step one.   69 
 70 
This paper presents a solution of the PTC thermistor problem using a hyperbolic-tangent 71 
approximation of the device conductivity which is a good representation of its qualitative 72 
behaviour. The exact steady-state solution of the problem, using this new approximation is 73 
presented as well as the numerical solution using the method of lines. 74 
 75 
In the rest of the paper, a recollection of the PTC thermistor model is presented in section 76 
two of the paper. The steady-state solution of the problem, using the method of asymptotic 77 
expansion and the numerical solution using the method of lines are shown. 78 
  79 
 80 
2. MATERIAL AND METHODS  81 
 82 
2.1.The Problem Statement 83 

The typical thermistor model is an initial-boundary-value problem comprising of coupled non-84 
linear differential equations for heat and current flow. The dimensionless temperature of the 85 
PTC thermistor ),( txu  satisfies the following heat equation [13, 14] 86 
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   93 
in which  is a positive heat transfer coefficient and  is the ratio of electric heating to heat 94 

diffusion. 95 
The electric potential ),( tx in the device is governed by  96 
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subject to the boundary condition 98 
0,0),0(  tt , 0,0),1(  tt      (6) 99 

and the initial condition  100 
10,)0,(  xxx         (7) 101 

In the traditional solution of the thermistor problem, )(u  the electrical conductivity is 102 

approximated by   103 
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which is mathematically equivalent to a step function and with a typical value 510 . 105 

However, The electrical conductivity of a physical PTC device does not display the step-wise 106 
discontinuity exhibited by the approximation equation (8). 107 

  108 
 109 
Figure 1.Typical variation of resistance with       Figure 2.Typical variation of conductivity 110 
temperature for a PTC thermistor.                       with Temperature for a PTC thermistor. 111 
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 113 
The typical Resistance/Temperature characteristic is shown in figure 1 [15]. From this, we 114 
obtain a proportional conductivity/resistance characteristics as shown in figure (2) 115 
 Following the disparity in the qualitative behaviour of )(u in the physical PTC 116 

characteristics and the approximation in equation (8), many researchers began to search for 117 
more appropriate representation for the electrical conductivity. 118 
 119 
2.2. A NEW APPROXIMATION OF THE ELECTRICAL CONDUCTIVITY 120 

In this paper, the study presents a new approximation to the electrical conductivity as given 121 
below 122 

20)(tanh)()(  uuku     (9) 123 

This is a hyperbolic tangent function where 2 is the initial conductivity,   is the final 124 

conductivity,  is the normalized critical temperature, u is the normalized temperature and 125 

k controls the slope. This approximation is so generic that by adjusting the slope it can be 126 
made to approximate the step function. For example taking 500k , we have a step function 127 

approximation. 128 
Consider an initial conductivity 12  , a critical temperature 1u and 100k , the 129 

hyperbolic tangent approximation can be written as 130 
20)1(100tan)5.0(5.0)(  uuu    (10) 131 

A graph of a typical conductivity variation with temperature (normalized) alongside that of the 132 
hyperbolic tangent approximation is presented in figure (3). 133 

 134 
Figure 3.  Graph of typical Conductivity variation with Temperature and that of the 135 
new approximation.  136 
 137 
This electrical conductivity given by the hyperbolic tangent function is defined for the full 138 
range 20  u and covers the traditional points of discontinuities, assumed in most 139 
reported studies [22-24]. 140 
However our new approximation, when evaluated at 1u gives 1)( u , which in related 141 

literature, corresponds to the cold phase; and when evaluated at 1u gives  )(u , 142 

which is traditionally referred to as the hot phase. In the same manner, the warm phase may 143 
be characterised by values of u near unity. 144 
The exact solution of the electric potential problem (5), (6) and (7) is easily found to be  145 
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xtx ),(  ( 10  x and 0t ) and the thermistor problem is reduced to a heat 146 

conduction description 147 

  0,10,)1(100tan)5.0(5.0
2

2










txu
x

u

t

u    (11) 148 

supplemented by boundary conditions (2) and (3) and the initial condition (4). 149 
 150 
2.3. EXACT STEADY-STATE SOLUTIONS 151 

At steady-state the time derivative in the model equation vanishes, we obtain the steady-152 
state solution for each phase as follows. For the cold and hot phases, the steady-state 153 
solution is obtained by standard analytical methods and results obtained are the same with 154 
[7]. 155 
 156 
2.3.1. Cold phase ( ൏ ݐ   ሻ    157࢚

In this phase 
c

UtxU  ),(0 and 1)( U , so the steady-state equation is 158 
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subject to boundary conditions (2) and (3) and the solution is 160 
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Enforcing the condition 1)0( u , we have 163 
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2.3.2. Hot Phase (ࢁሺ࢞, ሻ࢚  ሻࢁሺ࣌ and ࢉࢁ  ൌ  ሻ.  166ࢾ

The steady state equation is  167 
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subject to boundary conditions (2) and (3) and the solution is  169 
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Enforcing the condition 1)1( u , we have  171 
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 173 
2.3.3. Warm phase 174 

The electrical conductivity is described by  175 
)1(100tan)5.0(5.0)(  uu  and the steady state equation is given by 176 
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we write (18) as 180 
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where )5.0(    184 

We now solve (19) by the method of asymptotic expansion [16].  185 
Assume a solution of the form 186 
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Substituting in (19) and sorting yields 188 
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So that (22) can be written as  196 
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In polynomial form, this can be written as 201 
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Applying the boundary conditions and simplifying, we have 204 
1A , 0B , 0C     (27) 205 

Substituting (27) we have 206 
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Enforcing the condition )0(1)1( uu  , we have 208 
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 210 
2.4. NUMERICAL SOLUTION (METHOD OF LINES) 211 

The method of lines is regarded as a special finite difference method but more effective with 212 
respect to accuracy and computational time than the regular finite difference method. The 213 
method of lines (MOL) involves discretising the spatial domain and thus replacing the partial 214 
differential equation with a vector system of ordinary differential equations(ODEs), for which 215 
efficient and effective integrating packages have been developed [17,18,19]. The MATLAB 216 
package has strong vector and matrix handling capabilities, a good set of ODE solvers, and 217 
an extensive functionality which can be used to implement the MOL [19]. MOL has the 218 
merits of both the finite difference method and analytical method. Results on the stability of 219 
the method are given by [20, 21]. 220 
 221 
We apply finite difference method to discretise the spatial domain ]1,0(x  of equation (11).  222 
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Substituting in (11) gives 225 
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The second order approximation for xu is given as 227 
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Applying this to the boundary condition (2) we have 229 

11   ii uu  1i       (31) 230 

And to the boundary conditions (3) we have 231 
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  233 
substituting(31) and (32) in (30) gives a system of approximating ordinary differential 234 
equations. 235 
For the warm phase, the system can be written as  236 
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 240 
2.5. Stability Analysis 241 

We apply the indirect method of Lyapunov to determine the local stability of the system. 242 
According to Lyapunov, if the linearization of the system exists, its stability determines the 243 
local stability of the original system [21]. 244 
 245 
Theorem1. (Lyapunov’s indirect method) 246 

Let 0x be an equilibrium point for the nonlinear system )(xfx , where nRDf : is 247 

continuously differentiable and D is a neighbourhood of the origin. Let the Jacobian matrix 248 
A  at 0x  be: 249 

0



xx

f
A . Let nii ,,1,   be the eigenvalues of A . Then, 250 

1. The origin is asymptotically stable if 0)Re( i for all eigenvalue of A . 251 

2. The origin is unstable if 0)Re( i  for any of the eigenvalues of A [23]. 252 

Evaluating the eigenvalues of the linearized equation for 2000 2.0 ,and 05.0x , 253 

shows that all eigenvalues are real and negative; hence the solution is stable. 254 
 255 
This system of ordinary differential equations (ODEs) is then integrated using the Matlab 256 
integrator ode15s which is a stiff integrator since the ordinary differential equations in the 257 
system are sufficiently stiff. The values of  and  used are chosen to satisfy inequalities 258 

(14), (17) and (29) obtained from the exact steady-state solution. 259 
 260 

 261 

3. Results 262 

Results obtained are shown in table 1. 263 
 264 
 265 
 266 
 267 
 268 
 269 
 270 
 271 
 272 
 273 



 

 

Table 1   274 
 275 
Table of the exact solution and numerical solutions by method of lines 276 
 277 
 278 

 
 
x  

 

COLD PHASE WARM PHASE HOT PHASE 

)( xu
(Exact) 

)( xu
(Numerical)

)( xu
(Exact) 

)( xu
(Numerical) 

)( xu
(Exact) 

)( xu
(Numerical) 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.5500 
0.5495 
0.5480 
0.5455 
0.5420 
0.5375 
0.5320 
0.5255 
0.5180 
0.5095 
0.5000 

0.550000 
0.549500 
0.548000 
0.545500 
0.542000 
0.537500 
0.532000 
0.525500 
0.518000 
0.509500 
0.500000 

1.1 
1.099 
1.096 
1.091 
1.084 
1.075 
1.064 
1.051 
1.036 
1.019 
1.000 

1.105563 
1.105102 
1.03707 

1.101377 
1.097925 
1.093381 
1.087693 
1.080428 
1.071730 
1.061253 
1.048011 

5.500 
5.495 
5.480 
5.455 
5.420 
5.375 
5.320 
5.255 
5.180 
5.095 
5.000 

5.50000 
5.49500 
5.48000 
5.45500 
5.42000 
5.37500 
5.32000 
5.25500 
5.18000 
5.09500 
5.00000 

 279 
 280 

4. CONCLUSION 281 

We have presented a mathematical model of the PTC thermistor problem with a new 282 
conductivity which is a hyperbolic-tangent approximation and describes the qualitative 283 
behaviour of the evolving solution of the thermistor in the entire domain. The result obtained 284 
for all the phases of temperature evolution shows that our approximation is a better 285 
representation for the electrical conductivity of the PTC thermistor. Moreover, for numerical 286 
techniques the absence of a discontinuity will improve stability and convergence properties, 287 
the new electrical conductivity is, therefore, a good improvement over the step function 288 
conductivity and the modified electrical conductivity in that it describes the conductivity and 289 
takes care of the discontinuities. We have also shown that the method of lines is a good 290 
method for solving the problem since results obtained are in good agreement with exact 291 
steady-state solutions. In addition, we showed that the solutions obtained by the method of 292 
lines are stable solutions.  293 
 294 
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