Original Research Article

DIALLEL ANALYSIS OF SWEET POTATO [*IPOMOEA BATATUS* (L.) LAM] GENOTYPES FOR COMBINED BETA CAROTENE AND DRY MATTER CONTENT IN SOUTHERN GUINEA SAVANNA, NIGERIA

8 Abstract

1 2 3

4

5 6 7

Roots of orange-fleshed sweet potato varieties currently available in Nigeria contain high 9 quantities of β -carotene or pro-vitamin A but have high moisture content. These varieties have 10 been found to be a cheap and crucially important remedy for vitamin A deficiency. The cream or 11 white-fleshed varieties, on the other hand, have a sweet taste with high dry matter content, giving 12 a dry texture, a quality trait preferred in Nigeria. Development of sweet potato genotypes that 13 can combine these two important quality traits is the objective of this breeding work. A diallel 14 experiment using six parental sweet potato genotypes crossed in all possible combinations were 15 carried out and thirty progenies were evaluated for beta carotene (β -carotene) and dry matter 16 17 content in Landmark University, Omu Aran, Kwara State, Nigeria. The 30 F₁ progenies along 18 with their parental lines were planted in the same field trial. The trial was laid out in 6 x 6 triple lattice in two replications. Highly significant ($P \le 0.01$) differences were observed among the 19 genotypes for the traits. The average β -carotene content among the progenies was 2.86 20 (mg/100g.f.w) while the dry matter content had a mean value of 31.89%. The cross progenies 21 199024.2 x Excel had the highest beta carotene (14.37mg/100g.f.w) content with the highest dry 22 matter content (40.10%) and are therefore recommended for further evaluation. 23

Key words: Diallel analysis; dry matter; Southern Guinea Savanna; sweet potato; Vitamin A, βcarotene.

27 INTRODUCTION

Sweet potato [*Ipomoea batatas* (L.) Lam] is the seventh most important crop in the world with an estimated 124 million metric tons produced annually. In the tropics, sweetpotato ranks fifth in terms of caloric contribution after rice, wheat, maize, and cassava [1,2]. In many developing countries, sweet potato is a staple because they are easy to propagate and maintain and yield well under a variety of adverse conditions, including drought. The potential of this crop as a food and a carbohydrate source is widely recognized [3].

Sweet potato is one of the most under exploited of the developing world's major crops 34 [4] as evidenced by its breeding initiatives that are at relatively early stages compared to other 35 crops. The need to identify local germplasm with desirable traits has long been recognised by 36 breeders [4]. It has been long known that many sweetpotato traits are mainly quantitatively 37 inherited [5]. To meet the quality needs there is a need to take into account the farmer and 38 consumer preferences when developing and selecting sweetpotato varieties and in most cases, 39 this can be addressed through participatory variety selection. Fortunately, the attributes 40 considered most important by farmers and consumers were already identified and ranked by [4]. 41 Given the enormous genetic diversity of sweet potato in Uganda [6], the possibility for 42 sweetpotato improvement to accommodate specific uses is expected to be rapid [4]. There is 43 44 wide genetic variability for vitamin A occurring naturally in sweetpotato. This means conventional breeding techniques can be employed to combine β -carotene and dry matter into 45 sweetpotato varieties. 46

Diallel mating designs have been widely used in genetic research to investigate the
inheritance of important traits in a set of genotypes [7, 8]. Diallel mating designs were devised,

49 specifically to investigate the combining ability of the parental lines for the purpose of identification of superior parents for use in hybrid development programmes. A diallel cross is a 50 set of p2 possible single crosses and selfs between p homozygous [9,10,11,12] or heterozygous 51 [13] parents; it provides a powerful method for investigating the relative genetic properties of 52 these parents. It is possible to partition treatment variation into components due to general 53 combining ability (GCA) and specific combining ability (SCA) [14, 7, 16, 17]. General 54 combining ability (GCA) is the average performance of a genotype in hybrid combination while 55 Specific combining ability (SCA) are those cases in which certain combinations perform 56 relatively better or worse than expected on the average [18]. The estimates of the relative 57 magnitude of the variances of GCA and SCA indicate the type of gene action determining the 58 traits. Variance due to GCA indicates the predominance of additive gene action while that of 59 SCA indicates the predominance of non-additive gene action arising largely from dominance and 60 epistatic deviations [19]. Evaluation of dry matter, starch and beta-carotene content in orange-61 fleshed sweet potato (Ipomoea batatas L.) genotype tested in three agro-ecological zones of 62 Malawi has been described by Kathabwalika et al. [20]. Little, however, appears to have been 63 reported about the relationship between the sensory characteristics and the physical and chemical 64 constituents, such as carotenoids or dry matter. For example, for consumers in Africa, it has been 65 reported that they prefer high dry matter varieties of sweet potato [21-23]. The present research 66 examined the quantitative inheritance of important traits in sweet potato by means of a diallel 67 analysis with a view to estimating the GCA and SCA components of genetic variance, and to 68 determine the associated type of gene action controlling β -carotene content and root dry mass. 69

- 70
- 71 2. Materials and Methods

72 **2.1. Description of the Study Area**

A field experiment was conducted on six sweet potatoes genotypes (three orange flesh and three white flesh) at the Teaching and Research Farm of Landmark University, Omu Aran, Nigeria. The experimental site is located at the Southern Guinea Savanna agro-ecological zone of Nigeria with district wet and dry seasons. The land had been used continuously for the cultivation of arable crops like maize, melon, cowpea and vegetables for more than three years. Soil samples were collected from the trial site before cropping and were analyzed in the laboratory for physical and chemical properties (Table 2). The soil texture was loamy sand.

80

81 2.2. Treatments and Experimental Design

The parent's materials used for the experiment were obtained from the germplasm 82 collection centre of the Department of Agronomy, the University of Ibadan which was originally 83 from the listed sources in Table 1. The parents were selected on the basis of being cross-84 compatible. Hand crosses were carried out in a 6 x 6 full diallel, excluding selfs from 2010 to 85 2011 at the Teaching and Research Farm of Landmark University, Omu Aran, Nigeria. Fruits 86 were harvested between 30-50 days after pollination in the early morning to prevent scattering. 87 The fruits were further air dried, shelled, put in a labelled envelope and kept in desiccators. The 88 harvested seeds were soaked in water over night and planted into polythene bags filled with 89 loamy soil. Once the plants were about 30cm tall, they were transplanted to well-prepared ridges 90 for further growth and development. Twenty cuttings of a 25cm length of the sweet potato vines 91 from F₁ progeny were made to represent each cross. The selected 30 F₁ progeny along with their 92 parental lines were planted in the same field trial. The trial was laid out in 6 x 6 triple lattice in 93 two replications. The plot size used was 3m x 1m in two rows. Each plot comprised the 20 94 95 cuttings from each progeny of a cross. Each vine was inserted at a slant, with two-third buried below the soil surface. Weeding was done 4, 6 and 8 weeks after planting, using small hoes. No 96

97 herbicides or fertilizers were applied. Appropriate agronomic practices were followed to raise a98 good crop.

99 **2.3. Data Collection**

100 All data were recorded on an individual plant basis and then averaged across the 20 101 progeny of each F_1 cross. The quantitative traits were evaluated as follows: β - carotene content 102 expressed as mg 100 g⁻¹ and dry matter content (g) expressed as a percentage of root fresh mass 103 (g).

104 **2.4 Statistical analysis of triple lattice**

Data collected on the two traits were subjected to diallel analysis using Griffing (1956) Method II (parents and crosses together), Mixed I (fixed effects). Both general and specific combining abilities were computed using [20] for the parent and crosses.

108 Diallel analysis

To test the null hypothesis of no genotypic differences among parents and crosses, oneway analysis of variance was performed. Treatment sum of squares was partitioned into three components, parents (P), crosses (C), and parent vs. crosses (P. vs. C.). General Combining Ability and Specific Combining Ability variance components of the cross mean square was computed according to Griffing's (1956) fixed-effects model I. Reciprocals were defined as being below the diagonal, adopting [14] notation the following genetic statistical model for analysis within one environment.

116 **3. Results**

3.1 Analysis of variance for β-carotene and dry matter content

118 β -carotene content and dry matter content means squares were both significant (p<0.01) among 119 the parents and their 30F1 families, this shows that there is genetic variation among the parents 120 and their crosses as shown in table 4. Crosses out-performing their parents can be attributed to 121 transgressive segregation which is desirable for improving β -carotene content and dry matter content. The results of average performances of some of the crosses presented in table 5 show that the performances of crosses are significantly higher than the two parents for the traits. Cross 1x 3 had the highest values in term of β-carotene and dry matter content with means of 14.37 mg 100 g⁻¹ and 40.10% respectively followed by 1 x 4 for β-carotene content with means of 12.39 mg 100 g⁻¹ and dry matter content with a mean of 30.05% while 2 x 4 had the least β-carotene content and dry matter content with a means square values of 0.03 mg 100 g⁻¹ and 31.15%.

128

3.2 General and specific combining ability analysis for β-carotene content and dry matter content

General combining ability and Specific combining ability mean the sum of squares for βcarotene content and dry matter content were highly significant (p<0.01) across the parents, parent x cross and the crosses as presented in Table 6. The mean squares for reciprocals of βcarotene content were significant (p<0.01) whereas mean squares for the dry matter for the reciprocal is not significant.

137 **3.3 COMBINING ABILITY EFFECTS**

138

139 **3.3.1 Beta-carotene content**

Table 7 presented estimates of GCA effects for β-carotene content and dry matter content of six 140 sweet potato parents. The GCA effects for β -carotene content of parent 1, 2 and 3 were positively 141 and highly significant (p<0.01). The GCA effects for parent 5 is significant (p<0.01) but 142 negative. The GCA effect for parent 4 and 6 was negative and was not significant. The SCA 143 effects of crosses 1 x 2, 1 x 4,1 x 5 1 x 6, 2 x 3, 2 x 5, 2 x 6 and 3 x 5 were positive and highly 144 significant (p<0.01)(Table 8) whereas cross $3 \ge 6$, $4 \ge 6$ is also significant but negative. The rest 145 of the crosses are positive and not significant, apart from 1 x 3 which was negative and is not 146 significant (p<0.01). Four reciprocals (5 x 2, 5 x 4, 6 x 5 and 6 x 2) were not significant (p<0.01) 147

and negative except cross $6 \ge 2$ which is positive. Crosses $3 \ge 1$ and $3 \ge 2$ were highly significant although they were negative. The rest crosses were positive and highly significant (p<0.01) (Table 8).

151 **3.3.2 Dry Matter Content**

152

The GCA effects for parent 2, 4 and 6 were positively and highly significant (p<0.01). The GCA effects for parent 1 is also significant (p<0.01) but negative. The GCA effect for parent 5 was not significant but positive (Table 7). Crosses 1 x 2 and 3 x 5 were positive although not significant (Table 8). This is against crosses 2 x3, 3 x 4, 4 x 5 and 4 x 6 which were negative and not significant (p<0.01). SCA effect for the rest of the crosses was significant (p<0.01) and positive (Table 8). For reciprocal, crosses 6 x 1 and 6 x 2 are the only crosses that were positively and highly significant (p<0.01).

160 4 Discussion and conclusion

161 4.1 General and specific combining ability for β-carotene content and dry matter content

Both GCA and SCA variances were significantly (Table 5), this suggests that both additive and 162 non-additive gene effects played a major role in the inheritance of β -carotene and dry matter 163 content. The GCA and SCA mean squares for the β -carotene and dry matter content were 164 significant (p<0.01). This implies that both additive and non-additive gene action were involved 165 in their expression. This study indicates that additive gene action was relatively more 166 predominant than non-additive gene action in controlling the expression β-carotene content and 167 168 dry matter content. Hence, predicting progeny performance based on GCA for the traits will be largely successful. The highly significant (p<0.01) reciprocal mean squares for β -carotene and 169 dry matter content indicates that maternal effects can play a major role in the inheritance of these 170 171 traits and consequently the performance of a parent in a cross is dependent on whether it is used as a female or a male. 172

173 **4.2** β- carotene content

174 The GCA effects for parent 1 (1.33) and (1.12) were significant (p<0.01) and positive indicating 175 that additive gene action contributed positively to the expression β -carotene content consequently,

their cross 1 x 2 is positive (3.28) and significant (p<0.01) SCA effect. This means

that the interaction between the parent for the non-additive gene action resulted in the cross 177 performing above the expectation based on additive effects. The crosses that had positive and 178 significant (p<0.01) SCA effects were 1 x 4, 1 x 5, 1 x 6, 2 x 3, 2 x 5, 2 x 6 and 3 x 5 indicating 179 that the non-additive gene action arising from the interaction of the parents contributed positively 180 to the expression of the trait. Parents 5 that had negative GCA effects (-0.44) produced a cross 181 with a positive (0.022) and highly significant (p<0.01) SCA effect (Table 6). This shows that 182 parents cannot be disqualified solely on the basis of negative GCA effects. In other word, parents 183 with high positive GCA effects did not necessarily produce crosses with the desired 184 performance. The parents used in this study, as well as the crosses, generated exhibit different 185 level of significant and desirable crosses were obtained from crossing parents with high GCA 186 effects with parents with low GCA effects that is 1 x 5, 2 x 5 and 3 x 5. 187

188 **4.3 Dry Matter Content**

The GCA and SCA mean squares for dry matter content were significant (p<0.01), but the reciprocal mean square was not significant. For the specific combiners for dry matter content parent 3 had a positive GCA and their crosses with parent 1 and 2 given dry matter content of 40.01% and 38.20%.

193 **5. Recommendation**

194 It is, therefore, recommend that:

The parent 1 and 3 identified to be good general and specific combiners of β- carotene
 and dry matter content should be further intrigressed into other proven cultivated in the
 improvement of β- carotene and dry matter content in sweet potato.

- 198 2. The identified crosses with the highest dry matter and β carotene content could be 199 incorporated into an on-farm trial for proof.
- 200
- 201 202
- 203
- 204

Table 1: Parental genotypes and their traits used in a 6x6 full diallel excluding selfs

206

No	Genotype	Root flesh colour	Root Dry mass	Source
			(%)	
1	199024.2	Orange	31.02	CIP Kenya
2	440034	Orange	26.92	CIP Kenya
3	Excel	Orange	28.53	South Africa
4	W-151	Yellow	34.29	CIP Kenya
5	TIS 87/0087	White	30.67	IITA Ibadan
6	440168	White	32.31	CIP Kenya
				-

207

208 Table 2. Physical and chemical characteristics of the experimental site soil at Landmark

209 University, Omu Aran.

Physical characteristics	properties	
Texture	Loamy sand	
pH 1:1 (H ₂ O)	5.4	
pH 1:1 (H ₂ O) Sand %	84.1	
Clay %	8.02	
Silt %	6.42	
Chemical characteristics		

	Exchangeable Ca^{2+} (C. molkg $^{-1}$)1.12Exchangeable Mg^{2+} (C. molkg $^{-1}$)1.62Exchangeable Na^+ (C. molkg $^{-1}$)0.19Exchangeable K^+ (C. molkg $^{-1}$)0.01Total acidity H^+ (C. molkg $^{-1}$)0.05Cationexchangecapacity (C. molkg $^{-1}$)0.24% Soil organic matter1.03% Total Nitrogen0.24
	Available Phosphate (mg kg ⁻¹) 20.31
212	
213	
214	
215 216	
210	
217	
218	
220	
220	
222	Table 3 Analysis of variance for Griffing's (1956b) Model I, Method I and the expected
223	mean squares for a full diallel.
223	

224 225

Df of mean squares Expected Source F-ratio sum mean squares squares Sg $\delta^2 + 2p[1/p-1]\Sigma gi^2$ GCA M_g/M_e p-1 Mg $\delta^{2+1/p(p-1)} \Sigma_i \Sigma_j S_{ij}^2$ SCA M_{s}/M_{e} p(p-1)/2 S_s M_s $\delta^{2+2[2/p(p-1)]}$ $\sum_{i} \sum_{j} r_{ij}^{2}$ Reciprocal p(p-1)/2 S_{v} M_r/M_e $M_{\rm v}$ effects δ2 Error Se М M_{e}

- 226 227
- 228

Table 4: ANOVA for six sweet potato parents and their 30 F₁ families evaluated in a triple

- 230 lattice design
- 231

Source	Mean squares		
	Df	β-carotene content(mg 100 g-1)	Dry Matter content (%)
Rep	1	0.75 ^{ns}	7.85 ^{ns}
Treatment	35	38.39**	34.28**
Block within reps	35	14.1	29.60
Intra-block error	70	0.32	5.10
Total	141		

232 233	*, ** Significant at (p<0.05) and (p <0.01) (<i>F</i> -probability) respectively; ns=not significant
234	
235	
236	
237	
238	
239	
240	
241	
242	

243 Table 5: Block corrected means for six sweet potato parents and their diallel evaluated

Parents/Crosses	β-carotene content (mg 100 g ⁻¹)	Dry Matter content (%)
1 x 2	1.5	33.00
1 x 3	14.37	40.10
1 x 4	12.39	30.5
1 x 5	1.32	31.88
1 x 6	3.37	28.43
2 x 3	5.49	38.67
2x 4	0.03	31.15
2 x 5	0.03	27.38
2x 6	1.74	27.27
3 x 4	1.5	29.49
3 x 5	0.12	31.67
3 x 6	1.38	35.71
4 x 5	0.02	37.04
4 x 6	0.03	38.89
5 x 6	1.38	34.15
Reciprocal		
2 x 1	11.03	33.82
3 x 1	4.92	31.86
4 x 1	4.41	29.73
5 x 1	0.12	34.00

6 x 1	1.38	34.78	
3 x2	4.92	25.86	
4 x 2	0.13	35.00	
5 x 2	1.66	32.69	
6 x 2	1.50	34.72	
4 x 3	6.12	32.56	
5 x 3	4.92	28.30	
6 x 3	0.03	33.33	
5 x 4	1.38	24.49	
6 x 4	1.5	33.94	
6 x 5	0.03	27.47	
Parent 1	13.38	36.25	
Parent 2	0.15	32.00	
Parent 3	5.49	26.47	
Parent 4	0.00	25.86	
Parent 5	0.03	29.73	
Parent 6	0.12	28.30	
Mean	2.86	31.89	
s.e	0.39	5.38	
S.C CV (%)	15.1	7.01	
LSD 0.05	0.85	6.04	
LOD 0.05	0.05	0.04	

244

Table 6: Combining ability ANOVA for β-carotene content and dry matter content

246

	Df	Mean s	squares
Source	S.X	β-carotene content(mg 100 g ⁻¹)	Dry Matter content (%)
Rep		0.65**	7.85 ^{ns}
Parent	5	31.39**	134.28**
Parent x cross	1	11.1**	29.60**
Crosses	11	62.32**	25.10**
GCA	5	83.98**	54.76**
SCA	6	53.76**	10.80**
Reciprocal	12	54.23**	6.9ns
Error	100	0.032	7.63
Total	141		

** Significant at p<0.01 (by *F*-probability); ns=not significant; GCA=variation due to general combining ability, SCA=variation due to specific combining ability, reciprocal=variation between reciprocal

250

251

254	sweet potato parents		
	Parent	β -carotene content	Dry Matter Content
	1	1.33**	-3.41**
	2	1.12**	4.38**
	3	0.50**	- 2.88**
	4	-2.13ns	2.05**
	5	-0.44**	0.12ns
	6	-0.355ns	1.04**
255	** Significant at <i>p</i> <0.01 (by	F-probability); ns=not signification	ant.
256			
257			
258			
259			
260			
261			
262			
263			
264			
265			
266			
267			
268			
269			

Table 7 Estimates of GCA effects for β-carotene content and dry matter content of six 253 sweet notato narents 254

269

Table 8: Estimates of SCA effects for the Diallel analysis for β-carotene content and dry 270 matter content 271

Crosses	β-carotene	Dry	Matter
0100000	content	content	1.1
	(mg 100 g-1)	(%)	
	(1115 100 5 1)	(70)	
1 x 2	3.28**	1.64ns	
1 x 3	-2.14ns	3.10**	
1 x 4	5.16**	0.78**	
1 x 5	0.022**	1.88**	
1 x 6	3.37**	3.43**	
2 x 3	5.49**	-8.67ns	
2x 4	0.03ns	1.15**	
2 x 5	4.03**	2.38**	
2x 6	1.74**	2.92**	
3 x 4	1.27ns	-2.49ns	
3 x 5	0.12**	1.67ns	
3 x 6	-1.38**	3.76**	
4 x 5	-0.02ns	-3.04ns	
4 x 6	-7.03**	-3.89ns	
5 x 6	-1.38ns	3.15**	
Reciprocal			

	2 x 1	11.03** -3.82ns
	3 x 1	-4.92** -1.86**
	4 x 1	-6.41** 2.73**
	5 x 1	-3.12** 3.00ns
	6 x 1	1.38** 3.73**
	3 x2	-4.92** -2.06ns
	4 x 2	0.13** -3.00ns
	5 x 2	-1.66ns 2.69Ns
	6 x 2	5.50ns 3.72**
	4 x 3	6.12** -3.56
	5 x 3	4.92** 2.30ns
	6 x 3	0.02** -3.33
	5 x 4	-1.38ns -2.49
	6 x 4	1.5ns -3.94ns
	6 x 5	-5.03ns 2.47ns
273 274 275	*, ** Si	gnificant at (p<0.05) and (p<0.01) (F-probability) respectively; ns=not significant
276		
277		
278		
279	Referen	ices
280	1.	FAO. The global potato economy. Int. Year Potato 2008, Trade and Markets Division,
281		FAO, Rome, Italy. 2008; http://www.fao.org/potato-2008/en/potato/IYP-3en.pdf
282		
283	2.	Reddy UK, Bates GT, Ryan-Bohac J, Nimmakayala P. Sweetpotato. In: KOLE, C (ed.)
284		Genome mapping and molecular breeding in plants. New York: Springer. 2007; pp.
285		237-239.
286		
287	3.	Jarret RL, Gawel N, and Whittemore A. Phylogenetic relationship of sweetpotato
288		[Ipomoea batatas (L.) Lam.]. J. Amer. Soc. Hort. Sci. 1992; 117: 633-637.
289		
290	4.	Rees D, van Oirschot Q.E.A, Amour R, Rwiza E, Kapinga R, Carey T. Cultivar
291		variation in keeping quality of sweet potatoes. Postharvest Biol. Technol., 2003;
292		28: 313-325.
293		
294	5.	Jones A, Steinbauer CE, Pope DT. Quantitative inheritance of ten root traits in sweet
295		potatoes. Journal of the American Society for Horticultural Science 1969; 94: 271-275.
296		
297		
298	6.	Mukasa, SB, Rubaihayo, PR, Valkonen, JTP. Incidence of viruses and viruslike disease
299		of sweetpotato in Uganda. Plant Disease 2003;87:329-335

300 301 302 303	7. Collins WP. Analysis of growth in Kennebec with emphasis on the relationship between stem number and yield. <i>American Potato Journal</i> 1977; 54:33-40.
304	8. Mwanga ROM, Yencho GC, Moyer JW. Diallel analysis of sweetpotato for resistance
305	to sweetpotato virus disease. Euphytica 2002; 128: 237-248.
306	9. Hayman BI. The analysis of variance of diallel table. Biometrics 1954a; 10: 235-244.
307	10. Hayman BI. The theory and analysis of diallel crosses. Genetics 1954b; 39: 789-809.
308	11. Hayman BI. The theory and analysis of diallel crosses. II. Genetics1958; 43: 63-85.
309	12. Hayman BI. The theory and analysis of diallel crosses. III. Genetics1960; 45: 155-172.
310	13. Dickinson AG, Jinks JL. A generalised analysis of diallel crosses. Genetics 1956; 41:
311	65-78.
312	14. Griffing B. Concept of general and specific combining ability in relation to
313	diallel crossing systems. Aust. J. Biol. Sci., 1956; 9: 463-493
314	
315	15. Mihovilovich E, Mendoza HA, Salazar LF. Combining ability for resistance to
316	sweetpotato feathery mottle virus. Hort. Science 2000;35: 1319-1320.
317	16. Yan W, Hunt LA. Biplot analysis of diallel data. Crop Science 2000;42: 21-30.
318	17. Salami AE, Agbowuro GO. Gene Action and Heritability Estimates of Grain Yield
319	and Disease Incidence Traits of Low-N Maize (Zea mays L.) Inbred lines Agriculture
320	And Biology Journal Of North America 2016; Vol. 7 (2) pg 50-54,
321	doi:10.5251/abjna.2016.7.2.50.54
322	18. Rojas BA, Sprague GF. A comparison of variance components in corn yield trials: III.
323	General and specific combining ability andtheir interaction with locations and years.
324	<i>Agron. J.</i> 1952; 44: 462–6.
325	19. SASInstitute. SAS/STAT user's guide. Version 6,4th ed. 1995 Vol. I and II. SAS Inst.
326	Inc. Cary N.C., U.S.A.
327 328	20. Kathabwalika, D. M., Chilembwe, E. H. C., & Mwale, V. M. (2016). Evaluation of dry matter, starch and beta-carotene content in orange-fleshed sweet potato (<i>Ipomoea</i>)

329	batatas L.) genotypes tested in three agro-ecological zones of Malawi. African Journal
330	<i>of Food Science, 10</i> (11), 320-326.
331	21. Tomlins, K., Owori, C., Bechoff, A., Menya, G., & Westby, A. (2012). Relationship
332	among the carotenoid content, dry matter content and sensory attributes of sweet
333	potato. <i>Food Chemistry</i> , 131(1), 14-21.
334	22. Burri, B. J. (2011). Evaluating sweet potato as an intervention food to prevent vitamin
335	A deficiency. Comprehensive Reviews in Food Science and Food Safety, 10,118–130.
336	23. Bechoff, A., Westby, A., Owori, C., Menya, G., Dhuique-Mayer, C., Dufour, D., et al.
337	(2010). Effect of drying and storage on the degradation of carotenoids in orange-fleshed
338	sweet potato varieties. Journal of the Science of Food and Agriculture, 90, 622–629.
339	

R