Isolation and Molecular Characterization of Acid Producing Bacteria from Selected Oilfield Environments Within the Niger Delta

3

1

2

4 5

ABSTRACT

Acid producing bacteria are considered an important group of corrosive bacteria that have 6 economic importance to petroleum industry. In this research, acid producing bacteria were 7 isolated from produced water sample collected at ten (10) oil field environments within the 9 Niger Delta Region. The multiple tube fermentation technique was used to isolate the bacteria 10 while Phenol red dextrose broth was used as the microbiological medium for the isolation of the acid producing bacteria. Also total heterotrophic bacteria count (THBC) was determined 11 under aerobic and anaerobic condition using the standard plate count techniques and the boiling 12 method used for the extraction of acid producing bacterial DNA after growing in Luria Bertani 13 broth. The extracted bacterial DNA were purified and quantified before PCR amplification. 14 The PCR amplicons were subjected to gel electrophoresis. The bacterial DNA bands were 15 quantified using 1500bp ladder. The result obtained showed that some acid producing bacteria 16 isolated could survive as facultative microorganisms belonging to genera such as Klebsiella, 17 Pantoea, Escherichia, Providentia, Proteus, Shewanella, Myroides and Pseudomonas. There 18 was growth in all samples under aerobic condition with a THBC ranging from 19 $3.602 \times 10^2 \text{Cfu/ml} - 4.698 \times 10^2 \text{Cfu/ml}$ while the range was within $3.301 \times 10^2 \text{Cfu/ml} -$ 20 5.676x10²Cfu/ml under anaerobic condition. For physicochemical parameters determined, 21 temperature range for all samples was within 23.9° C – 24.8 ° C; pH was within 7.24 – 8.10; 22 total dissolved solids was within 470mg/ml - 16160mg/ml and conductivity was within 1.885 23 24 μs/cm – 845.2 μs/cm. The results also showed that acid producing bacteria grow mostly under aerobic condition unlike the sulphate reducing bacteria. 25

26 Keywords: Acid producing bacteria, corrosive, molecular technique, Niger Delta

27

28

Introduction

- 29 Industrial wastewater is a by-product of hydrocarbon exploration and production. Produced
- water is formed from sea water and hydrocarbon formation water [1,2]. It contains organic and
- 31 inorganic compounds. The compounds consist of dispersed oil components, heavy metals,
- 32 radionuclides, microorganisms, scale products, dissolved oxygen, hydraulic fluid chemicals,
- salts, dissolved formation minerals and gases [3,4].
- 34 Diverse physiological groups of microorganisms are present in produced water which
- associated with corrosion of oil and gas facilities such as sulphate reducing bacteria (SRB),
- iron oxidizing bacteria (IOB), manganese oxidizing bacteria (MOB) nitrate reducing bacteria
- 37 (NRB) and acid producing bacteria (APB) [5]. The acid producing bacteria (fermentative
- 38 bacteria) produce organic acids which are corrosive and can serve as precursor metabolites for

- 39 other corrosive bacteria which aid the corrosive activities of these bacteria. Some aerobic
- 40 bacteria that make up microbial community in oilfield environment usually enter during
- drilling or application of injection water for pressure build up [6]. The genome of aerobic
- 42 hydrocarbon utilizing bacteria can be determined enzymatically [7].
- 43 Molecular techniques are currently applied in the study of microbial community structure and
- 44 composition to obtain the true functional activity and phylogenetic diversity of metabolically
- 45 active microbes in an oilfield environment [8-10]. The description of the microbial community
- of an environmental sample can be done using ribosomal RNA to obtain the libraries of the
- 47 cDNA of the 16S rRNA fragments [11,12]. The 16S rRNA clone libraries and sequences from
- 48 the total microbial cell DNA had also be used to determine the microbial diversity in formation
- 49 water from oil production wells [9,13-15]. The present study focused on the molecular
- 50 characterization of acid producing bacteria from selected oilfield environments located in Niger
- 51 Delta, Nigeria.

58

Materials and Method

53 Wastewater Sample Collection and Transport

- 54 Produced water samples were collected from injection wells (8) and flow stations (2) in oil
- 55 field environments from Imo river, (Abia State) Umuechem, (Rivers State) Cawthorn channel
- 56 (Rivers State) and Benisede (Bayelsa State) located within the oil rich region of Niger Delta,
- 57 Nigeria. The samples were transported in sample bottles covered in black cellophane bag.

Physicochemical Analyses

- 59 The physicochemical parameters that were analysed in the produced water samples include:
- Temperature, pH, electrical conductivity and total dissolved solids. Temperature and pH were
- determined using Thermo Scientific Orion Star A214 pH/ISE meter while the total dissolved
- solids and electrical conductivity were determined using YSI 3200 Conductivity Instrument
- 63 [16].

64 65

66

67

68

Microbiological analyses

Estimation of Total Heterotrophic Bacteria in the Wastewater Samples

- 69 Total heterotrophic bacterial population was determined under aerobic and anaerobic
- 70 conditions using the standard plate count method of enumeration. 0.1ml dilutions of
- vastewater samples were aseptically inoculated into sterile plates of standard plate count agar
- 72 (SPCA). A sterile glass rod (hockey stick) was used to spread the inoculum in an even pattern
- on surface of agar plates in triplicates [17]. The cultured plates were incubated at 37°C for 24
- to 48 hours for aerobic culture and for seven (7) days for anaerobic culture.

The cultured plates of total viable counts were estimated as thus:

CFU/ml = TVC X Dilution Factor

Inoculum Volume

77 78 79

75

76

Isolation and Purification of Acid Producing Bacteria

80 81

82

83

84

85

86

88

89

The acid producing bacteria were isolated from produced water samples using Phenol red dextrose culture broth. The broth medium was prepared by mixing 10g of peptone, 5g of dextrose, 5g of sodium chloride and 18mg of phenol red powder with 1litre of distilled water. The medium was autoclaved at 121 ° C for 15 minutes before use. The multiple tube fermentation technique was adopted for biocorrosion studies involving acid producing bacteria [17]. The inoculated broth was incubated at 37 ° C for 7 days under aerobic and anaerobic

87 conditions during the study [18].

The isolates were purified by sub-culturing in MacConkey agar as a differential/ selective medium for isolation. The pure isolates were used for the molecular studies [18].

90 91

Extraction and Purification of Acid Producing Bacterial DNA

92 93

94

95

96

97

98 99 The boiling method was used for extraction of acid producing bacterial DNA. Pure colonies of acid producing bacteria were inoculated into 6 ml of Luria Bertani broth (LB) and incubated at 37°C for 6-10 hours. Thereafter, the LB broth was centrifuged at 12000rpm for 3 minutes followed by addition of 500 ul of normal saline to Ependorff tube containing cell DNA sample. The tubes were heated at 95°C for 20 minutes, and then were fast cooled on ice followed by spinning at 12000rpm for 3 minutes. The cell DNA supernatant was kept at -10°C for further procedures. After that, the extracted cell genomic DNA was quantitated by Nanodrop 1000 spectrophotometer.

101102

103

100

16S rRNA Amplification and Sequencing

- The amplification was done using 16s rRNA region of rRNA gene of isolates. The primers used
- for amplification are 27F: 5'-AGAGTTTGATCMTGGCTCAG-3' and 1492R:5'
- 106 CGGTTACCTTGTTACGACTT-3' on an ABI 9700 Applied Biosystems thermal cycler at a
- final volume of 40 micro-litres for 35 cycles. The initial denaturation, 95°C for 5 minutes;
- denaturation, 95°C for 30 seconds; annealing, 52°C for 30 seconds; extension, 72°C for 30
- seconds for 35 cycles and final extension, 72°C for 5 minutes. The amplicons were resolved on
- a 1% agarose gel at 130V for 30 minutes and visualized on a blue light transilluminator.

111 112

Sequencing

- The BigDye Terminator Kit on a 3510 ABI Sequencer was used to perform sequencing. The
- analysis was done by Inqaba Biotechnological, Pretoria, South Africa. The final volume of
- sequencing was 10ul. 0.25ul BigDye[®] terminator v1.1/v3.1, 2.25ul of 5x BigDye sequencing
- buffer, 10uM Primer, PCR Primer and 2-10ng PCR template per 100bp were used as the

components for sequencing and optimum conditions are 32 cycles of 96°C for 10second, 55°C for 5seconds and 60°C for 4minutes.

Phylogenetic Analysis

Bioinformatics algorithm Trace edit was used to edit the sequences obtained. BLASTN was electronically used to download similar sequences from National Center for Biotechnology Information (NCBI) database. MAFFT was used to align sequences. The Neighbor-Joining method in MEGA 6.0 was adopted to infer evolutionary history of isolates [19]. The bootstrap consensus tree predicted from 500 replicates [20] was taken to represent the evolutionary history of taxa determined. The Jukes- Cantor method was used to compute evolutionary distances [21].

Results

The result of physicochemical parameters of produced water is given in Figures 1-4 which show graphical view of relationship of values of each parameter with sample source.

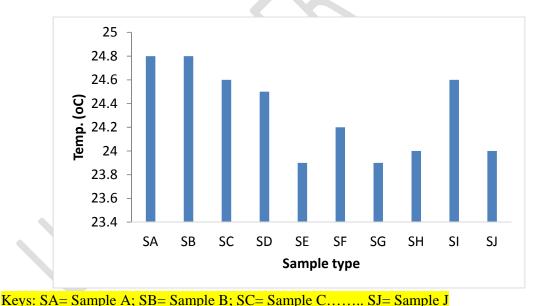
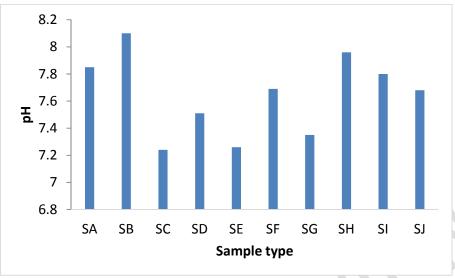
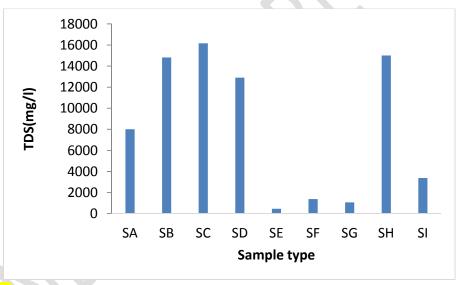




Figure 1: The temperature values of the produced water samples

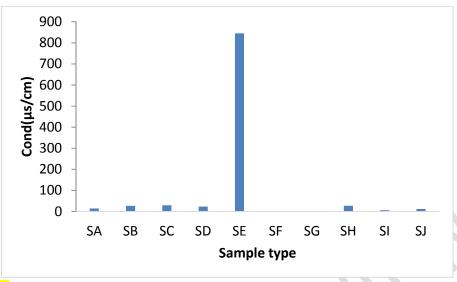
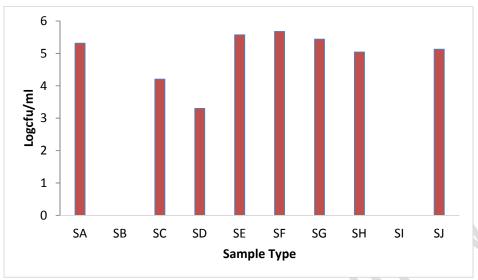

Keys: Idem

Figure 2: The pH values of the produced water samples

Keys: Idem

Figure 3: The values of Total Dissolved Solids

Keys: Idem


Figure 4: The values of the electrical conductivity

The microbiological analyses results of the produced water sample are given in Figures 5-7.

Keys: Idem

Figure 5: Total heterotrophic bacteria population (aerobic)

Keys: Idem

Figure 6: Total heterotrophic bacteria population (anaerobic)

Molecular Characterization of Acid Producing Bacteria from Produced Water

The result of molecular identification of corrosive bacteria in produced water sample is given below: $_{\rm B1\ B2\ L}$

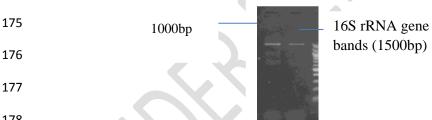


Plate 1: Agarose gel electrophoresis of the 16S rRNA gene of the study bacterial isolates. Lanes B1 and B2 represent the 16SrRNA gene bands (1500bp), lane L represents the 100bp molecular ladder

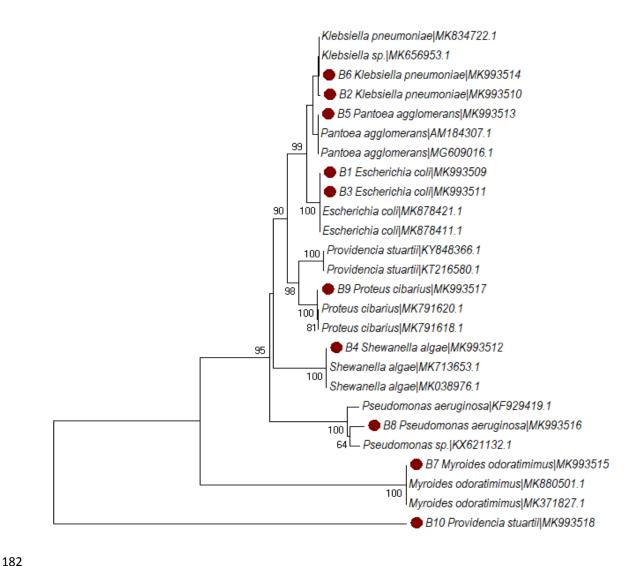


Figure 7: Phylogenetic Tree of Acid Producing Bacteria from Produced Water

Discussion

The temperature values were highest for flow station samples (SA & SB), while that for injection wells (SC-SJ) were all within similar ranges (23.4-24.6°C). The temperatures for all the samples were slightly below ambient temperature. This indicates influence environmental temperature has on water environment where corrosive bacteria can be found as temperature changes can occur due to atmospheric conditions and seasonal variations. Awoyemi *et al.* [22] reported a temperature range of 26.10°C to 26.55°C for rainy season and 28.10 °C for dry

- season for both groundwater and surface water. This report clearly indicates that environment
- greatly influences changes in temperature. Onojake et al. [23] also reported that temperature of
- produced water from oilfield location to be within a range of 21.9°C to 24.7°C.
- 198 The pH values for all samples were within slightly the same alkaline range (7.24-8.10).
- 199 Corrosive bacteria can survive such pH that is not extreme, although they would survive best
- 200 under acidic condition. The pH values were within the permissible limit of pH (7.47 to 8.50)
- for inland and near shore reported by Onojake et al. [23]
- The TDS indicate the presence of dissolved heavy metal ions and salts in produced water
- 203 [21]. The TDS values were high for SB, SC SD and SH within a range of (470mg/l) to
- 204 16160mg/l, indicating greater degree of pollution by dissolved substances presence in samples.
- The values of 80% of samples were above the regulatory limit of 2000mg/ml for inland area by
- World Health Organization [23]. Only three (3) samples had TDS values within 400 mg/ml to
- 207 1400mg/ml. Onojake et al. [23] reported TDS values for produced water ranging from 3200
- 208 mg/ml to 7000mg/ml. TDS values also indicate greater microbial population in most of
- 209 produced water sample.
- 210 Electrical conductivity values show purity level of produced water samples. The conductivity
- value was high for only SE (845.2µs/cm). The values for SF (2.425µs/cm) and SG
- 212 (1.885µs/cm) were very negligible in comparison to all other sample values. Onojake et al.
- 213 [23], reported conductivity values ranging from 126.50 µs/cm to 198.00 µs/cm. The
- 214 conductivity indicates the presence of dissolved salts and elements in the produced water
- samples. It is used to test purity level of water. Higher conductivity implies higher pollution
- 216 rate of the produced water sample and higher microbial population degree and possibility of
- 217 microbial induced corrosion.
- 218 Acid producing bacteria also known as fermentative bacteria can grow as facultative
- 219 microorganisms. When grown under both aerobic and anaerobic conditions, it was observed
- 220 that there was growth from all samples under aerobic condition within a short period than
- 221 anaerobic condition which took longer growth time. From this study results, it can be inferred
- that acid producing bacteria could survive in different environment and under different growth
- 223 condition. This could a mode of ecological adaptation for survival strategy in certain
- environment. Microbial Control Specialists report [24] revealed that among acid producing
- bacteria isolated from tank water and pipeline, Shewanella sp. is associated with metal
- corrosion while *Klebsiella* sp. is known for biofilm formation.
- 227 Among the microorganism's genera identified as acid producing bacteria is Escherichia coli,
- 228 which for long was known to be major faecal coliform bacteria of public health concern. Its
- 229 occurrence in an oilfield environment is very strange but is a possibility in terms of species
- 230 diversity, migration and species distribution in environment based on ability to adapt with
- 231 ecological changes in different environment. It could also mean that the isolate is a unique
- strain of Escherichia coli which possesses the mechanism or metabolic capacity to survive in a
- 233 different environment. This school of thought also holds for *Klebsiella* sp., *Providentia* sp. and
- 234 Proteus sp. which are also among the group of coliform bacteria of public health importance

235 due to their presence in groundwater [17]. In all, the presence of these groups of bacteria in 236 produced water sample also indicates that there is obvious similarity in environment where these bacteria can be found and isolated. Acid producing bacteria like other corrosive bacteria 237 238 release metabolic products which are metabolic markers such as exo-enzymes linked with 239 extracellular polymeric substances (EPS), organic and inorganic acids, nitrites, ammonia and 240 sulphides. At some time, they can lead to solid corrosion products formation of [25,26]. 241 Pseudomonas is an example of acid producing bacteria which releases organic acids which act 242 as very aggressive metabolites that can lead to localized bio-deposit and cause pitting corrosion 243 in pipeline which can spread to entire surface of metal structure. These bio-deposits act as traps 244 and food for other corrosive microorganisms which lead to formation of a complex matrix of 245 bacterial biofilm that further set up a corrosion potential between metal surface and layer beneath the biofilm. Apart from being corrosive, as part of their benefit to the environment 246 247 where they function, the acid producing bacteria because of their fermenting property can 248 promote oil production by modifying the reservoir fluid and rock properties (cause rock 249 mineralization). When added to reservoirs their bio-products can improve oil production [27]. 250 More so, Biji et al. [28] reported that microorganisms can synthesize useful products by fermenting cheap raw materials applicable in enhanced oil recovery. This makes microbial 251 252 enhanced oil recovery to be very sustainable compared to chemical enhanced oil recovery because of high cost of chemicals. It is also very interesting to note that microbial products 253 from the acid producing bacteria (APB) are biodegradable and environmentally friendly [28]. 254

Conclusion

255

262

264

265266

269

273

The presented study about isolation and characterization of acid producing bacteria has revealed the possibility of coliform bacteria to be among the corrosive bacteria such as sulphate reducing bacteria (SRB), iron oxidizing bacteria (IOB), manganese oxidizing bacteria (MOB) etc. involved in biocorrosion of metals and industrial metallic materials. These corrosive bacteria have been and are still problematic to durability and integrity of industrial facilities today.

263 References

- 1. Igunnu ET, Chen GZ. Produced water treatment technologies, *International Journal of Low-Carbon Technologies*. 2014; 9 (3):157–177.
- 267 2. Reynolds RR. Produced water and associated issues: A manual for the independent operator,
 268 Oklahoma Geological Survey Open-File Report. 2003; 6:1–56.
- 3. Fakhru'l-Razi, A, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ. Review of technologies for oil and gas produced water treatment. *Journal of Hazardous Materials*. 2009; 170 (2-3):530 551.
- 4. Hansen BR, Davies SRH. Review of potential technologies for the removal of dissolved components from produced water. *Chemical Engineering Research and Design*. 1994; 72: 176–188.

- 5. Immanuel OM, Abu GO, Stanley HO. Mitigation of biogenic sulphide production by sulphate
- 279 reducing bacteria in petroleum reservoir souring. SPE Paper 178323, SPE Nigerian Annual
- International Conference and Exhibition, Lagos, August 4th–6th, 2015.

- 6. An D, Caffrey SM., Soh J, Agrawal A, Brown D, et al. Metagenomics of hydrocarbon
- resource environments indicates aerobic taxa and genes to be unexpectedly common. *Environ*.
- 284 *Sci. Technol.* 2013; 47:10708–10717.
- 7. Head IM, Gray ND, Larter SR. Life in the slow lane; biogeochemistry of biodegraded
- petroleum containing reservoirs and implications for energy recovery and carbon management.
- 287 *Front. Microbiol.* 2014; 5:566.
- 8. Nazina TN, Grigor'yan AA, Shestakova NM, Babich TL, Ivoilov VS, Feng Q.
- Microbiological investigations of high-temperature horizons of the Kongdian petroleum
- 290 reservoir in connection with field trial of a biotechnology for enhancement of oil recovery.
- 291 *Microbiology*. 2007; 76:287 296.
- 9. Bødtker G, Lysnes K, Torsvik T, Bjørnestad E Ø, Sunde E. Microbial analysis of back-
- flowed injection water from a nitrate treated North Sea oil reservoir. J. Ind. Microbiol.
- 294 *Biotechnol.* 2009; 36:439–450.
- 295 10. Gao PK, Li GQ, Tian HM, Wang YS, Sun HW, Ma T. Differences in microbial community
- composition between injection and production water samples of water flooding petroleum
- 297 reservoirs. *Biogeosciences*. 2015; 12:3403–3414.
- 11. Mills HJ, Martinez RJ, Story S, Sobecky PA. Characterization of microbial community
- 299 structure in Gulf of Mexico gas hydrates: comparative analysis of DNA-and RNA-derived
- clone libraries. *Appl.Environ.Microbiol.* 2005; 71:3235 3247.
- 12. Moeseneder MM, Arrieta JM, Herndl GH. A comparison of DNA- and RNA-based clone
- libraries from the same marine bacterio-plankton community. FEMS Microbiol. Ecol. 2005;
- 303 **51:341 352.**
- 304 13. Duncan KE, Gieg LM, Parisi VA, Tanner RS, Suflita JM, Tringe GS. (). Biocorrosive
- thermophilic microbial communities in Alaskan North Slope oil facilities. Environ. Sci.
- 306 *Technol.* 2009; 43:7977–7984.
- 14. Gieg LM, Davidova IA, Duncan KE, Suflita JM. Methanogenesis, sulfate reduction and
- crude oil biodegradation in hot Alaskan oilfields. *Environ. Microbiol.* 2010; 12:3074–3086.
- 309 15. Van der Kraan GM, Bruining J, Lomans BP, Van Loosdrecht MCM, Muyzer G. Microbial
- 310 diversity of an oil-water processing site and its associated oilfield: the possible role of
- microorganisms as information carriers from oil-associated environments. FEMS Microbiol.
- 312 *Ecol.* 2010; 71:428–443.

- 313 16. APHA. Standard Methods for the Examination of Water and Waste Water, 22nd Edition,
- American Public Health Association, Washington, D.C. 2012.
- 315 17. Briggs WF, Agwa OK, Abu GO. (). Quantitative Microbial Risk Assessment (QMRA) of
- 316 Groundwater in Abonnema Community in Kalabari Kingdom, Rivers State, Nigeria. Adv
- 317 *Biotech & Micro*. 2018; 8 (3):555740.
- 18. Raphael B, Mamroud E, Aftalion M, Tidhar A, Gur D, Flashner Y, Sara Cohen
- Development of an Improved Selective Agar Medium for Isolation of Yersinia pestis, *Applied*
- 320 *And Environmental Microbiology*. 2003; 69(10):5787–5792.

- 322 19. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing
- phylogenetic trees. *Molecular Biology and Evolution*. 1987; 4:406-425.

324

- 325 20. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap.
- 326 *Evolution.* 1985; 39: 783-791.
- 327 21. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN, editor, *Mammalian*
- 328 *Protein Metabolism*, pp. 21-132, Academic Press, New York. 1969.

329

- 22. Awoyemi OM, Achudume AC, Okoya AA. The Physicochemical Quality of Groundwater
- 331 in Relation to Surface Water Pollution in Majidun Area of Ikorodu, Lagos State, Nigeria.
- American Journal of Water Resources. 2014; 2(5): 126-133.
- 23. Onojake MC, Abanum UI. Evaluation and management of produced water from selected
- oil fields in Niger Delta, Nigeria. Archives of Applied Science Research, 2012; 4 (1): 39-47.

- 24. Microbial Control Specialists Report. Bacterial Diversity Analysis Syrinx Well Services,
- 337 Project ID: OG142112. 2015.
- 25. Beech IB, Gaylarde CC. Recent advances in the study of biocorrosion: an overview. Rev.
- 339 *Microbiol.* 1999; 30 (3): 117–190.
- 26. Beech IB, Sunner J. Biocorrosion: towards understanding interactions between biofilms and
- metals. Curr. Opin. Biotechnol. 2004; 15(3): 181–186.
- 27. Patel J, Subrata B, Mayank K, Vivek R. Recent developments in microbial enhanced oil
- recovery. Renewable and Sustainable Energy Reviews. 2015; 52: 1539 1558.
- 28. Biji S, Saif NA, Yahya MA, Abdulkader EE, Ali SA, Sanket J. Microbial Enhanced Heavy
- Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review. 2014.