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Abstract: A soliton is considered nowadays as a future wave reason being the fact that it is a 

stable, robust and non-dissipative solitary wave. If one uses a soliton as a transmission signal in 

electrical lines, this will have a great impacts in the domain of economic, technology and 

education. Given the fact that the propagation of the soliton is due to the interaction between 

dispersion and nonlinearity, it necessitates that the transmission medium should be dispersive and 

nonlinear. The physical system we have chosen for our survey is an inductive electrical line reason 

being the fact that it is the cheapest and very easy to manufacture than any other transmission lines; 

furthermore we find out the analytical variation that the magnetic flux linkage of inductors in the 

electrical line must undergo so that its transmission medium admits the propagation of solitary 

waves of required type. The aim of this work is to model nonlinear partial differential equations 

which govern the dynamics of those solitary waves in the line, to define the analytical expression 

of the magnetic flux linkage of inductors in the line and to find out some exact solutions of solitary 

waves types of those equations. To meet our objectives, we apply Kirchhoff laws to the circuit of 

a nonlinear inductive electrical line to model the nonlinear partial differential equation which 

describe the dynamics of those solitons. Further we apply the effective and direct Bogning-

Djeumen Tchaho-Kofane method based on the identification of basic hyperbolic function 

coefficients to construct some exact soliton solutions of modeled equations. Numerical simulations 

have enabled to draw and observe the real profile of those solitary waves which are Kink soliton 

and Pulse soliton. The obtained results are supposed to permits: The facilitation of the choice of 

the type of line relative to the type of signal one wishes to send across, to increase the mathematical 

field knowledge, the reduction of amplification stations of those lines, The manufacturing of new 

inductors and new electrical lines susceptible of propagating those solitary waves. 

Keywords: Inductive electrical line, Modeling, Construction, Soliton solution, Solitary wave, 

Nonlinear Partial Differential Equation, Kink, Pulse. 

1. Introduction 

Solitary waves, have evolved from the level of a simple water wave to the displacement of solitons 

in optical fibers [1]. From a solitary wave which is defined as a wave capable of displacing on 

longer distances without changing its shape and its velocity, we have borne in mind the fact that if 

one of such signals is used in engineering of information through an inductive electrical line, it 

will resist best on different dissipation factors. In this effect, we have decided to render two 
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definitions of nonlinear magnetic flux linkage of inductors constituting networks of an inductive 

electrical transmission line. Then, we have applied them to model new nonlinear partial differential 

equations, which govern the dynamics of solitary waves in the said line. Many authors look for 

numerical solutions of nonlinear partial differential equations [24-25] but it is also better to look 

for exact analytical solutions which lead best to the information of our systems.  In order to 

construct exact solitary wave solutions of every nonlinear partial differential equation obtained, 

we rely first on methods presented in [2-15]. Furthermore, we have decided to adopt the new 

Bogning-Djeumem Tchaho-Kofane method [16-21] reason being that it facilitates the construction 

of a solitary wave solution by identification of the basic hyperbolic function coefficients of 

nonlinear partial differential equations in a direct and effective manner. Having solved the 

equations, we have come up with solitary wave solutions of type Kink and type Pulse. The work 

presented in this paper is partitioned as follows: In the part 2, we present a general modeling of a 

nonlinear inductive electrical line; In part 3, we construct solitary wave solutions of type Kink; In 

part 4, we construct solitary wave solutions of type Pulse and we present at the end the conclusion 

in part 5. 

2. General modeling of a nonlinear inductive electrical line 

Let us consider an electrical line constituting a good number of identical networks shown in figure 

1 where G  is the conductance of the resistor and R  the resistance of another resistor, connected 

in a series branch with an inductor whose the magnetic flux linkage ( )ni changes in nonlinear 

manner in terms of the current ni  flowing through that inductor.  

                                                                              

  

 

                Figure 1: presentation of a nonlinear inductive electrical line.    

  

By applying Kirchhoff’s laws to the circuit shown in figure 1, we obtain the following equations 
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                               1
n

n n nu u Ri
t





  


 ,                                                                                                                (1)                                    

                               1 1n n ni i Gu      .                                                                                                                          (2) 

 

Where n  is a positive integer that numbers each network of the line, ni  and 1ni   indicate 

respectively the current that flows through the inductor network order n  and the inductor network 

order 1n , nu  and 1nu   indicate respectively the voltage across resistors with conductance G of 

the network order n  and the network order 1n . n  Indicates the nonlinear magnetic flux linkage 

of the inductor network order n . Considering equation (1), equation (2) become 

                              1
n

n n n ni i Gu G RGi
t





   


  .                                                                                              (3) 

The substitution of 1n n nGu i i   of equation (2) obtained during the previous order in equation 

(3), one obtains the differential equation below 

                              1 12 n
n n n ni i i G RGi

t


 


   


 .                                                                                                (4) 

To obtain the continuum model, the left hand side of equation (4) has to be approximated to a 

spatial partial derivative with respect to x nh  which represents the distance measured from the 

beginning of the line. h  represents the distance that separates two consecutive nodes and which is 

equivalent to the spatial sampling derivatives period. We obtain as such spatial partial derivatives 

using Taylor expansion of 1ni   and 1ni   closely to ni  by considering the terms till fourth order in 

the following manner 

                      
2 3 42 3 4

1 2 3 41! 2! 3! 4!

n n n n
n n

i i i ih h h h
i i

x x x x


   
    

   
     ,                                                                       (5)  

                       
2 3 42 3 4

1 2 3 41! 2! 3! 4!

n n n n
n n

i i i ih h h h
i i

x x x x


   
    

   
                                                                        (6) 

and 

                         
2 44

2

1 1 2 4
2

12

n n
n n n

i ih
i i i h

x x
 

 
   

 
 .                                                                                               (7) 

Equation (7) and (4) permits us to derive the result as follows 

                       
2 44

2

2 4
0

12

n n n
n

i ih
h G RGi

x x t

  
    

  
  .                                                                                     (8) 
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Finally, we obtain the continuum model of the nonlinear inductive electrical line presented in 

figure1 by the nonlinear partial differential equation below 

                   
2 4 4

2

2 4

( , ) ( , ) ( ( , ))
( , ) 0

12

i x t h i x t i x t
h G RGi x t

x x t

  
    

  
 .                                                     (9) 

Let’s find out the solitary wave solutions of equation (9).    

3. Construction of solitary wave solution of type Kink of partial differential equation 

(9). 

We define the nonlinear magnetic flux linkage of inductors on the analytical shape as follows 

              4 2 2 2

1 2 3 0( ( , )) ( , ) ( , ) ln( ( , ) )i x t B i x t B i x t B i x t B     .                                                  (10) 

With 0( , )i x t B . 1B  ; 2B and 3B  are non-nil real numbers which will be chosen conveniently. By 

substituting the flux ( ( , ))i x t  of (10) in equation (9) we obtain the nonlinear partial differential 

equation written as 

          

2 4 4 4 4 2 2
2 2 2 2 20

04 4 2 2

2 2 3

3 0 2 2 0 1

5 2 3

1 0

( , ) ( , ) ( , ) ( , )
( , ) ( , )

12 12

( , ) ( , )
(2 2 ) ( , ) (2 4 ) ( , )

( , )
4 ( , ) ( , ) ( , ) 0.

B h i x t h i x t i x t i x t
i x t B h h i x t

x x x x

i x t i x t
GB B GB i x t GB B GB i x t

t t

i x t
GB i x t B RGi x t RGi x t

t

   
  

   

 
   

 


   



                                                (11) 

Considering : 
2 4

0
1

12

B h
m   , 

4

2
12

h
m    , 2 2

3 0m B h  , 2

4m h   , 2

5 3 0 22 2m GB B GB   ,

2

6 2 0 12 4m GB B GB   , 7 14m GB  , 2

8 0m B RG   , 9m RG  , equation (11) takes the following 

shape  

       

4 4 2 2
2 2

1 2 3 4 54 4 2 2

3 5 3

6 7 8 9

( , ) ( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , )

( , ) ( , )
( , ) ( , ) ( , ) ( , ) 0.

i x t i x t i x t i x t i x t
m m i x t m m i x t m i x t

x x x x t

i x t i x t
m i x t m i x t m i x t m i x t

t t

    
   

    

 
    

 

              (12) 

 Let us use Bogning-Djeumen Tchaho-Kofane method [16-21] to come out with the solution of 

equation (12) under the analytical shape below 

            ( , ) tanh( )i x t a kx vt                                                                                                                                    (13) 

Where a , k  and v  are non-nil real numbers to be determined. Replacing ( , )i x t given by (13) in 

equation (12) we yield the following equation 
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3 4 6

2 7 7

6 4 4 3 4 3 2

7 1 6 2 4 5

6 4 2 3 4 3 2 4 3 2

7 1 3 2 9 5 6 4 3

3

8 9

sinh( )
( 24 )

cosh ( )

sinh( )
(2 24 32 2 )

cosh ( )

sinh( )
( 8 2 8 2 )

cosh ( )

sinh(
( )

kx vt
m a k m a v

kx vt

kx vt
m a v m ak m a v m a k m a k

kx vt

kx vt
m a v m ak m ak m a k m a m a v m a v m a k

kx vt

kx
m a m a


 




     




        




)

0.
cosh( )

vt

kx vt






     (14) 

Equation (14) is valid if and only if each of its basic hyperbolic function coefficients is nil. This 

permits us to obtain the following set of fours equations 

 

3 4 6

2 7

6 4 4 3 4 3 2

7 1 6 2 4

6 4 2 3 4 3 2 4 3 2

7 1 3 2 9 5 6 4

3

8 9

24 0,

2 24 32 2 0,

8 2 8 2 0,

0.

m a k m a v

m a v m ak m a v m a k m a k

m a v m ak m ak m a k m a m a v m a v m a k

m a m a

   


    

        
  

                            (15) 

Solving the set of equation (15) has permitted us to obtain the following results: 

       8

9

m
a

m


  , 4 8 7

2 8 7 1 9 7 6 2 9

1

2 2 3 3

m m m
k

m m m m m m m m m
 

 
, 8 9 0m m  ,

 

 

3
2

2
2 4 7 8 9

2

8 2 8 7 1 9 7 6 2 9

3

2 2 3 3

m m n m m
v

m m m m m m m m m m




 

2 2 2 2 2 2 2 2 2

8 1 9 7 8 1 9 7 6 2 8 6 2 9 2 8 7 1 9

2 2 2 2

8 9 7 1 3 4 2 8 7 6 9 8 5 2 4 7 9 8 9 7 2 4 3 6

2 3 2 2 2 2 2 2

2 8 7 4 8 7 1 8 7 3 4 2

4
2

3

1 4 1 1

6 3 6 6

4 1 1
0

9 9 9

m m m m m m m m m m m m m m m m m m m

m m m m m m m m m m m m m m m m m m m m m m m m

m m m m m m m m m m m m

 
    

 
    
 
 
     
 

    .                       (16) 

Replacing 1m  , 2m  , 3m  , 4m  , 5m  , 6m  , 7m  , 8m  and 9m by their different expressions in (16), 

we obtain the solution of the nonlinear partial differential equation (11) which models the dynamic 

of solitary waves of type Kink in the inductive line as follow 

0a B  , 

1

4
1

0 4

3

RGB
k B

h B

 
   

 
 , 0

32

RB
v

B


  , 

2 1 3
2 1 0

4
2

3

B B
B B B

RG


    ; 1 3 0B B   

1

4
01

0 0 4

3 3

( , ) tanh
2

RBRGB
i x t B B x t

h B B

 
      
  

 

   .                                                                                                     (17) 
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Considering the values of the following parameters 1R k  , 
3 110G    , 0 20B A , 

1

1 7 .B Web A , 3

3 10 .B Web A  , 
110h m , the expression of Kink soliton (17) takes the shape 

   , 20 tanh 182,9 1000i x t x t   . This permits to obtain in figure 2 the representation of real 

profile of that Kink soliton. 

 

                                                                          

 

                   Figure 2: presentation of real Kink soliton profile 

 

 

4. Construction of solitary wave solution of type Pulse relative to nonlinear partial 

differential equation (9) 

We define the nonlinear magnetic flux linkage of inductors with analytical shape as given: 

     

2 2
2

3

1 2 3 2 2

0 0 0

( , ) ( , ) ( , )
( ( , )) ( , ) 1 ( , ) 1 arctan

( , )

i x t i x t i x t
i x t B i x t B i x t B

B B B i x t


    
                

  .  (18) 
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With 0 ( , )B i x t . 1B  ; 2B  and 3B  are non-nil real numbers whose conditions of choice will be 

established. A substituting of ( ( , ))i x t  of (18) in differential equation (9) permits us to obtain the 

nonlinear partial differential equation bellow 

       

  

2 4 4
2 2 2

0 0 2 4

4 2 2 2

2 0 2 1 0 1 0 3

( , ) ( , )
( , ) ( , )

12

( , )
4 ( , ) 3 2 ( , ) 0.

i x t h i x t
B B i x t h RGi x t

x x

i x t
G B i x t B B B i x t B B B B

t

  
    

  


      



                                    (19) 

Finding out the result of equation (19) on the analytical shape: 

                ( , ) sechi x t a kx vt                                                                                                                           (20) 

Where a , k  and v  are non-nil real numbers to be determined. Substituting ( , )i x t  of (20) in 

differential equation (19), we obtain the equation as follows 

        

 
 

 
 

 

 

 

 

 

 

 

3 2 3 2

0 2 1 0 3 0 14 2

2
2

0 2

5 4 4 2 2

2 0 0 06

2
2

0 2

2 2 4 4

0 0

sinh sinh
3 2

cosh cosh

coshsinh 1
4

cosh 12 cosh

cosh5
2

3 cos

kx vt kx vt
a vGB B a vGB avGB B avGB B

kx vt kx vt

a
B

kx vtkx vt
a vGB B RGa B h ak B h ak

kx vt kx vt

a
B

kx vt
B h ak B h ak

 
  

 


  

    
  


 

  
   

 

 

2
2

0 2

4 4

03 5

cosh
2 0.

h cosh

a
B

kx vt
B h ak

kx vt kx vt




 
 

 (21) 

We realize that to be able to transform the hyperbolic functions of (21) to the basic hyperbolic 

functions as recommended by the new Bogning-Djeumen  Tchaho-Kofane [16-21] we must 

consider 0B a  such that  

                
 

 
2

2

0 2
tanh

cosh

a
B a kx vt

kx vt
  


                                                                      (22) 

 

  The right-hand side of (22)  has enables us to rearrange (21) as 
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 

 

 

 

 
 

 

3 2 2 2 2 2 4 4 3

0 2 0 0 1 4

2 2 2 2 2 4 4 2

0 0 3 0 0 0 1 2

2 4 4 5

0 2 6

sinh5
3 2 2

3 cosh

sinh1

12 cosh

sinh
2 4 0.

cosh

kx vt
a vGB B B a h k B a h k a vGB

kx vt

kx vt
B a RG avGB B B a h k B a h k avGB B

kx vt

kx vt
B a h k a vGB

kx vt

 
   

 

 
     

 


   



                  (23) 

Equation (23) is valid if each coefficient of its basic hyperbolic function is equal to zero. This 

enables us to obtain the set of three equations as follows 

       

3 2 2 2 2 2 4 4 3

0 2 0 0 1

2 2 2 2 2 4 4 2

0 0 3 0 0 0 1

2 4 4 5

0 2

5
3 2 2 0,

3

1
0,

12

2 4 0.

a vGB B B a h k B a h k a vGB

B a RG avGB B B a h k B a h k avGB B

B a h k a vGB


   




    


  



                                          (24) 

The result of the set of nonlinear equation (24) enables us to realize that solitary waves of type 

Pulse are easily displaced in the nonlinear inductive line with analytical shape given below: 

0a B  , 0

3

RB
v

B


  , 

1

3 4
0 2

4

3

2B B RG
k

h B

 
  

 
 , 

 2 4 2 2

2 0 2 0 1 1

3

0 2

12 36

72

RG B B B B B B
B

B B

 
  , 

1

3 4
0 2 0

0 4

3 3

2
( , ) sech

B B RG RB
i x t B x t

h B B

 
      
  

 

  .                                                                           (25) 

Considering the values of the following parameters 1R k  , 
3 110G    , 0 20B A , 

1

1 7 .B Web A , 3

2 10 .B Web A  , 
110h m , the expression of pulse soliton (17) takes the shape 

   , 20sech 34,8 18,3i x t x t  . This permits to obtain in figure 3 the representation of real profile 

of that Pulse soliton. 
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                                                Figure 3: Representation of real pulse soliton profile 

 

5. Conclusion 

At the end of this work, where we have modeled and constructed solitary wave solutions by two 

different nonlinear partial derivative equations of an inductive electrical line; it is therefore 

important to point out that the results obtained will first of all enable us in the domain of physics 

and telecommunication of engineering, the manufacturing of new transmission lines like inductive 

electrical lines whose magnetic flux linkage of inductors varies one in a nonlinear shape defined 

in (10) and varies for the other in a nonlinear shape defined in (18). In addition, these results will 

permit us to ameliorate the quality of signals that will be propagated in those new lines. In fact, 

those signals are solitary waves of type Pulse obtained in (25) and type Kink obtained in (17) 

which by their definitions, propagate on a long distance maintaining their shape; their speed and 

resist best on different dissipative factors. Finally, in a typical mathematics domain, the results 

obtained has permitted us to define in (11) and (19) two new nonlinear partial derivative equations 

which have respectively for exact solutions solitary wave (17) and (25). This augments the field 

of mathematical knowledge. In order to inquire ideas concerning the stability of obtained solitary 

waves, it seems for us to study later their modulational instability before carrying out the practical 

survey where we will experiment the applicability and the perfection of these new inductive 

electrical lines. 
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