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ABSTRACT

An efficient quadrature formula was developed for evaluating numerically certain singular Fredholm
integral equations of the first kind with oscillatory trigopnometric kernels. The method is based on the
Lagrange interpolation formula and the orthogonal polynomial considered are the Legendre
polynomials whose zeros served as interpolation nodes. A test example was provided for the
verification and validation of the rule developed. The results showed the convergence of the solution

and can be improved by increasing n.
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1. INTRODUCTION

The Fredholm integral equations of the first kind with oscillatory kernels
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where f is a given continuous function, and u an unknown function, have wide applications in
mathematics, physics, engineering and other applied and computational sciences [12]. If v is large,
the integrand is highly oscillatory and in most cases the integral equation cannot be solved

analytically and so, there is need for numerical methods.

Many efficient methods have been developed for the evaluation of oscillatory integrals. The earliest
numerical method for evaluating rapidly oscillatory functions were based on the piecewise
approximation by second-degree polynomials over an even number of sub intervals and then
integrating exactly out the crippling oscillatory factor [6]. An improvement on the Filon's method was

done by Flinn [7] whose approximation used fifth-degree polynomials. Stetter [16] used the idea of
approximating the transformed function by polynomials in % Miklosko [10] proposed to use an

interpolating quadrature formula with the Chebyshev's nodes. Piessens and Poleunis [13]
approximated the function by a sum of Chebyshev polynomials. Ting and Luke [17] approximated
integrals whose integrands are oscillatory and contain singularities at the end points of the interval of
integration by expanding the function in series of orthogonal polynomials over the interval of
integration with respect to the weight function. Okecha [12] developed algorithms based on the
modified Lagrange interpolation formula, Legendre polynomial and the Christoffel-Darboux formula to
evaluate Cauchy principal value integrals of oscillatory kind. Different numerical techniques like
collocation and Galerkin’s methods [4, 8], asymptotic method [9], generalized quadrature rule [5], and

modified Clenshaw-Curtis method [18] have also been developed.

Motivated by the work of Okecha [12], the application of the collocation technique to provide solutions
of the Fredholm integral equations of the form of Equation (1) is of concern here. The integral in
Equation (1) is oscillatory and has a singularity of the Cauchy type. To deal with this pertinent
problem, a method based on the Lagrange interpolation formula and on properties of orthogonal
polynomials is presented here. The orthogonal polynomials that will be considered are the Legendre
polynomials. Suppose q,,_, is the Lagrange interpolation polynomial of degree n-1 interpolating to u at
the zeros t,,t, ts, -+, t, of the Legendre polynomial B, of degree n. Then, by the Lagrange

interpolation formula,
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is the error due to the interpolation formula.
2. THE APPROXIMATE SOLUTION METHOD

By the substitution of Equation (2) in Equation (1),

z ulx,) (1! B.(t) dt + E, (x,v) = f(x), ®
=1

Py (i) J_y (8 = xi) (€ — %)

ivt
is obtained and E,(x,v) = f_ll%e;(t)dt is the error due to the quadrature rule. Subsequently, a

bound for E,, (x.v) is obtained. Applying the Christoffel-Darboux formula [1] to Equation (4) gives
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However,
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Thus, from Equation (5) gives
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The Legendre polynomials B, (x) satisfy the recurrence relation

1+ DPy () — QL+ DxP(x)+1P_1(x)=0 9
and from Equations (6) and (9), it can be obtained that [12]
1+ DZ,1(x,0) = 2L+ DxZy(x,v) — 12, (x,0) + 2L+ 1D Z,(v), (10)
where
Ziw) = [, " P(0)dt (11)

and Z(v) can be defined as [14]

Re[Z(v)] = [, cosWt)P,(t)dt = 2(—1)"jp; (v), | = 2k, k = 0,1, (12a)

IMZ@)] = [1, sin(H)P(t)dt = 2(~D¥jpps1 (), =2k +1, k=01, (12b)

Ji(x) are the spherical Bessel functions of the first kind which can be evaluated as in [1 (Eq. 10.5)].

Letx;, j=1,--,ndefined as
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be the collocation points. By placing these points in Equation (8),
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is obtained and which can be written in matrix form as
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where
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2.1. Techniques in Evaluating 2Z,(x,v)
According to Abramowitz and Stegun [1], Legendre polynomial P,(x) satisfy the recurrence relation
[12]

Pri1(x) = (A + Bx)Pi(x) = P4 (x), 1=0,1,- (16)
with B; >0, C; >0, P, =1, P,(x) = Ay + Byx, P_; = 0. By making use of Equations (11) and (16), it
can be written that [12]

2141 (6, v) = (A + Bix) Z,(x,v) — 211 (x,v) + B.Z,(v). 17)
The starting value

1 vt
Zy(x,v) =f_1t—xdt (18)
and with the help of Equation (17), it is obtained that
sinv
Z1(x,v) = (Ag + xBy)Z,(x,v) + 2B, TR 19
where 4, B, are obtained from the coefficients in P;(x) = 4, + Box. From Okecha [12],
RelZy(x,v)] = f_ll%ztdx = cos(vx)Ci(wy) — sin(vx)Si(wy) + sin(vx)Si(w,) — cos(vx)Ci(w,)  (20a)
Im[Zy(x,v)] = f_ll Stifl: dt = cos(x)Si(wy) + sin(vx)Ci(w;) — cos(wx)Si(w,) — sin(vx)Ci(w,) (20b),
where
wy =v(1l—x), wy,=—-v(1+x) 2D
and Ci and Si are the cosine and sine integrals respectively. Furthermore, by applying Equation (19),
Re[Z(x,v)] = 2 + x Re([Zy(x,v)] (22a)
Im[Z,(x,v)] = x Im[Z,(x,v)] (22b)

2.2. Error Bound Analysis
An error bound based on the Lagrange interpolating polynomials shall be given but first consider the
following lemma and theorem.
Lemma 1. Given any function f(x) of bounded variation in [a, b], there can be found a polynomial
Q,(x), of degree n, such that

If(x) = Qn(0)] <, (23)
whenever n — «,e - 0 (Jackson's Theorem) [11].
Theorem 1. Let f be a function in ¢"*'[—1,1] and let p, be a polynomial of degree <n that
interpolates the function f at (n + 1) distinct points x,, x;, x,, -, x, € [-1,1] . Then, for each x € [-1,1]
there exists a point ¢, € [—1,1] such that ([15]):
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Let g(x) be the exact solution of Equation (1) and p,,(x) be the interpolation polynomial of g. Assume

, (24)

that g is sufficiently smooth, then g as g =p, + e, can be written, where e, is the error term

expressed as

n
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If u,(x) is the Lagrange polynomial series solution of Equation (1), then u,(x) satisfies Equation (1)

on the nodes and so u,(x) and p, (x) are the solutions of Au = c and Aii = ¢ + Ac, where

Ac =f eve® (26)
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Theorem 2. Assume that u(x) and g(x) are Lagrange polynomial series solution and the exact
solution of Equation (1) respectively, and let p,(x) denote the interpolation polynomial of g(x). If
A,u,1,c and Ac are defined as above, and g(x) is sufficiently smooth, then

lg() —un(x)l <€ + N¢, (27)

where maxoci<nlu(x;) —(x;)| < N, [19]
Proof: By adding and subtracting p,(x) on the left hand side of Equation (27),
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is obtained. By using Equation (2) and Lemma 1,
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is obtained where that the upper bound of [Y1-, [;(x)| = |Z

3. NUMERICAL EXAMPLE

Consider the integral equation

fl sin(12t)

p— u(t)dt = f(x), -1<x<1, (28)

where it is chosen that

b sin(12t)

flx) = f_le dt

t—x



so that the exact solution will be u(x) = e*. The interpolation points are chosen to be the zeros of the
Legendre polynomial, P;(x) of degree 6

t; = 0.238619186083197, t, = —0.238619186083197

t, = —0.661209386466265
te = — 0.932469514203152

t; = 0.661209386466265,

ts = 0.932469514203152,
Furthermore, the collocation points are chosen to be

xi=—1+7(i+1), i=123456 (29)
Equation (14) is used and n is set equal to 6 to obtain

S u(t) (2 — 1) :
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Zn(x;,12) is evaluated at the collocation points defined in relation (29) by using Equations (16), (17)
and (18). By making use of Equations (12a) and (12b)
Z,(12) = 2j,;(12),  25(12) = =2j;(12),  25(12) = 2j5(12)
is obtained. The spherical Bessel functions of the first kind, j, (x) can be evaluated as follows [1 (Eqn.
10.1.11)]

sin z

. . sinz cosz
Jjo(2) = ’ ji1(2) =

z2 z
. 1 3\ . 3
J.(2) = (—; +Z—3) sinz ——cosz
The spherical Bessel functions of the first kind satisfy the following recurrence relation [2]
2n+1 .
— (@) ~jna(2),  ne€Z (32)

With the help of Equation (31), the recurrence relation (32), and Matlab software, the different values

(€2

jn+1(2) =

of spherical Bessel functions are obtained. The Si and Ci in the evaluation of Z,,(x;, 12) are evaluated
from a truncated infinite series defined as

' 50 (_1)n—1zz(n—1)+1
Siz) =;(Z(n—1)+1)(2(n—1)+1)! (332)

50
] (_1)n22n
Ci(z) =y +In|z| +n=1m , (33b)

where y = 0.5772156649 is the Euler's constant. By solving the Equation (30), the results in Table 1
are obtained.



Table 1:  Approximation for f_ll%u(t)dt = f_ll et%lxmdt

ty Approx. (u) Exact(u) Abs. Error
0.238619186083197 1.269495716853893 1.269495003157037 0.0000007136968593
-0.238619186083197 0.787712023380540 0.787714798020595 0.000002774640055
0.661209386466265 1.937132192317572 1.937133661565611 0.000001469248039
-0.661209386466265 0.516219270254926 0.516226639307785 0.000007369052859
0.932469514203152 2.540784657700185 2.540775918748306 0.000008738951879
-0.932469514203152 0.393534762970032 0.393580556483172 0.000032926782852

From the absolute errors shown on Table 1, it can be seen that the presented method is accurate and

efficient and can be improved by increasing n.

4. CONCLUSION

Motivated by the work of Okecha [12], an algorithm was developed to solve singular Fredholm integral
equations of the first kind with oscillatory trigonometric kernel and a test example used was derived
from example (c) of Okecha [12]. The results obtained shows the convergence of the solution and this

can be improved by increasing n.
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