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Abstract— Direction-of-Arrival estimation accuracy using arc
array geometry is considered in this paper. There is a scanty
use of Uniform Arc Array (UAA) in conjunction with Cramér-
Rao bound (CRB) for Direction-of-Arrival estimation. This paper
proposed to use Uniform Arc Array formed from a considered
Uniform Circular Array (UCA) in conjunction with CRB for
Direction-of-Arrival estimation. This Uniform Arc Array is
obtained by squeezing all sensors on the Uniform Circular
Array circumference uniformly onto the Arc Array. Cramér-
Rao bounds for the Uniform Arc Array and that of the Uniform
Circular Array are derived. Comparison of performance of the
Uniform Circular Array and Uniform Arc Array is done. It was
observed that Uniform Arc Array has better estimation accuracy
as compared to Uniform Circular Array when number of sensors
equals four and five and azimuth angle ranging between π

9
and

7
18
π and also 10

9
π and 25

18
π. However, UCA and UAA have

equal performance when the number of sensors equals three
and the azimuth angle ranging between 0 and 2π. UCA has
better estimation accuracy as compared to UAA when the number
of sensors equals four and five and the azimuth angle ranging
between π

2
and π and also 3

2
π and 2π.

Index Terms— array signal processing, direction-of-arrival esti-
mation, direction finding, Cramér-Rao bound, uniform arc array.

I INTRODUCTION

The general performance of any Direction Finding (DF)
system is a function of both the DF algorithm used and array
geometry [1]. Direction-of-Arrival (DOA)/Direction Finding
(DF) is the direction in which an incoming signal arrives into
an array of sensors (a group of sensors arranged/organized
in a particular pattern). Direction-of-arrival (DOA) estimation
is a fundamental problem in array signal processing. Various
algorithms have been proposed for DOA estimation such as
Multiple Signal Classification (MUSIC), Root-MUSIC, propa-
gator methods, high-order cumulant method, Maximum Like-
lihood Method (MLM), among many others [2]. Its accuracy
is an important parameter of any direction finding system [3].
Cramér-Rao bound is a very important tool for evaluating the
accuracy of any parameter estimation method since it provides
a lower bound on the accuracy of any unbiased estimator [3].

Performance of various estimators (MUSIC, MLE, among
others) is compared to the ultimate performance corresponding
to CRB [4]. Regardless of the specific algorithm used, CRB
lower bounds estimation error variance of any unbiased esti-
mator [5]. Therefore, CRB provides an algorithm-independent
basis against which various algorithms are compared [3]. It
has been used in several works such as Cramér-Rao bound

for DF using an L-Shaped Array with Non-orthogonal Axes
[6], accuracy limits through Cramér-Rao Lower Bound for
Geolocation of Internet hosts [7], among many others.

One of the simplest array geometry which enables signal
array-processing algorithms to be applied easily is the uniform
linear array (ULA) [12]. It has useful properties such as ap-
plication of forward-backward spatial smoothing to only ULA
because of the Vandermonde structure of the array steering
matrix, application of fast subspace algorithms such as Root-
MUSIC in ULA, hence computational efficiency increment
[13]. However, ULA will limit azimuth field of view below
π (normally 2

3π) since it is one-dimensional. The solution to
this problem requires the use of several ULAs arranged in
triangular or rectangular shape among others or rotating the
ULA a few times to cover the entire azimuth spread. This use
of several ULAs increases the cost as well as collecting a lot
of data [14].

There are other geometries that have been employed to
resolve the problem of the non-uniform performance of ULA
in all directions which degrades Direction-of-Arrival (DOA)
estimation performance in angles close to endfire [15]. In 2-
dimension angle estimation, Uniform Circular Array (UCA)
which is a geometrical pattern with a number of sensors
equally spaced on the circumference of a circle is highly used
due to its attractive advantages such as it provides a 2π full
azimuth coverage, has an extra information on elevation angle
and its direction pattern is almost unchanged [16]. However,
UCA is expected to suffer serious mutual coupling effects
because of the compelling coupling that can occur between
elements that are positioned diametrically opposite one another
together with the strong coupling between adjacent elements.
This effect can be compensated since the symmetry of the
UCA can break down into a series of symmetrical spatial
components using the array excitation [12].

There are different array configurations/geometries in the
literature used for DF such as linear, planar and conformal
arrays [8]. Unfortunately, very little is known about the ar-
rangement of sensors along a curve or an arc [10]. An arc is a
portion or a part of the circumference of a circle. A uniform arc
array is a geometrical pattern with a number of sensors equally
spaced on an arc. Circular arcs were treated as very important
features in the field of pattern recognition such as they were
used for recognizing curved objects. They were also used as
shape features for recognition purpose and closed circular arcs
were used as local features in identifying and locating partially
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occluded objects [11]. There is a scanty use of uniform arc
array geometry for DOA estimation and therefore this paper
proposed to form a uniform arc array (UAA) out of a uniform
circular array to be considered for DOA estimation. This paper
proposed to use a UCA with a known finite isotropic/identical
number of sensors with a narrow-band far-field signal emitted
by a single source arriving on the UCA. It is organized as
follows; In Section II the array geometries (UCA and UAA)
will be developed. In section III a statistical data model for
the geometries will be assumed. In section IV the CRB of
the suggested geometries will be derived. Section V will be
analysis and section VII will be the conclusion.

II DEVELOPMENT OF THE ARRAY GEOMETRIES

II-A. Uniform Circular Array

A uniform circular array (UCA) with L number of isotropic
sensors equally spaced on the circumference of the circle of
radius R, at points S1 to SL is considered. These sensors
will be considered to be arranged anticlockwise from the
positive x-axis where the direction of arrangement does not
matter since the sensors are identical. The Cartesian coordinate
system origin is assumed to be the central point of the
UCA array denoted as O. This point is considered as the
reference point. A plane-wave signal from a far-field source
is assumed to arrive on O at an azimuth angle φ measured
anticlockwise from the positive x-axis, and a polar angle θ
measured clockwise from the positive z-axis. See Figure 1.

Fig. 1. Uniform Circular Array (UCA).

The position vector for the `th sensor on the UCA, p
`
, is

given by [9]

p
`

=
[
R cos

(
2π(`−1)

L

)
, R sin

(
2π(`−1)

L

)
, 0
]T

(1)

and the array manifold vector for the UCA is

a
UCA

=


exp

{
i 2πRλ sin(θ) cos(φ)

}
exp

{
i 2πRλ sin(θ) cos(φ− 2π

L )
}

exp
{
i 2πRλ sin(θ) cos(φ− 4π

L )
}

...

exp
{
i 2πRλ sin(θ) cos

(
φ− 2π(L−1)

L

)}

 . (2)

II-B. Uniform Arc Array

A uniform arc array (UAA) from the UCA formed by
squeezing all L number of sensors onto an arc of a known
angle is considered. The sensors are arranged anticlockwise
from the positive x-axis. See Figure 2.

Fig. 2. Uniform Arc Array (UAA).

The position vector for the `th sensor on the UAA, p
`
, is

given by

p
`

=
[
R cos

(
2π(`−1)
L(L−1)

)
, R sin

(
2π(`−1)
L(L−1)

)
, 0
]T

(3)

and the corresponding array manifold vector is given by

a
UAA

=



exp
{
i 2πRλ sin(θ) cos(φ)

}
exp

{
i 2πRλ sin(θ) cos

(
φ− 2π

L(L−1)

)}
exp

{
i 2πRλ sin(θ) cos

(
φ− 4π

L(L−1)

)}
...

exp
{
i 2πRλ sin(θ) cos

(
φ− 2π

L

)}


. (4)

III STATISTICAL DATA MODEL

Signals impinging on the array of sensors from a certain
source are affected/corrupted by additive noise. Thus, at the
array of sensors, the observed data for the geometry used is
given by [6]

z(m) = a(θ, φ)s(m) + n(m), m = 1, 2, ...,M ; (5)

where s(m) is the signal received at mth time instant and
n(m) is the additive noise. From the model, n(m), z(m)
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and a(θ, φ) will be L × 1 vectors. For multiple time in-
stants/snapshots M , the data model vector will be given by
[6]

z̃ = s⊗ a(θ, φ) + ñ (6)

where

z̃ = [z(1), z(2), · · · , z(M)]T ,

s = [s(1), s(2), · · · , s(M)]T ,

ñ = [n(1),n(2), · · · ,n(M)]T ,

and ⊗ is the Kronecker product.
For simplicity, a pure-tone incident signal s(m) =

σ
s

exp[j(2πfm + ϕ)] will be considered, where σ
s

is the
signals’ amplitude and ϕ is the phase angle.

The random variables z(1), z(2), · · · , z(M) are assumed to
be independent and have the same probability distribution.
Therefore, the random variable z̃ has a mean of µ(θ, φ) and
a covariance matrix of Γ(θ, φ) hence it follows a normal
distribution z ∼ N (µ,Γ) which has a probability density
function (likelihood function) p(z̃|Θ) where Θ = {θ, φ}, i.e.

p(z̃|Θ) =
1√
|2πΓ|

exp

{
−1

2
[z̃− µ]HΓ−1[z̃− µ]

}
. (7)

In the above, µ = E[z̃], Γ = E
{

[z̃− µ][z̃− µ]H
}

and | · |
denotes the corresponding matrix determinant.

µ = E[z̃] = E[s⊗ a(θ, φ) + ñ]

= E[s⊗ a(θ, φ)] + E[ñ]

= s⊗ a(θ, φ) (8)

and

Γ = E
{

[z̃− µ][z̃− µ]H
}

= E[ññH ]

= σ2
n
IML×ML. (9)

IV DERIVATION OF THE CRAMÉR-RAO BOUND

To get the Cramér-Rao bound, the inverse of the Fisher
Information Matrix (FIM) is obtained. Since the observed data
vector, in this case, is complex-valued, a simplified FIM for
multivariate normal distribution is given by [6]

[F(ξ)]k,r = 2Re

{[
∂µ

∂ξk

]H
Γ−1 ∂µ

∂ξr

}

+Tr

{
Γ−1 ∂Γ

∂ξk
Γ−1 ∂Γ

∂ξr

}
. (10)

In the above, Re{·} indicates the real part of the identity
inside the curly brackets, ξ = [θ, φ] is the set of unknown
parameters and k, r = {1, 2}.

IV-A. Cramér-Rao Bound for the Uniform Circular Array

The FIM here will be given by [6]

F(ξ) =

[
[F(ξ)]1,1 [F(ξ)]1,2
[F(ξ)]2,1 [F(ξ)]2,2

]
(11)

and therefore computing the entries of the FIM one by one
we have,

Using (2), (8) and (9) in (10), we have

[F(ξ)]1,1 = ML

(
2πRσ

s

λσn

)2

cos2(θ), (12)

[F(ξ)]2,2 = ML

(
2πRσ

s

λσ
n

)2

sin2(θ), (13)

[F(ξ)]1,2 = [F(ξ)]2,1

= 0. (14)

Thus,

F(ξ) = ML

(
2πRσ

s

λσ
n

)2 [
cos2(θ) 0

0 sin2(θ)

]
. (15)

Hence, Cramér-Rao bounds for the UCA are

CRBUCA(θ) =
1

ML

(
λσn

2πRσs

)2

sec2 θ (16)

and

CRB
UCA

(φ) =
1

ML

(
λσ

n

2πRσs

)2

csc2 θ. (17)

IV-B. Cramér-Rao Bound for the Uniform Arc Array

Using (4), (8) and (9) in (10), we have

[F(ξ)]1,1 = 8M

{
πRσ

s

λσn

}2{
L

2
+D

}
cos2(θ), (18)

[F(ξ)]1,2 = [F(ξ)]2,1

= −8M

{
πRσs
λσ

n

}2

{F} sin(θ) cos(θ), (19)

[F(ξ)]2,2 = 8M

{
πRσs

λσ
n

}2{
L

2
− E

}
sin2(θ), (20)

where

D =
sin
(

2π
L−1

)
cos
(
2π
L − 2φ

)
2 sin

(
2π

L(L−1)

) ,

E =
sin
(

2π
L−1

)
cos
(
2π
L + 2φ

)
2 sin

(
2π

L(L−1)

) ,

F =
− sin

(
2π
L−1

)
sin
(
− 2π

L + 2φ
)

2 sin
(

2π
L(L−1)

) .

The Cramér-Rao bounds become

CRBUAA(θ) =
λ2σ2

n
sec2(θ)γ

8π2MR2σ2
s
β

(21)
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and

CRB
UAA

(φ) =
λ2σ2

n
csc2(θ)α

8π2MR2σ2
s
β

(22)

where

γ =
L

2
− E,

=
L− sin

(
2π
L−1

)
csc
(

2π
L(L−1)

)
cos
(
2π
L + 2φ

)
2

,(23)

α =
L

2
+D,

=
L+ sin

(
2π
L−1

)
csc
(

2π
L(L−1)

)
cos
(
2π
L − 2φ

)
2

,(24)

β =

(
L

2
+D

)(
L

2
− E

)
− F 2

=
1

4

{
L− sin

(
2π

L− 1

)
csc

(
2π

L(L− 1)

)}
×1

4

{
cos

(
2π

L
+ 2φ

)}
×
{
L+ sin

(
2π

L− 1

)
csc

(
2π

L(L− 1)

)}
×
{

cos

(
2π

L
− 2φ

)}
−1

4

{
sin

(
2π

L− 1

)
csc

(
2π

L(L− 1)

)}2

×1

4

{
sin

(
−2π

L
+ 2φ

)}2

. (25)

V ANALYSIS

V-A. CRB for the Elevation Angle θ

From equations (16), (21), (23) and (25)

CRB
UCA

(θ)

CRBUAA(θ)

=
2β

Lγ

=

L+ sin
(

2π
L−1

)
csc
(

2π
L(L−1)

)
cos
(
2π
L − 2φ

)
L


−

{
sin
(

2π
L−1

)
csc
(

2π
L(L−1)

)
sin
(
− 2π

L + 2φ
)}2

L
{
L− sin

(
2π
L−1

)
csc
(

2π
L(L−1)

)
cos
(
2π
L + 2φ

)}
=

L+ T1
L

− T2
2

LT3
(26)

where,

T1 = sin

(
2π

L− 1

)
csc

(
2π

L(L− 1)

)
cos

(
2π

L
− 2φ

)
,

T2 = sin

(
2π

L− 1

)
csc

(
2π

L(L− 1)

)
sin

(
−2π

L
+ 2φ

)
,

T3 = L− sin

(
2π

L− 1

)
csc

(
2π

L(L− 1)

)
cos

(
2π

L
+ 2φ

)
.

V-A.1. When CRB
UCA

(θ)

CRB
UAA

(θ) < 1: From (26) we have

L+ T1
L

− T2
2

LT3
< 1

(27)

which implies

T1T3 < T2
2. (28)

This means that UCA has better estimation accuracy as com-
pared to UAA for L = 4, 5, π2 ≤ φ ≤ π and 3

2π ≤ φ ≤ 2π.

V-A.2. When CRB
UCA

(θ)

CRB
UAA

(θ) = 1: From (26) we have

L+ T1
L

− T2
2

LT3
= 1

(29)

which implies

T1T3 = T2
2. (30)

This means that UAA and UCA have same performance for
L = 3 and 0 ≤ φ ≤ 2π.

V-A.3. When CRB
UCA

(θ)

CRB
UAA

(θ) > 1: From (26) we have

L+ T1
L

− T2
2

LT3
> 1

(31)

which implies

T1T3 > T2
2. (32)

This means that UAA has better estimation accuracy as
compared to UCA for L = 4, 5, π

9 ≤ φ ≤ 7
18π and

10
9 π ≤ φ ≤

25
18π.
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V-B. CRB for the Azimuth Angle φ

From equations (17), (22), (24) and (25)

CRB
UCA

(φ)

CRB
UAA

(φ)

=
2β

Lα

=

L− sin
(

2π
L−1

)
csc
(

2π
L(L−1)

)
cos
(
2π
L + 2φ

)
L


−

{
sin
(

2π
L−1

)
csc
(

2π
L(L−1)

)
sin
(
− 2π

L + 2φ
)}2

L
{
L+ sin

(
2π
L−1

)
csc
(

2π
L(L−1)

)
cos
(
2π
L − 2φ

)}
=

L− T4
L

− T2
2

LT5
(33)

where,

T4 = sin

(
2π

L− 1

)
csc

(
2π

L(L− 1)

)
cos

(
2π

L
+ 2φ

)
,

T2 = sin

(
2π

L− 1

)
csc

(
2π

L(L− 1)

)
sin

(
−2π

L
+ 2φ

)
,

T5 = L+ sin

(
2π

L− 1

)
csc

(
2π

L(L− 1)

)
cos

(
2π

L
− 2φ

)
.

V-B.1. When CRB
UCA

(φ)

CRB
UAA

(φ) < 1: From (33) we have

L− T4
L

− T2
2

LT5
< 1

(34)

which implies

−T4T5 < T2
2. (35)

This means that UCA has better estimation accuracy as com-
pared to UAA for L = 4, 5, π2 ≤ φ ≤ π and 3

2π ≤ φ ≤ 2π.

V-B.2. When CRB
UCA

(φ)

CRB
UAA

(φ) = 1: From (33) we have

L− T4
L

− T2
2

LT5
= 1

(36)

which implies

−T4T5 = T2
2. (37)

This means that UAA and UCA have same performance for
L = 3 and 0 ≤ φ ≤ 2π.

V-B.3. When CRB
UCA

(φ)

CRB
UAA

(φ) > 1: From (33) we have

L− T4
L

− T2
2

LT5
> 1

(38)

which implies

−T4T5 > T2
2. (39)

This means that UAA has better estimation accuracy as
compared to UCA for L = 4, 5, π

9 ≤ φ ≤ 7
18π and

10
9 π ≤ φ ≤

25
18π.

VI NUMERICAL SIMULATIONS

The following diagrams validates the numerical results in
section (V).

Fig. 3. Comparison of CRBUCA(θ) and CRBUAA(θ).

Fig. 4. Comparison of CRBUCA(φ) and CRBUAA(φ).

Ratios (26) and (33) are discontinuous when
csc
(

2π
L(L−1)

)
=∞ at which points sin

(
2π

L(L−1)

)
= 0.

VI-A. The Special Cases of CRB
UCA

(θ)

CRB
UAA

(θ) and CRB
UCA

(φ)

CRB
UAA

(φ)

VI-A.1. CRB
UCA

(θ)

CRB
UAA

(θ) < 1 and CRB
UCA

(φ)

CRB
UAA

(φ) < 1: When L = 4

and 5 and π
2 ≤ φ ≤ π, then from equations (26) and (33) we

obtain Figure 5.
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Fig. 5.
CRB

UCA
(θ)

CRB
UAA

(θ)
< 1 and

CRB
UCA

(φ)

CRB
UAA

(φ)
< 1 when L = 4 and 5 and

π
2
≤ φ ≤ π

When L = 4 and 5 and 3
2π ≤ φ ≤ 2π, then from equations

(26) and (33) we obtain Figure 6.

Fig. 6.
CRB

UCA
(θ)

CRB
UAA

(θ)
< 1 and

CRB
UCA

(φ)

CRB
UAA

(φ)
< 1 when L = 4 and 5 and

3
2
π ≤ φ ≤ 2π

From Figures 5-6, it is clear that when L = 4 and 5, π
2 ≤

φ ≤ π and 3
2π ≤ φ ≤ 2π, the ratios (26) and (33) are less

than 1.

VI-A.2. CRB
UCA

(θ)

CRB
UAA

(θ) > 1 and CRB
UCA

(φ)

CRB
UAA

(φ) > 1: When L = 4

and 5 and π
9 ≤ φ ≤ 7

18π, then from equations (26) and (33)
we obtain Figure 7.

Fig. 7.
CRB

UCA
(θ)

CRB
UAA

(θ)
> 1 and

CRB
UCA

(φ)

CRB
UAA

(φ)
> 1 when L = 4 and 5 and

π
9
≤ φ ≤ 7

18
π

When L = 4 and 5 and 10
9 π ≤ φ ≤ 25

18π, then from
equations (26) and (33) we obtain Figure 8.

Fig. 8.
CRB

UCA
(θ)

CRB
UAA

(θ)
> 1 and

CRB
UCA

(φ)

CRB
UAA

(φ)
> 1 when L = 4 and 5 and

10
9
π ≤ φ ≤ 25

18
π

From Figures 7-8, it is also clear that when L = 4 and 5,
π
9 ≤ φ ≤ 7

18π and 10
9 π ≤ φ ≤ 25

18π, the ratios (26) and (33)
are greater than 1.

VI-A.3. CRB
UCA

(θ)

CRB
UAA

(θ) = 1 and CRB
UCA

(φ)

CRB
UAA

(φ) = 1 : This case
was only possible for L = 3 and 0 ≤ φ ≤ 2π and therefore
from equations (26) and (33) we obtain Figure 9.
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Fig. 9.
CRB

UCA
(θ)

CRB
UAA

(θ)
= 1 and

CRB
UCA

(φ)

CRB
UAA

(φ)
= 1 when L = 3 and 0 ≤ φ ≤

2π

From Figure 9 it is clear that when L = 3 and 0 ≤ φ ≤ 2π
for both θ and φ, ratios (26) and (33) are equal to one.

VII CONCLUSION

The CRBs for both UCA and UAA were derived. Com-
parison of performance was done by getting the ratio of the
obtained CRBs for both elevation angle and azimuth angle.
The ratio of the CRB of UCA to the CRB of UAA for
both elevation angle and azimuth angle being less than one
implied that UCA has better estimation accuracy as compared
to UAA.The ratio of the CRB of UCA to that of UAA for both
elevation angle and azimuth angle being equals to one implied
that UCA and UAA have equal performance. The ratio of the
CRB of UCA to that of UAA for both elevation angle and
azimuth angle being greater than one implied that UAA has
better estimation accuracy as compared to UCA. Therefore, the
proposed Uniform Arc Array has better estimation accuracy as
compared to Uniform Circular Array when number of sensors
equals four and five and azimuth angle ranging between π

9 and
7
18π and also 10

9 π and 25
18π. Future studies can focus on better

estimation accuracy when the number of sensors increases.
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