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ABSTRACT  8 
 9 
 
 In this paper, we develop an approach for finding the cofactor, ad joint, determinant and inverse 
of a three by three matrix under the Cell Arrangements method using the coefficient matrix of a 
given systems of linear equation in three unknowns. The method takes out completely the 
seemingly daunting task in evaluating such matrices associated to the standard matrix method 
in solving simultaneous equation in three variable. Unlike the standard matrix method that goes 
through a lengthy process to obtain separately all the matrices necessary for the determination 
of the unknowns, the structural frame of the Cell Arrangement method comes in handy and are 
consistent with the results from systems that have unique solutions. This alternative approach 
provides all the vital hybrid matrices of the coefficient matrix needed in the determination of the 
unknowns of the system of equations in three variables. It is our view that by far, the Cell 
arrangement method is easy to work with and less prone to errors that are often connected with 
other known methods. 
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1. INTRODUCTION  14 
 15 
Simultaneous equation is a common method used in solving systems of linear equation in two unknowns. A 16 
repeated use of simultaneous equation in three or more unknowns becomes cumbersome to handle to the 17 
extent that mistake in one step may affect the entire determination of the unknown quantities. A better 18 
approach and more effective way for dealing with higher systems of linear equation is by the use of matrices 19 
and certain peculiar properties associated to them. 20 
One of such methods was established by G. Cramer (1704-1752) a Swiss mathematician, where  21 
he adopted four different determinants one from the coefficient matrix of the given linear equations and three 22 
other hybrid determinants from the same coefficients matrix of which each column in turn is replaced with the 23 
right hand side (RHS of  the system. The unknown was  found by forming ratios of the hybrid determinants with 24 
the determinant of the coefficient matrix. The glitch in this method is that if the coefficient matrix is singular the 25 
method fails and in practice, Cramer's rule is rarely used to solve systems of order higher than three ሺ3ሻ. 26 
(Barnett, Ziegler and Byleen 2001); The advantage of this method worth noting is the light it sheds on the 27 
behavior of simultaneous linear equation. (Backhouse, Houldsworth Cooper and Horril ; 1994).  28 
The standard matrix method which uses the adjoint, determinant and inverse properties of a matrix to 29 
determine the unknown quantities of a system is quiet laborious and requires  constant practice in order to 30 
master the steps involved. Thus transition from the traditional simultaneous equation in two variables to solving 31 
three variables using matrix method is enormous and for many people who take mathematics as a pre-requite 32 
course or related programs that requires mathematics, the knowledge gap needs to be bridged.  33 



 

 

The purpose of this paper is to introduce matrix approach of solving systems of linear equation using cell 34 
arrangements by an introduction of carefully ordered vector product.   35 
 36 
 37 
2. RELATED WORKS 38 
 39 
When Linear equations arise from a practical problem, the coefficients are unlikely to be small integers and the 40 
arithmetic can get heavy (Heard and Martin, 1983). It is for this reason that we have opted to review the work 41 
done by earlier authors on solving systems of linear equation using matrices since it offers suitable properties 42 
which enable us to critique a given system as having unique , infinite or  one with no  solution.  43 
Solving systems of linear equations by the standard method comprises four basic processes (Stroud and 44 
Booth; 2007).   45 
The given system is firstly, put in the matrix representation    ܺܣ ൌ ܾ                 ⋯ ሺ1ሻ  46 
where  ܣ represents the coefficient of matrix for the system, ܺ  and ܾ  represents column vectors  47 
for the unknown variables and the constants of the RHS of the given system. For the purpose of the work at 48 
hand we shall deal with a system of linear equation in three unknowns.   49 
 50 
 51 

                      ൭
ܽଵଵ ܽଵଶ ܽଵଷ
ܽଶଵ ܽଶଶ ܽଶଷ
ܽଷଵ ܽଷଶ ܽଷଷ

൱  ቆ
ݔ
ݕ
ݖ
ቇ ൌ ൭

ܾଵ
ܾଶ
ܾଷ

൱                                                                ⋯ ሺ2ሻ    52 

where    ܣ ൌ ൭

ܽଵଵ ܽଵଶ ܽଵଷ
ܽଶଵ ܽଶଶ ܽଶଷ
ܽଷଵ ܽଷଶ ܽଷଷ

൱      ܺ ൌ ቆ
ݔ
ݕ
ݖ
ቇ  and  ܾ ൌ ൭

ܾଵ
ܾଶ
ܾଷ

൱                                       ⋯ ሺ3ሻ  53 

 54 
 55 
This is followed by finding the determinant of the coefficient matrix which can be developed along any of the 56 
rows or any of the columns. Symbolically the determinant is given by  57 
 58 
 59 

|ܣ|          ൌ อ

ܽଵଵ ܽଵଶ ܽଵଷ
ܽଶଵ ܽଶଶ ܽଶଷ
ܽଷଵ ܽଷଶ ܽଷଷ

อ                                                                                                    ⋯ ሺ4ሻ     60 

 61 
We shall show the case where it is developed along the first row. For instance, each element and the sign 62 
associated to the position it occupies in the first row is use to multiply the lesser order determinant form by the 63 
deletion of the column and row the particular element is located. This gives 64 

|ܣ|  ൌ ܽଵଵ ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ െ ܽଵଶ ቚ
ܽଶଵ ܽଶଷ
ܽଷଵ ܽଷଷ

ቚ  ܽଵଷ ቚ
ܽଶଵ ܽଶଶ
ܽଷଵ ܽଷଶ

ቚ                                                ⋯ ሺ5ሻ   65 

The sign associated  to the position an element in  an array occupies,  is found as the  sum of the row and 66 
column number of the index  to which ሺെ1ሻ is raised, that is  ሺെ1ሻା  or you may determine it manually by 67 
moving in ሺሻ  and ሺെሻ alternation, starting from the first row and first column of the given array ( Barnett et al. 68 
(2001); Backhouse, et al (1985)). If there are more zeros in a particular row or column, then it would be more 69 
instructive to find the determinant along such row or column.  70 
Next the Minors of each element in the matrix  ܣ are found by deleting row and column of each  particular 71 
element in that row and in that column  and the determinant of the resulting  arrays   found. This would give in 72 
all a total of nine, two by two determinants namely  73 
 74 

      ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ      ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ     ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ  75 

      ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ     ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ      ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ                                                                      ⋯ ሺ6ሻ   76 

      ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ     ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ      ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ   77 

By renaming these minors with their associated designated signs we generate the elements of the cofactors as 78 
shown below. 79 



 

 

 80 

ଵଵܣ       ൌ       ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ      ܣଵଶ ൌ െ ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ         ܣଵଷ ൌ       ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ  81 

ଶଵܣ       ൌ െ ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ      ܣଶଶ ൌ         ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ      ܣଶଷ ൌ   െ ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ             ⋯ ሺ7ሻ    82 

ଷଵܣ       ൌ      ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ     ܣଷଶ ൌ    െ ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ       ܣଷଷ ൌ         ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ   83 

 84 
Once the cofactors of the given coefficient matrix are deduced from the signed minors they are written out as a 85 
matrix array called the cofactor matrix and it is usually denoted and defined as 86 
 87 
 88 

ܥ               ൌ ൭

ଵଵܣ ଵଶܣ ଵଷܣ
ଶଵܣ ଶଶܣ ଶଷܣ
ଷଵܣ ଷଶܣ ଷଷܣ

൱                                                                                         ⋯ ሺ8ሻ    89 

 The adjoint matrix is obtained by finding the transposition of the  matrix  in ݁ݍሺ8ሻ which yields 90 

ሻܣሺ݆݀ܣ                 ൌ ்ܥ ൌ ൭

ଵଵܣ ଶଵܣ ଷଵܣ
ଵଶܣ ଶଶܣ ଷଶܣ
ଵଷܣ ଶଷܣ ଷଷܣ

൱                                                                 ⋯ ሺ9ሻ    91 

 92 
The last property to be pursue in our quest of using matrix approach in solving systems of linear equation in 93 
three unknown is to determine the inverse matrix  ିܣଵ  of the matrix ܣ. This is easily done by find the product 94 
of the reciprocal of the determinant of equation ሺ5ሻ  (Anetor et al  (2013))  and the adjoint  matrix of equation 95 
ሺ9ሻ   i.e. 96 

ଵିܣ              ൌ
ଵ

||
൭

ଵଵܣ ଶଵܣ ଷଵܣ
ଵଶܣ ଶଶܣ ଷଶܣ
ଵଷܣ ଶଷܣ ଷଷܣ

൱                                                                            ⋯ ሺ10ሻ   97 

 98 
Finally  using equations ሺ10ሻ   and ሺ3ሻ  the unknown of the system are uniquely found provided  |ܣ|  is not 99 
equivalent to zero in the form  100 
 101 

         ቆ
ݔ
ݕ
ݖ
ቇ  ൌ ܺ ൌ  

ଵ

||
൭

ଵଵܣ ଶଵܣ ଷଵܣ
ଵଶܣ ଶଶܣ ଷଶܣ
ଵଷܣ ଶଷܣ ଷଷܣ

൱ . ൭

ܾଵ
ܾଶ
ܾଷ

൱                                                        ⋯ ሺ11ሻ      102 

The advantage of the method is that it is structured and by extension it could be applied on higher order  103 
nonsingular matrices. The inherent lapses associated to the standard matrix method is also due to the fact 104 
that, it is structured and very laborious. A common error that may occur is the omission of the prescribed signs 105 
for the cofactors which do not actually surface in their development and if not remedied, the entire 106 
determination of the unknown would yield inaccurate results.  107 
Turner, Knighton, and Budden  (1989) Observe that the Calculation of the entries in the adjoint or adjugate 108 
matrix from their basic definition can seem a very daunting prospect and to overcome the  none introduction of 109 
the designated signs relating the minors to the cofactors they propose an alternative approach, in a way that 110 
the original entries of the matrix  in equation ሺ3ሻ are written repeatedly in each section of a quadrant as shown 111 
below. 112 
 113 
 114 
 115 
 116 
 117 
 118 
 119 
 120 
 121 
 122 
 123 

ܽଵଵ ܽଵଶ ܽଵଷ  
ܽଶଵ ܽଶଶ ܽଶଷ  
 ܽଷଵ    ܽଷଶ    ܽଷଷ  
 ܽଵଵ    ܽଵଶ    ܽଵଷ  
ܽଶଵ ܽଶଶ ܽଶଷ  
ܽଷଵ ܽଷଶ ܽଷଷ  

 ܽଵଵ    ܽଵଶ    ܽଵଷ  
 ܽଶଵ    ܽଶଶ    ܽଶଷ  
 ܽଷଵ    ܽଷଶ    ܽଷଷ  
 ܽଵଵ    ܽଵଶ    ܽଵଷ  
 ܽଶଵ    ܽଶଶ    ܽଶଷ  
 ܽଷଵ    ܽଷଶ    ܽଷଷ  
 



 

 

 124 
This is followed by the deletion of the extreme elements round the quadrant. Once that is done, all possible two 125 
by two determinants of the remaining array are evaluated producing    126 
 127 
 128 
 129 
 130 
 131 
 132 
 133 
 134 
 135 
 136 
the same results for the entries of the cofactors  as in equations ሺ7ሻ and ሺ8ሻ. Once the cofactor matrix is 137 
obtained, the adjoint, inverse matrix and the determinant are used accordingly to retrieve the unknown being 138 
sought for.  Clearly the innovation introduced by these writers is that, the computations of the cofactor matrix is 139 
simpler and less prone to errors. The approach proposed by  Turner et al. (1989);  however does not work for 140 
matrix whose order is greater than three ሺ3ሻ. 141 
 142 
 143 
3.  MATHEMATICAL METHODS 144 
 145 
The results of a cross product of two vectors  ࡲ ൌ ܽଵ  ܽଶ  ܽଷ and  ࡲ ൌ ܾଵ  ܾଶ  ܾଷ146     
is given by ࡲ ൈ ࡲ ൌ ሺܽଶܾଷ െ ܽଷܾଶሻ  ሺܽଷܾଵ െ ܽଵܾଷሻ  ሺܽଵܾଶ െ ܽଶܾଵሻ   where the element in the  ௧ 147 
component of the cross product is obtained by omitting only the  ௧ column and evaluating the determinant of 148 
the remaining components  in an anticlockwise cyclic manner. This idea may be exploited in obtaining the 149 
cofactor matrix without associating the designated sign of the determinants of their respective minors. 150 
   151 
THEOREM 152 
Suppose the rows of a 3 ൈ 3  coefficient matrix ܣ of a system of linear equation represents the components of 153 
the vectors ଵܸ ൌ൏  ܽଶଵ    ܽଶଶ    ܽଶଷ   , ଶܸ ൌ  ൏  ܽଷଵ    ܽଷଶ    ܽଷଷ      and  154 

ଷܸ ൌ ൏  ܽଵଵ    ܽଵଶ    ܽଵଷ     then the  155 
i.   cross products   ଵܸ ൈ ଶܸ  ;   ଶܸ ൈ ଷܸ  ; ଷܸ ൈ ଵܸ  generates the row entries of the cofactor  156 
    matrix without the placed sign of the minors of the original matrix 157 
 158 
ii.  scalar triple products  ଷܸ. ሺ ଵܸ ൈ ଶܸሻ ൌ  159    |ܣ|
 160 
Proof: 161 

Let the entries of the coefficient matrix  ܣ ൌ ൭

ܽଵଵ ܽଵଶ ܽଵଷ
ܽଶଵ ܽଶଶ ܽଶଷ
ܽଷଵ ܽଷଶ ܽଷଷ

൱  of a given system of linear 162 

equations which is consistent be defined by the vectors 163 
 164 

ଵܸ ൌ ൏  ܽଶଵ;   ܽଶଶ ;    ܽଶଷ   , ଶܸ ൌ  ൏  ܽଷଵ;    ܽଷଶ;    ܽଷଷ   , ଷܸ  ൌ  ൏  ܽଵଵ;  ܽଵଶ;    ܽଵଷ    165 
 166 
then   167 
 168 

ଵܸ ൈ ଶܸ ൌ ൏ ܽଶଶܽଷଷ െ ܽଶଷܽଷଶ ;  ܽଶଷܽଷଵ െ ܽଶଵܽଷଷ ;  ܽଶଵܽଷଶ െ ܽଶଶܽଷଵ    169 

              ൌ ൏ ቚ
ܽଶଶ ܽଶଷ
ܽଷଶ ܽଷଷ

ቚ  ;   ቚ
ܽଶଷ ܽଶଵ
ܽଷଷ ܽଷଵ

ቚ  ;  ቚ
ܽଶଵ ܽଶଶ
ܽଷଵ ܽଷଶ

ቚ       No place signed 170 

             ൌ ൏ ; ଵଵܣ ; ଵଶܣ  ଵଶܣ                                                                                                           ⋯ ሺܽሻ    171 
also 172 
 173 

ଶܸ ൈ ଷܸ ൌ ൏ ܽଷଶܽଵଷ െ ܽଷଷܽଵଶ ;   ܽଷଷܽଵଵ െ ܽଷଵܽଵଷ ;  ܽଷଵܽଵଶ െ ܽଷଶܽଵଵ    174 

ܽଶଵ ܽଶଶ  
ܽଷଵ ܽଷଶ  
ܽଵଵ ܽଵଶ  
ܽଶଵ ܽଶଶ  

 ܽଶଶ    ܽଶଷ 
 ܽଷଶ    ܽଷଷ 
 ܽଵଶ    ܽଵଷ  
 ܽଶଶ    ܽଶଷ 



 

 

்ܥ ൌ ݆ܽ݀ሺܣሻ ൌ

ሺܾଶܿଷ െ ܾଷܿଶሻ ሺܿଶܽଷ െ ܿଷܽଶሻ ሺܽଶܾଷ െ ܽଷܾଶሻ

ሺܾଷܿଵ െ ܾଵܿଷሻ ሺܿଷܽଵ െ ܿଵܽଷሻ ሺܽଷܾଵ െ ܽଵܾଷሻ

ሺܾଵܿଶ െ ܾଶܿଵሻ ሺܿଵܽଶ െ ܿଶܽଵሻ ሺܽଵܾଶ െ ܽଶܿଵሻ

 

          ൌ ൏ ቚ
ܽଷଶ ܽଷଷ
ܽଵଶ ܽଵଷ

ቚ  ;  ቚ
ܽଷଷ ܽଷଵ
ܽଵଷ ܽଵଵ

ቚ ;  ቚ
ܽଷଵ ܽଷଶ
ܽଵଵ ܽଵଶ

ቚ       No place sign  175 

         ൌ ൏ ; ଶଵܣ ; ଶଶܣ  ଶଷܣ                                                                                                                ⋯ ሺܾሻ    176 
  177 
Similarly  178 
 179 

ଷܸ ൈ ଵܸ ൌ ൏ ܽଵଶܽଶଷ െ ܽଵଷܽଶଶ ;  ܽଵଷܽଶଵ െ ܽଵଵܽଶଷ ;  ܽଵଵܽଶଶ െ ܽଵଶܽଶଵ   180 

             ൌ ൏ ቚ
ܽଵଶ ܽଵଷ
ܽଶଶ ܽଶଷ

ቚ  ;   ቚ
ܽଵଷ ܽଵଵ
ܽଶଷ ܽଶଵ

ቚ  ;  ቚ
ܽଵଵ ܽଵଶ
ܽଶଵ ܽଶଶ

ቚ        having no place sign 181 

            ൌ ൏ ; ଷଵܣ ; ଷଶܣ  ଷଷܣ                                                                                                            ⋯ ሺܿሻ   182 
  183 
Finally writing out the results   of each of these cross products in equations  ሺܽሻ   ሺܾሻ   and ሺܿሻ   as the row 184 
entries of a  3 ൈ 3   matrix , the cofactor matrix of the original matrix is determined. 185 
 186 
ii. ଷܸ. ሺ ଵܸ ൈ ଶܸሻ ൌ ൏  ܽଵଵ;  ܽଵଶ;    ܽଵଷ  .൏ ; ଵଵܣ ; ଵଶܣ  ଵଷܣ          187 
                         ൌ  ܽଵଵܣଵଵ  ܽଵଶܣଵଶ  ܽଵଷܣଵଷ  ൌ  188  |ܣ|
 189 
The Product  ଷܸ. ሺ ଵܸ ൈ ଶܸሻ  is known in vector Analysis as the scalar triple product. This evaluate a single 190 
unique real number associated to the matrix called the determinant of the coefficient matrix. The determinant is 191 
important since geometrically, it's absolute value represents the volume of the parallelepiped spanned by the 192 
vectors  ଵܸ, ଶܸ and   ଷܸ.     193 
By carefully  arranging the rows of a 3 ൈ 3  matrix  in three different cells in pairs, starting with the second row 194 
and repeating the last row of a  pair in the next cell, the co- factor  matrix , the adjoint matrix the determinant 195 
are easily obtained and hence the inverse of the matrix under  196 
consideration found at the same time.  A prototype of this approach is shown using the matrix 197 
 198 
 199 

ܣ ൌ ൭

ܽଵ ܽଶ ܽଷ
ܾଵ ܾଶ ܾଷ
ܿଵ ܿଶ ܿଷ

൱  and a demonstration of the method is illustrated with an example.  200 

 201 
 202 
భ      మ       య
భ      మ       య 
భ      మ       య

 
ೌభ       ೌమ       ೌయ
ೌభ      ೌమ      ೌయ

 

భ      మ      య

         203  

 204 
  205 
 206 
 207 
 208 
 209 
|ܣ| ൌ ܽଵሺܾଶܿଷ െ ܾଷܿଶሻ  ܽଶ ሺܾଷܿଵ െ ܾଵܿଷሻ  ܽଷሺܾଵܿଶ െ ܾଶܿଵሻ 
 210 
 211 
Clearly it can be seen that all the rows of the cofactor matrix give the precise definition of a cross product of the 212 
element of the original matrix arranged in pairs following this approach.  A Transposition of the cofactor matrix 213 
gives the adjoint matrix ܣ∗ of matrix ܣ. Two other interesting properties of the matrix ܣ  that can be derived 214 
from the above is the determinant |ܣ| and the inverse ିܣଵ of matrix ܣ. The determinant can be shown to be the 215 
term by term multiplication of the first row of the last cell and the first column of the ad joint matrix and this is 216 
shown in the layout by the arrows, (i.e. the scalar product along the row and column specified) while the 217 
inverse matrix ିܣଵ is easily obtained by the scalar multiplication of the reciprocal of the determinant and the 218 
adjoint matrix.  219 
  220 
 221 

ܥ ൌ

ሺܾଶܿଷ െ ܾଷܿଶሻ      ሺܾଷܿଵ െ ܾଵܿଷሻ    ሺܾଵܿଶ െ ܾଶܿଵሻ

 
ሺܿଶܽଷ െ ܿଷܽଶሻ  ሺܿଷܽଵ െ ܿଵܽଷሻ ሺܿଵܽଶ െ ܿଶܽଵሻ

 ሺܽଶܾଷ െ ܽଷܾଶሻ  ሺܽଷܾଵ െ ܽଵܾଷሻ ሺܽଵܾଶ െ ܽଶܿଵሻ

 
 
 



 

 

4. RESULTS AND DISCUSSION 222 
 223 
An immediate application is solving systems of linear equation in three unknowns. We illustrate the Cell 224 
arrangement method with a system having the following information. 225 
 226 

ܣ     ൌ ൭
1 2 3
2 1 1
3 1 െ2

൱    ܾ ൌ ൭
6
5
1
൱   ܺ ൌ ቆ

ݔ
ݕ
ݖ
ቇ        227 

   228 
 229 
 230 
 231 

232 

     2     1        1    
     3     1    െ 2 
     
     3      1   െ 2   
     1      2        3 
   
    1     2        3  
     2      1      1  
 

∴ ଵିܣ  ൌ
1

8
൭

0 2 െ1
െ7 2 8
െ14 5 13

൱   

 
    

ܥ  ൌ   ൭
 െ3 7 െ1
7 െ11     5
െ1    5 െ3

൱     

   
          
                   

்ܥ   ൌ  ൭
െ3 7 െ1
7 െ11 5
െ1 5 െ3

൱   

 
      
|ܣ| ൌ 1ሺെ3ሻ  2ሺ7ሻ  3ሺെ1ሻ ൌ 8   
 

 

݄݁݊ܿ݁  ቆ
ݔ
ݕ
ݖ
ቇ ൌ

ଵ

଼
൭
െ3 7 െ1
7 െ11 5
െ1 5 െ3

൱൭
6
5
1
൱ ൌ ൭

   2
െ1
   2

൱   



 

 

The cofactor ad joint procedure for solving linear equations is, rather tedious, especially when the order is 233 
much higher, the arithmetic becomes quite challenging. To save labor and to greatly facilitate the solution of 234 
the system (Dass, 1998), there is therefore the need to seek for an alternative approach without compromising 235 
the underlining principle of the matrix method.  It is in this light that the Cell arrangement method becomes an 236 
indispensable tool in the determination of the cofactors, adjugate matrix, the determinant, the inverse and 237 
hence the unknown quantities of the system of equations.  The advantage of the Cell arrangement method 238 
over the standard matrix approach is that, the steps involve in obtaining the properties of the coefficient matrix 239 
necessary for the determination of the unknown are less laborious and less time consuming. This is so since 240 
the same procedure is repeated three times on each paired cells and only a  ݆௧   column is deleted and also 241 
ensuring that the cofactor to occupy that position is evaluated in an anticlockwise manner. The method really 242 
works faster especially when the arithmetic of the procedure discussed is done mentally without having to write 243 
out the determinants that evaluates each cofactor and more so the necessity of assignment of the designated 244 
sign in the computation of the cofactors involved is completely eliminated.  In contrast to the standard methods, 245 
much effort and time is spent on the determination of the cofactors in each particular position by the deletion of 246 
both the  ݅௧ and the ݆௧ entries of the original matrix ܣ  and the determinant of the remaining array found, 247 
multiplied by  the scalar ሺെ1ሻା of that  position.    248 
The only inherent setback for the Cell arrangement method is that it works only for linear equation in three 249 
variables and the process of finding the cross product of the respective row vectors may pose a challenge 250 
since the ordering of the row vectors are extremely important to our search for the solution. This method 251 
permits defined ordering of the vectors we generate from the coefficient matrix. This is so because of the 252 
manner in which the entries of the cofactor matrix are churned out. They follow precisely the definition of a 253 
cross product of two vectors which are strictly defined for three-dimensional vectors. (Stewart, 2003). 254 
 255 
 256 
5. CONCLUSION 257 
 258 
An alternative approach that provides all the vital properties of a coefficient matrix needed in getting the 259 
unknown of a system of equations is introduced. It is our view that the Cell arrangement method is easy to 260 
work with and less prone to errors as compared to the standard matrix method which is structured and the 261 
processes involving their usage can seem a very daunting prospect. 262 
 263 
 264 
 265 
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