Original Research Article

Phenolic and mineral characteristics of seed coats and kernels from <u>24 species from Raipur area, India</u>

5

1 2

⁶ ABSTRACT

Aims: The objective of the present work is the investigation of the physicochemical
 characteristics of seed coats and kernels from 24 species with medicinal and food applications.
 Methodology: Seeds from 24 species (2 herbs, 11 vines and 11 trees), belonging to 13 families,
 were sampled in Raipur (India) in 2017. The collected seeds were dried and weighed, after which
 seed coats were manually peeled and <u>separately</u> weighed separately. Phenolic and mineral
 contents in the seed coats and kernels were analyzed by spectrophotometric and X-ray
 fluorescence (XRF) techniques, respectively.

14 Results: The seed coat fraction represented from 12% to 95% of the seed mass, depending on the 15 species. The concentrations of total polyphenols, flavonoids and minerals in the seed coats varied 16 from 1800 to 32300 mg/kg, from 1200 to 26900 mg/kg, and from 5876 to 36499 mg/kg, 17 respectively. Whereas in the seed kernels, TPh, Fla and minerals ranged from 780 to 31760 18 mg/kg, from 300 to 31300 mg/kg, and from 12595 to 40810 mg/kg, respectively. Elements: P, 19 S, K, Mg, Ca and Fe were found to be the main macro- and micro-elements. Seed coats from 20 Loganiaceae, Phyllanthaceae, Lauraceae and Rutaceae families featured the highest total 21 polyphenol contents, and those from Lauraceae and Rutaceae families showed the highest 22 flavonoid concentrations. The highest total mineral contents corresponded to seed coats from 23 Lauraceae, Rutaceae and Euphorbiaceae families.

Conclusion: Indian-laurel and curry tree stand out as promising phytochemical and nutrient
 sources.

²⁶ **Keywords**: Seed coat, Seed Kernel, Total polyphenol, Flavonoid, Mineral.

27 INTRODUCTION

The seed coat protects the internal parts of the seed from fungi, bacteria and insects, and prevents water loss. It is composed of cellulose, fibre, polyphenols, starch, wax, etc. Its outer layer, called testa, is generally hard and thick, while its inner layer, known as the tegmen, is softer [1]. Enrichment of various compounds (viz. minerals, cellulose, fibre, polyphenols, starch, wax, etc.) in seed coats have been reported in the literature [2-7]. Among these phytochemicals: polyphenols have become the subject of increasing research efforts owing to their potential beneficial effects on human health [8,9].

35 Among the plants found in the Raipur area, Black Siris (Albizia odoratissima (L.f.) Benth.), Malabar spinach (Basella rubra L., syn. Basella alba L.), wax gourd (Benincasa hispida 36 (Thunb.) Cogn.), squash (Cucurbita maxima (Duchesne) Duchesne ex Poir.), watermelon 37 (Citrullus lanatus (Thunb.) var. lanatus), Persian melon (Cucumis melo var. cantalupo Ser.), 38 Liane Cacorne (Entada gigas (L.) Fawc. & Rendle), tree cotton (Gossypium arboreum L.), 39 physic nut (Jatropha curcas L.), Persian walnut (Juglans regia L.), hyacinth bean (Lablab 40 purpureus (L.) Sweet), calabash (Lagenaria siceraria Standl.), Chinese-okra (Luffa acutangula 41 Roxb.), sponge gourd (Luffa aegyptiaca Mill.), Indian-laurel (Litsea glutinosa (Lour.) C.B.Rob.), 42 43 Indian-lilac (Melia azadirachta L., syn. Azadirachta indica A.Juss.), bitter melon (Momordica charantia L.), curry tree (Murraya koenigii Spreng.), emblic (Phyllanthus emblica L.), East 44 Indian kino (Pterocarpus marsupium Roxb.), Indian sandalwood (Santalum album L.), Ceylon-45 46 oak (Schleichera oleosa (Lour.) Oken), clearing-nut-tree (Strychnos potatorum L.f.), and Indian

47 tuliptree (*Thespesia populnea* Sol. ex Corrêa) is <u>are</u> widely used as medicine, food and fodder for
48 animals [10-23].

Accumulation of the nutrients and polyphenols in some seed coats were <u>have been</u> reported <u>in</u>
the literature [6, 24-28]. In this work, the physical and chemical characteristics of the seed coats
and kernels from these <u>aforementioned</u> 24 species (2 herbs, 11 vines and 11 trees) are analyzed,
with emphasis on their polyphenol contents.

53 METHODS AND MATERIALS

54 Sample collection and handling

Seeds from aforementioned the selected twenty-four species were collected in Raipur area 55 (21.25°N 81.63°E), Chhattisgarh, India, during their maturation period in 2017. The seeds were 56 manually separated and sun-dried in a glass room for one week, after which they were further 57 dried in a hot air oven at 50 °C for 24 h. The mass of the seeds was measured using an AG245 58 59 (Mettler Toledo, Columbus, OH, USA) electronic balance. The seed coats were then carefully peeled with the aid of a surgical blade and their mass was measured. The separated seed coats 60 and kernels were crushed into a fine powder, and particles of mesh size ≤ 0.1 mm were sieved 61 out. The samples were preserved in a deep freezer at -4 °C until the analyses were conducted. 62

63 Analyses

Sigma-Aldrich AR grade reagents were used for the analysis of polyphenols. 0.1 g of powdered seed coat were extracted with <u>an_acetone</u>: water mixture (7:3, v/v), as recommended by Bertaud et al. [29]. An appropriate fraction was allowed to react with Folin-Ciocalteu reagent for colour development, and absorbance was measured at λ =740 nm with a UV-1800 (Shimadzu, Kyoto, Japan) UV-Vis spectrophotometer [30]. Three replicates for each solvent extract were performed

to determine the total phenolic content (TPh), which was expressed in terms of tannic acid equivalents by using a standard calibration curve. For flavonoid (Fla) analysis, a fraction of the extract was reacted with an aluminium chloride solution to develop a yellow coloured complex, measuring the absorbance at λ =410 nm [31]. The Fla concentration was determined with the aid of <u>a</u> standard quercetin calibration curve and indicated in terms of quercetin equivalents. Three replicates for each solvent extract were performed, and results are presented as average values across the three replicates.

A III Tracer-SD portable XRF (Bruker, Billerica, MA, USA) spectrophotometer was used for the
quantification of 15 elements: K, Rb, Mg, Ca, Sr, Al, P, S, Cl, Ti, Mn, Fe, Cu, Zn and Pb.
Standard brown and white cowpea (*Vigna unguiculata* (L.) Walp.) seeds were used as reference
material to standardize the analyte concentration [32].

80 Statistical analyses

Cluster analysis was used to assess similarities in the micro- and macro-elements content in the
seed coats. IBM (Armonk, NY, USA) SPSS v.25 software was used.

83 **RESULTS AND DISCUSSION**

⁸⁴ Physical characteristics

The physical characteristics of the seeds and seed coats under study (shown in **Fig. 1**) are summarized in **Table 1**. Large differences in seed mass were found, with average values ranging from 25 to 23623 mg per seed, with the highest weights for <u>the seeds from</u> *Entada gigas* (23623 mg), followed by <u>those from</u> *Juglans regia* (12200 mg). The seed coat mass represented from 12 to 95% of the total seed weight.

90

5

Fig. 1. Seed samples from: (1) P. embilica, (2) P. marsupium, (3) L. aegyptiaca, (4) B. hispida, (5) C.
lanatus, (6) C. melo, (7) C. maxima, (8) L. acutangula, (9) L. siceraria, (10) M. charantia, (11) L.
glutinosa, (12) G. arboreum, (13) T. populnea, (14) S. album, (15) M. koenigii, (16) S. oleosa, (17) M.
azadirachta, (18) S. potatorum, (19) A. odoratissima, (20) B. rubra, (21) L. purpureus, (22) J. curcas,
(23) J. regia, and (24) E. gigas.

Table 1. Physico-chemical characteristics of seeds and seed coats. Total phenolic contents and flavonoid
 contents correspond to the seed coat and kernel samples

			Seed		Seed	Seed coat		Seed kernel	·
Species	Family	Туре	mass	Colour	coat	TPh	Fla	TPh	Fla
			(mg)		(%)	<u>(mg/kg)</u>	<u>(mg/kg)</u>	<u>(mg/kg)</u>	<u>(mg(kg)</u>
B. rubra	Basellaceae	V	38	BrB	47±2	11400	10500	3457	1650
C. maxima	Cucurbitaceae	V	132	YeW	18±1	3100	1900	4931	1100
L. siceraria	Cucurbitaceae	V	216	WhBr	42±2	14400	8900	1956	1400
C. lanatus	Cucurbitaceae	V	38	ReBr	49±2	18500	13100	2278	1280
L. aegyptiaca	Cucurbitaceae	V	105	В	43±2	3100	2500	780	620
C. melo	Cucurbitaceae	V	25	LY	28±1	2900	2100	965	300
L. acutangula	Cucurbitaceae	V	122	В	47±2	8300	7200	2144	1380
B. hispida	Cucurbitaceae	V	64	YeW	47±	2900	2600	4074	2280
M. charantia	Cucurbitaceae	V	189	YeBr	35±1	30847	1700	1769	1180
J. curcas	Euphorbiaceae	Н	758	Br	47±2	14700	4000	1501	4260
L. purpureus	Fabaceae	V	293	DBr	34±1	22000	3700	1260	2550
A. odoratissima	Fabaceae	Т	159	LBr	42±	27000	4100	2492	4300

E. gigas	Fabaceae	v	23623	DBr	40±1	26900	3900	18840	2650
P. marsupium	Fabaceae	Т	933	LY	93±3	25800	3800	31760	5800
J. regia	Juglandaceae	Т	12200	PY	32±1	9600	1900	1045	1520
L. glutinosa	Lauraceae	Т	248	DBr	43±2	29200	26900	4931	3880
S. potatorum	Loganiaceae	Т	280	В	24±1	26000	15000	2707	1640
G. arboreum	Malvaceae	Η	82	Br	48±2	4000	3500	7263	7160
T. populnea	Malvaceae	Т	162	LBr	47±2	16800	8000	15839	12020
M. azadirachta	Meliaceae	Т	972	DBr	65±2	1800	1200	1822	1300
P. embilica	Phyllanthaceae	Т	920	PW	95±3	27000	3500	4476	3750
M. koenigii	Rutaceae	Т	155	В	12±1	32300	25300	3457	3650
S. album	Santalaceae	Т	180	DBr	40±2	10900	6200	7075	2750
S. oleosa	Sapindaceae	Т	352	DBr	49±2	8500	5400	2198	1950

V = Vien, H = Herb, T = Tree, BrB = Brownish black, YeW = Yellowish white, WhBr = Whitish brown, ReBr
 Reddish brown, B = Black, YeBr = Yellowish brown, DBr = Dark brown, LuB = Luster black, LY = Light Yellow,

101 PY = Pale yellow, DB = Dark black, PW = Pale white

102

103 Polyphenol contents

104	The concentration of TPh and Fla in the seed coats and kernels varied from 1800 to 32300
105	mg/kg, from 780 to 31760 mg/kg, _from 1200 to 26900 mg/kg and from 300 to 12020 mg/kg,
106	respectively with a mean value of 15748, 5376, 6954 and 2932 mg/kg (Table 1). The
107	[TPh]/[Fla] ratio in the studied seed coats and kernels ranged from 1.1 to 18.1 and 0.4 to 7.1 with
108	a mean value of 3.5 and 1.9, respectively. Higher contents of TPh and Fla were observed in the
109	seed coats than <u>in</u> the seed kernels was marked .
110	Large variations in the polyphenol content were observed from one species to another, with
111	noticeably higher TPh and Fla values in seed coats and kernels from tree species (Fig. 2).
112	Similarly, remarkable differences in the polyphenol content of the seed coat and kernel samples
113	were detected as a function of the family (Fig. 3). In the case of seed coats, Loganiaceae,

114 Phyllanthaceae, Lauraceae and Rutaceae four families showed the highest TPh contents in the

- 115 <u>case of seed coats</u>: Loganiaceae, Phyllanthaceae, Lauraceae and Rutaceae<u>while</u>. Whereas in
- 116 the case of kernels, three families exhibited the highest TPh contents in the case of kernels

were exhibited by: Fabaceae, Malvaceae and Santalaceae families. As regards Fla contents, the

Type Fig. 2. Polyphenol concentration variation in (a) seed coats or and (b) seed kernels with respect to plant types. TPh and Fla stand for total phenolic content and flavonoid content, respectively. 120

127 Mineral contents

The mineral contents of 15 elements (viz. K, Rb, Mg, Ca, Sr, Al, P, S, Cl, Ti, Mn, Fe, Cu, Zn and Pb) in the seed coats are summarized in **Table 2**. The total concentrations (Σ_{M15}) ranged from S876 to 36499 mg/kg, with the highest values for seed coats from *Jatropha <u>J.</u> curcas*. Remarkably high mineral contents were observed in the seed coats from three families: Lauraceae, Rutaceae and Euphorbiaceae (**Fig. 4**).

133	P and K nutrients were abundant in the seed coats, ranging from 99 to 4983 mg/kg and from
134	1714 to 21982 mg/kg, respectively. The highest P contents were observed in seed coats from

- 135 Cucurbitaceae family, while the highest K contents (>15000 mg/kg) were detected in seed coats
- 136 from *P. marsupium*, *L. glutinosa*, *T. populnea* and *M. koenigii*.

Species	Mg	Al	Р	S	Cl	K	Ca	Rb	Sr	Ti	Mn	Fe	Cu	Zn	Pb	
B. rubra	1012	78	99	194	71	6305	3409	12	4	39	71	389	4	33	3	
C. maxima	1762	67	4220	1307	1178	10591	992	13	3	7	85	583	2	4	2	
L. siceraria	2020	55	2799	966	88	11324	3833	9	2	9	47	295	2	5	5 1	
C. lanatus	1913	41	3474	1865	78	3247	2965	10	32	8	57	524	11	10	1	
L. aegyptiaca	3344	67	2273	909	55	6791	4080	9	1	11	31	142	3	9	1	
C. melo	1638	44	4983	1719	101	3913	338	21	1	12	37	364	8	49	1	
L. acutangula	1754	81	3486	1302	142	7134	845	9	3	7	20	125	12	10	1	
B. hispida	561	98	1878	1063	131	5859	1604	14	3	8	70	313	1	13	2	
M. charantia	2642	432	2441	1444	88	5470	2763	8	2	9	77	308	1	3	1	
J. curcas	4002	47	1991	1264	91	14636	14210	15	27	11	40	147	13	4	1	
L. purpureus	1382	38	2344	1156	48	8541	3176	4	3	7	32	84	6	9	1	
A. odoratissima	1738	46	1745	3140	71	8049	6256	15	9	8	132	125	3	5	1	
E. gigas	1096	35	104	195	65	6278	3405	16	12	11	58	65	17	27	1	
P. marsupium	2098	61	985	1897	59	15236	6685	18	29	38	79	491	914	3	3	
I. regia	105	55	254	116	66	7297	2292	3	9	12	17	68	4	4	1	
L. glutinosa	542	43	1559	1424	121	21982	3403	23	12	27	94	181	35	27	1	
S. potatorum	5808	68	375	975	105	1714	7734	5	2	7	127	166	6	4	1	
G. arboreum	2067	77	4001	1399	91	9312	1387	1	5	9	14	137	5.5	40	1	
T. populnea	662	87	1631	1062	4859	16894	3256	17	4	11	33	419	402	1	1	
M. azadirachta	323	844	826	725	132	7515	2205	9	3	30	28	685	5.5	12	1	
P. embilica	175	59	465	243	111	3405	1008	6	20	9	18	348	4	4	1	
M. koenigii	1395	49	1311	480	81	20233	6401	7	13	11	21	271	5	11	1	
S. album	911	54	886	1100	77	12405	5280	26	29	23	70	327	7	16	1	
S. oleosa	1635	65	1814	1227	68	2568	4982	3	13	12	34	334	14	6	1	

137 Table 2. Mineral contents in the seed coats from the 24 species under study, expressed in mg/kg.

Fig. 4. Total mineral contents in seed coats as a function of the family to which the plant species belongs.

S and Cl concentrations in seed coats were in the 116–3140 mg/kg and in the 48–4859 mg/kg
range, respectively. The highest values for S and Cl corresponded to *A. odoratissima* and *T. populnea*, respectively.

Mg and Ca elements, probably present as silicates, ranged from 105 to 5808 mg/kg and from 338 to 14210 mg/kg, respectively. In this case, the highest concentrations of Mg and Ca were observed in seed coats from *S. potatorum* and *J. curcas*.

The concentrations of other elements in the seed coats, expressed in mg/kg, were in the following ranges: 1–26 (Rb), 1–32 (Sr), 35–844 (Al), 7–39 (Ti), 14–132 (Mn), 65-685 (Fe), 1– 914 (Cu), 1-49 (Zn) and 1–3 (Pb). The highest concentrations of Rb, Sr, Al, Ti, Pb, Mn, Fe, Cu and Zn were found in the seed coats from *S. album, C. lantus, M. azadirachta, B. rubra, P. marsupium, A. odoratissima, M. azadirachta, P. marsupium* and *C. melo*, respectively. It is worth noting that seed coats from *T. populnea* featured high contents of Cl, K, Fe and Cu. Noticeable differences in the mineral contents were also found depending on plant type. Total

mineral contents were at least 29 and 55% higher in seed coats from trees and herbs, respectively, than in vine samples (**Fig. 5A**). Higher concentrations of major elements (P, S, Mg, Ca and Al) were observed in the herb samples (**Fig. 5B**), while those of Cl, K, Mn, Cu, Ti and Sr were higher in the tree samples (**Fig 5C**). As regards samples from vines, high contents of Rb, Fe and Zn were detected (**Fig 5D**).

¹⁶⁴

¹⁶⁵ On the basis of their mineral contents, the seed coats from the 24 species under study were 166 categorized into two groups by using cluster analysis (**Fig. 6**). Group-I consisted of 19 species, 167 and the other 5 species were included in group-II, in such a way that the mean concentration 168 value of Σ_{M15} in the seed coats that belonged to group-II was at least twice that of group-I ones.

169 170 171

Fig. 6. Cluster analysis of total elemental concentration of seed coats

172 Correlation coefficients

173	The correlation coefficients (r) for the seed coat samples from species belonging to the Fabaceae
174	family are shown in Table 3. Good correlations were found among K, Mg, Ca, Al, Sr, Ti, Fe, Cu
175	and Pb, suggesting similarities in their bioaccumulation. Good correlations were also found
176	Bbetween TPh and Fla contents and Cl, Rb and Mn were well correlated, which would point to
177	their accumulation via bond formations with phenolic groups. In addition, good correlations were
178	observed among S, Mg, Ca and Mn, which may be ascribed to the accumulation of the latter
179	three as sulfur compounds.

Table 3. Correlation coefficients (r) among various constituents of the Fabaceae family seed coat samplesTPhFlaMgAlPSClKCaRbSrTiMnFeCuZnPbTPhFlaMgAlPSClKCaRbSrTiMnFeCuZnPbTPh1.00SClKCaZnPbFla0.801.00

Mg	0.13	0.09	1.00														
Al	0.21	0.00	0.97	1.00													
Р	-0.70	-0.18	0.22	0.00	1.00												
S	0.23	0.58	0.72	0.54	0.50	1.00											
Cl	0.95	0.95	0.09	0.08	-0.47	0.41	1.00										
K	-0.06	-0.33	0.88	0.94	0.04	0.30	-0.23	1.00									
Ca	0.50	0.46	0.92	0.88	0.01	0.80	0.49	0.68	1.00								
Rb	0.91	0.54	0.39	0.52	-0.75	0.19	0.75	0.33	0.65	1.00							
Sr	0.41	-0.07	0.70	0.85	-0.50	0.11	0.17	0.84	0.68	0.75	1.00						
Ti	0.18	-0.26	0.74	0.89	-0.32	0.10	-0.06	0.93	0.63	0.57	0.97	1.00					
Mn	0.71	0.90	0.50	0.40	0.00	0.83	0.84	0.07	0.78	0.59	0.20	0.06	1.00				
Fe	0.13	-0.21	0.86	0.96	-0.14	0.28	-0.06	0.98	0.73	0.51	0.93	0.98	0.16	1.00			
Cu	0.11	-0.30	0.79	0.91	-0.22	0.15	-0.12	0.97	0.65	0.51	0.94	0.99	0.05	0.99	1.00		
Zn	0.23	0.00	-0.87	-0.73	-0.67	-0.81	0.14	-0.67	-0.71	0.07	-0.27	-0.39	-0.40	-0.58	-0.48	1.00	
Pb	0.11	-0.29	0.80	0.92	-0.21	0.16	-0.12	0.97	0.65	0.50	0.94	0.99	0.06	0.99	1.00	-0.49	1.00

181 TPh = Total polyphenol content, Fla = Flavonoid content

182

183	Distribution Comparison of minerals contents in seed coats and seed kernels
184	The minerals content of minerals in the seed coats and kernels of the prominent from four of the
185	species with the highest mineral contents seeds are shown in Table 4. The nutrients are well
186	abundant in the seed coats than the kernels. Fifteen elements were detected in the coats.
187	while. However, in the kernels, only ten elements were identified. Generally, a higher
188	concentrations of nutrients were detected in the seed coats than in the seed kernels was marked,
189	<u>(</u> Fig. 7 <u>).</u> .
190	

Species	Mg	Р	S	K	Ca	Mn	Fe	Cu	Zn	Rb	Sr
C. maxima	1130	5505	1614	3920	102	63	157	14	78	11	2
J. curcas	1905	5513	1596	8032	2509	26	96	10	42	16	2
P. marsupium	5555	6743	5993	17119	5095	41	145	39	50	20	11
M. koenigii	551	1436	525	13130	2891	10	110	8	15	4	5

192

193 Seed
 194 Fig. 7. Distribution of total elements in seed coats and kernels.

196 CONCLUSIONS

Seed coats are major sources of polyphenols and minerals, with concentrations at. At least twice 197 those found in o folds higher nutrients in seed coats than the seed kernels are available. 198 199 Remarkably high total polyphenol contents (of up to 32300 mg/kg) were detected in the seed coats from tree species of the Loganiaceae, Phyllanthaceae, Lauraceae and Rutaceae families, 200 while the highest flavonoid concentrations (of up to 26900 mg/kg) corresponded to seed coats 201 202 from the latter two families. As regards mineral contents, the highest total values were observed 203 in the seed coats from three families: Lauraceae, Rutaceae and Euphorbiaceae. The highest 204 concentrations of major elements (P, S, Mg, Ca and Al) were observed in seed coats from herb 205 species, while those of Cl, K, Mn, Cu, Ti and Sr were higher in the tree samples. In turn, samples from vines featured high contents of Rb, Fe and Zn. Seed coats from Indian-laurel and curry tree 206 207 stand out as particularly promising phytochemical and nutrient sources.

- 208 CONSENT
- 209 Not applicable.

210 ETHICS APPROVAL

211 Not applicable.

212 CONFLICT OF INTEREST

213 The authors declare no conflict of interest.

10.1016/j.indcrop.2015.01.080

214

222

215 **REFERENCES**

- Moïse JA, Han S, Gudynaitę-Savitch L, Johnson DA, Miki BLA. Seed coats: Structure, development, composition, and biotechnology. In Vitro Cellular & Developmental Biology
 Plant. 2005;41(5):620-644. https://doi.org/DOI: 10.1079/IVP2005686
- 219
 2. Attree R, Du B, Xu B. Distribution of phenolic compounds in seed coat and cotyledon, and their contribution to antioxidant capacities of red and black seed coat peanuts (*Arachis hypogaea* L.). Industrial Crops and Products. 2015;67:448-456. https://doi.org/DOI:
- Zhang RF, Zhang FX, Zhang MW, Wei ZC, Yang CY, Zhang Y, Tang XJ, Deng YY,
 Chi JW. Phenolic composition and antioxidant activity in seed coats of 60 Chinese black
 soybean (*Glycine max* L. Merr.) varieties. Journal of Agricultural and Food Chemistry.

226 2011;59(11):5935-5944. https://doi.org/DOI: 10.1021/jf201593n

- Abutheraa R, Hettiarachchy N, Phillips GK, Horax R, Chen P, Morawicki R, Kwon YM.
 Antimicrobial activities of phenolic extracts derived from seed coats of selected soybean
 varieties. Journal of Food Science. 2017;82(3):731-737. https://doi.org/10.1111/1750-3841.13644DOI: 10.1111/1750-3841.13644
- 231 5. Phommalath S, Teraishi M, Yoshikawa T, Saito H, Tsukiyama T, Nakazaki T, Tanisaka T,
- 232 Okumoto Y. Wide genetic variation in phenolic compound content of seed coats among

233		black	soybean	cultivars.	Breeding	Science.	2014;64(4):409	9-415.	doi <u>DOI</u> :
234		10.1270)/jsbbs.64.4	09					
235	6.	Ribeiro	ND, Mazie	ero SM, Prig	ol M. Nogue	eira CW, Ros	sa DP, Possobon	n MTDF	. Mineral
236		concent	rations in t	he embryo a	nd seed coa	t of commo	n bean cultivars.	. Journal	of Food
237		Compos	sition	and		Analysis.	20)12;26(1-	-2):89-95.
238		https://o	doi.org/10.1	1016/j.jfca.20	012.03.003 <u>D</u>	<u>OI: 10.1016/</u>	<u>j.jfca.2012.03.00</u>	<u>3</u>	
239	7.	Wu XJ,	, James R,	Anderson A	AK, Mineral	contents in	seed coat and c	anning o	quality of
240		selected	cultivars	of dark red	kidney bea	ns (<i>Phaseoli</i>	us vulgaris L.).	Journal	of Food
241		Process	ing and	Preservati	on. 2005;	29(1)63-74.	https://doi.or	g/10.111	1/j.1745-
242		4549.20	05.00013.x	DOI: 10.111	l/j.1745-454	9.2005.00013	<u>3.x</u>		
243	8.	Ganesar	n K, Xu B.	A critical rev	view on poly	phenols and	health benefits o	of black	soybeans.
244		Nutrien	ts. 2017;9(5):455. <mark>doi</mark> DC	<mark>)]::</mark> 10.3390/	nu9050455			
245	9.	Sevindi	k M, Akgul	H, Pehlivan	M, Selamog	glu Z. Detern	nination of therap	peutic po	otential of
246		Mentha	<i>longifolia</i> s	sp. <i>longifolia</i>	. Fresen Env	viron Bull, 20	17; 26: 4757-476	63.	
247	10.	Sivasan	kar V, Mo	orthi A, Sa	rathi Kanna	n D, Sugan	ya devi P. Anth	hocyanin	, and its
248		antioxid	lant properti	es in selected	l fruits. Jour	nal of Pharma	acy Research. 20	11;4(3):8	300-806.
249	11.	Prasad 1	DMR, Izam	A, Khan M	MR. Jatroph	a curcas: Pl	ant of medical be	enefits. J	ournal of
250		Medicir	nal Plar	nts Rese	arch. 20	012;6(14):269	91-2699. htt	t <mark>ps://doi</mark> .	org/ <u>DOI:</u>
251		10.5897	/JMPR10.9	77					
			-		~~				

252 12. Saboo SS, Thorat PK, Tapadiya GG, Khadabadi SS. Ancient _and _recent _medicinal _uses
 253 of <u>C</u>cucurbitaceae _family. International Journal of Therapeutic Applications. 2013;9:11-19.

- 13. Hassan GA, Bilal T, Ahmad BT, Sameena W, Irshad AN. Economic and ethno-medicinal
 uses of *Juglans regia* L. in Kashmir Himalaya. Unique Journal of Ayurvedic and Herbal
 Medicines. 2013;1(3):64-67.
- 14. Ramana KV, Raju AJS. Traditional and commercial uses of *Litsea glutinosa* (Lour.) C.B.
 Robinson (Lauraceae). Journal of Medicinal Plants Studies. 2017;5(3):89-91.
- 15. Yadav KN, Kadam PV, Patel JA, Patil MJ. Strychnos potatorum: Phytochemical and
 pharmacological review. Pharmacognosy Review. 2014;8(15):61-66. doi: 10.4103/09737847.125533
- 16. Singh E, Sharma S, Pareek A, Dwivedi J, Yadav S, Sharma S. Phytochemistry, traditional
 uses and cancer chemopreventive activity of Amla (*Phyllanthus emblica*): The Sustainer.
 Journal of Applied Pharmaceutical Science, 2011;2(1):176-183.
- I7. Kumar SR, Loveleena D, Godwin S. Medicinal property of *Murraya <u>k</u>Koenigii* A review.
 International Research Journal of Biological Sciences. 2013;2(9):80-83.
- 18. Kumar R, Anjum N, Tripathi YC. Phytochemistry and pharmacology of *Santalum album* L.:
 A review. World Journal of Pharmaceutical Research. 2015;4(10):1842-1876.
- 269 19. Bhatia H, Kaur J, Nandi S, Gurnani V, Chowdhury A, Reddy PH, Vashishtha A, Rathi B. A
- 270 review on *Schleichera oleosa*: Pharmacological and environmental aspects. Journal of
- Pharmacy Research. 2013;6(1):224-229. https://doi.org/10.1016/j.jopr.2012.11.003DOI:
 10.1016/j.jopr.2012.11.003
- 273 20. Sathyanarayana T, Sarita T, Balaji M, Ramesh A, Boini MK. Antihyperglycemic and
 hypoglycemic effect of *Thespesia populnea* fruit in normal and alloxan-induced diabetes in
 rabbits. Saudi Pharmaceutical Journal. 2004;12(2):107-111.

277	purpureus)-A review. IOSR Journal of Pharmacy. 2017;7(2):22-30DOI: 10.9790/3013-
278	0702012230
279	22. Van Andel TR, Croft S, Van Loon EE, Quiroz D, Towns AM, Raes N. Prioritizing West
280	African medicinal plants for conservation and sustainable extraction studies based on market
281	surveys and species distribution models. Biological Conservation. 2015;181:173-181.
282	https://doi.org/10.1016/j.biocon.2014.11.015 DOI: 10.1016/j.biocon.2014.11.015
283	23. Moraghan JT, Grafton K. Genetic diversity and mineral composition of common bean seed.
284	Journal of the Science of Food and Agriculture. 2001;81(4):404-408. https://doi.org/DOI:
285	10.1002/1097-0010(200103)81:4<404

- 24. Moraghan JT, Grafton K. Distribution of selected elements between the seed coat and 286 embryo of two black bean cultivars. Journal of Plant Nutrition. 2002;25(1):169-176. 287 https://doi.org/DOI: 10.1081/PLN-100108788 288
- 25. Tajoddin M, Shinde M, Lalitha J. Polyphenols of mung bean (Phaseolus aureus L.) cultivars 289 differing in seed coat color: Effect of dehulling. Journal of New Seeds. 2010;11(4): 369-379. 290 https://doi.org/DOI: 10.1080/1522886X.2010.520146 291
- 26. Yang QQ, Gan RY, Ge YY, Zhang D, Corke H. Polyphenols in common beans (Phaseolus 292 vulgaris L.): Chemistry, analysis, and factors affecting composition. Comprehensive 293 Reviews in Food Science and Food Safety. 2018;17(6):1518-1539. https://doi.org/DOI: 294 295 10.1111/1541-4337.12391
- 296 27. Marles MA, Vandenberg A, Bett KE. Polyphenol oxidase activity and differential accumulation of polyphenolics in seed coats of pinto bean (Phaseolus vulgaris L.) 297

276 21. Al-Snafi AE. The pharmacology and medical importance of _dolichos lablab (Lablab

- characterize postharvest color changes. Journal of Agricultural and Food Chemistry.
 2008;56(16):7049-7056. doiDOI: 10.1021/jf8004367.
- 300 28. Zhong L, _Wu G, Fang Z, Wahlqvist ML, Hodgson JM, Clarke MW, Junaldi E, Johnson
- 301 SK. Characterization of polyphenols in Australian sweet lupin (*Lupinus angustifolius*) seed
- 302 coat by HPLC-DAD-ESI-MS/MS. Food Research International. 2019;116:1153-1162.
- 303 https://doi.org/DOI: 10.1016/j.foodres.2018.09.061
- 304 29. Bertaud F, Tapin-Lingua S, Pizzi A, Navarrete P, Petit-Conil M. Characterisation of
 305 industrial barks for their tannin contents for further green-wood based adhesives
 306 applications. InTech Fibre. COST FP0901-Hamburg. 2010.
- 30. Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other
 oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in
 Enzymology. 1999;299:152-178. https://doi.org/DOI: 10.1016/S0076-6879(99)99017-1
- 310 31. Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis
 by two complementary colorimetric methods. Journal of Food and Drug Analysis.
 2002;10(3):178-182.
- 313 32. Towett, E. K., Shepherd, K. D., Drake, B. L. (2016) Plant elemental composition and
 portable X-rayfluore scence (pXRF) spectroscopy:quantification under differentanalytical
 parameters, X-Ray Spectrom. 45, 117–124. DOI: 10.1002/xrs.2678

Formatted: Font: Italic