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ABSTRACT  

An efficient quadrature formula was developed for evaluating numerically certain singular Fredholm 

integral equations of the first kind with oscillatory trigonometric kernels.  The method is based on the 

Lagrange interpolation formula and the orthogonal polynomial considered are the Legendre 

polynomials whose zeros served as interpolation nodes. A test example was provided for the 

verification and validation of the rule developed. The results showed the convergence of the solution 

and can be improved by increasing ݊. 
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1. INTRODUCTION 

The Fredholm integral equations of the first kind with oscillatory kernels 

න
݁జ௧

ݐ െ ݔ

ଵ

ିଵ

ݐሻ݀ݐሺݑ ൌ ݂ሺݔሻ, ߭   0, ݅ଶ ൌ െ1, െ1 ൏ ݔ ൏ 1,                                                                        ሺ1ሻ 

where  f is a given continuous function, and ݑ an unknown function, have wide applications in 

mathematics, physics, engineering and other applied and computational sciences [12].  If ߭ is large, 

the integrand is highly oscillatory and in most cases the integral equation cannot be solved 

analytically and so, there is need for numerical methods. 

Many efficient methods have been developed for the evaluation of oscillatory integrals. The earliest 

numerical method for evaluating rapidly oscillatory functions were based on the piecewise 

approximation by second-degree polynomials over an even number of sub intervals and then 

integrating exactly out the crippling oscillatory factor [6].  An improvement on the Filon's method was 

done by Flinn [7] whose approximation used fifth-degree polynomials. Stetter [16] used the idea of 

approximating the transformed function by polynomials in 
ଵ

௧
.  Miklosko [10] proposed to use an 

interpolating quadrature formula with the Chebyshev's nodes. Piessens and Poleunis [13] 

approximated the function by a sum of Chebyshev polynomials. Ting and Luke [17] approximated 

integrals whose integrands are oscillatory and contain singularities at the end points of the interval of 

integration by expanding the function in series of orthogonal polynomials over the interval of 

integration with respect to the weight function. Okecha [12] developed algorithms based on the 

modified Lagrange interpolation formula, Legendre polynomial and the Christoffel-Darboux formula to 

evaluate Cauchy principal value integrals of oscillatory kind. Different numerical techniques like 

collocation and Galerkin’s methods [4, 8], asymptotic method [9], generalized quadrature rule [5], and 

modified Clenshaw-Curtis method [18] have also been developed.   

Motivated by the work of Okecha [12], the application of the collocation technique to provide solutions 

of the Fredholm integral equations of the form of Equation (1) is of concern here. The integral in 

Equation (1) is oscillatory and has a singularity of the Cauchy type.  To deal with this pertinent 

problem, a method based on the Lagrange interpolation formula and on properties of orthogonal 

polynomials is presented here.  The orthogonal polynomials that will be considered are the Legendre 

polynomials. Suppose ݍିଵ is the Lagrange interpolation polynomial of degree n-1 interpolating to ݑ at 

the zeros  ݐଵ, ,ଶݐ ⋯,ଷݐ ,  , of the Legendre polynomial ܲ of degree ݊. Then, by the Lagrangeݐ

interpolation formula, 

ሻݐିଵሺݍ ൌ 
ܲሺݐሻݑሺݔሻ

ሺݐ െ ሻݔ ܲ
′ ሺݔሻ



ୀଵ

 ݁ሺݐሻ ,                                                                                                                             ሺ2ሻ 

where 

݁ሺݐሻ ൌ
௧ሻߦሺାଵሻሺݑ

ሺ݊  1ሻ!
ෑ൫ݐ െ ൯ݔ



ୀଵ

௧ߦ   , ∈   ሺെ1,1ሻ                                                                                                                ሺ3ሻ 



 

is the error due to the interpolation formula. 

2. THE APPROXIMATE SOLUTION METHOD 

By the substitution of Equation (2) in Equation (1),  


ሻݔሺݑ

ܲ
′ ሺݔሻ



ୀଵ

න
ܲሺݐሻ

ሺݐ െ ݐሻሺݔ െ ሻݔ

ଵ

ିଵ

ݐ݀  ,ݔሺܧ ߭ሻ ൌ ݂ሺݔሻ,                                                                                                    ሺ4ሻ 

is obtained and  ܧሺݔ, ߭ሻ ൌ 
ഔሺ௧ሻ

௧ି௫

ଵ

ିଵ
 is the error due to the quadrature rule.  Subsequently, a ݐ݀

bound for ܧሺݔ. ߭ሻ is obtained.  Applying the Christoffel-Darboux formula [1] to Equation (4) gives  


߶ାଵߩሻݐሺݑ

ܲ
′ ሺݐሻ߶ ܲାଵሺݐሻ



ୀଵ


ܲሺݐሻࣴሺݔ, ߭ሻ

ߩ

ିଵ

ୀ

 ൌ െ݂ሺݔሻ,                                                                                                   ሺ5ሻ 

where 

ࣴሺݔ, ߭ሻ ൌ න
݁జ௧ ܲሺݐሻ

ݐ െ ݔ

ଵ

ିଵ

 ሺ6ሻ                                                                                                                                                 ,ݐ݀

ߩ ൌ  ሻݐሺݓ ܲ
ଶሺݐሻ݀ݐ




,    ܲሺݐሻ ൌ ߶ݐ

  ⋯ ߶ and  ߶ is the coefficient of the term ݐ in ܲሺݐሻ. 

However,  

ܲ
′ ሺݔሻ ൌ

ݔ݊ ܲሺݔሻ െ ݊ ܲିଵሺݔሻ

ଶݔ െ 1
, ݔ ് േ 1.                                                                                                                   ሺ7ሻ 

Thus, from Equation (5) gives 


ݐሻሺݐሺݑ

ଶ െ 1ሻ

݊ ܲିଵሺݐሻሺ݊  1ሻ ܲାଵሺݐሻ



ୀଵ

ሺ2݉  1ሻ ܲሺݐሻࣴሺݔ, ߭ሻ

ିଵ

ୀ

ൌ ݂ሺݔሻ.                                                                      ሺ8ሻ 

The Legendre polynomials ܲሺݔሻ satisfy the recurrence relation 

(1  ݈ሻ ܲାଵሺݔሻ െ ሺ2݈  1ሻݔ ܲሺݔሻ  ݈ ܲିଵሺݔሻ ൌ  0                                                                                                          ሺ9ሻ 

and from Equations (6) and (9), it can be obtained that [12] 

ሺ1  ݈ሻ ࣴାଵሺݔ, ߭ሻ ൌ ሺ2݈  1ሻࣴݔሺݔ, ߭ሻ െ ݈ ࣴିଵሺݔ, ߭ሻ  ሺ2݈  1ሻ ෨ࣴሺ߭ሻ,                                                                  ሺ10ሻ 

where 

                            ෩ࣴ ሺ߭ሻ ൌ  ݁జ௧ ܲሺݐሻ݀ݐ
ଵ

ିଵ
                                                                      (11) 

and  ෨ࣴሺ߭ሻ can be defined as [14] 

               ܴ݁ሾ ෨ܼሺ߭ሻሿ ൌ  ሻݐሺ߭ݏܿ ܲሺݐሻ݀ݐ
ଵ

ିଵ
ൌ 2ሺെ1ሻ݆ଶሺ߭ሻ, ݈ ൌ 2݇, ݇ ൌ 0,1,⋯                                                ሺ12ܽሻ                   

               Imൣ ෨ࣴሺ߭ሻ൧ ൌ  ሻݐሺ߭݊݅ݏ ܲሺݐሻ݀ݐ
ଵ

ିଵ
ൌ 2ሺെ1ሻ݆ଶାଵሺ߭ሻ, ݈ ൌ 2݇  1, ݇ ൌ 0,1,⋯                                    ሺ12bሻ    

݆ሺݔሻ are the spherical Bessel functions of the first kind which can be evaluated as in [1 (Eq. 10.5)].  

 Let ݔ,   ݆ ൌ 1,⋯ , ݊ defined as  

ݔ ൌ െ1 
2

݊  2
ሺ݆  1ሻ                                                                                                                                                ሺ13ሻ 

be the collocation points.  By placing these points in Equation (8),  


ݐሻሺݐሺݑ

ଶ െ 1ሻ

݊ ܲିଵሺݐሻሺ݊  1ሻ ܲାଵሺݐሻ



ୀଵ

ሺ2݉  1ሻ ܲሺݐሻࣴ൫ݔ, ߭൯

ିଵ

ୀ

 

                                              ൌ ݂൫ݔ൯,   ݆ ൌ 1, 2,⋯ , ݊                                                                                                     ሺ14ሻ 

is obtained and which can be written in matrix form as 



 

u ܣ                                             ൌ c ,                                                                                                                                      ሺ15ሻ 

where 

ܣ ൌ
ݐሻሺݐሺݑ

ଶ െ 1ሻ

݊ ܲିଵሺݐሻሺ݊  1ሻ ܲାଵሺݐሻ
ሺ2݉  1ሻ ܲሺݐሻࣴ൫ݔ, ߭൯

ିଵ

ୀ

, 

cࢀ ൌ ሾ݂ሺݔଵሻ,⋯ , ݂ሺݔሻሿ, u் ൌ ሾݑሺݔଵሻ,⋯ ,  ሻሿݔሺݑ

 

2.1. Techniques in Evaluating  तሺ࢞,  ሻ࣏

According to Abramowitz and Stegun [1], Legendre polynomial ܲሺݔሻ satisfy the recurrence relation 

[12] 

                         ܲାଵሺݔሻ ൌ ሺܣ  ሻݔܤ ܲሺݔሻ െ ܥ ܲିଵሺݔሻ,   ݈ ൌ 0,1,⋯                                                                          ሺ16ሻ 

with ܤ  0, ܥ  0, ܲ ൌ 1, ଵܲሺݔሻ ൌ ܣ  ,ݔܤ  ܲି ଵ ൌ 0.  By making use of Equations (11) and (16), it 

can be written that [12] 

                    ࣴାଵሺݔ, ߭ሻ ൌ ሺܣ  ሻݔܤ ࣴሺݔ, ߭ሻ െ ܥ ࣴିଵሺݔ, ߭ሻ  ܤ ෨ࣴሺ߭ሻ.                                                                   ሺ17ሻ 

The starting value  

                          ࣴሺݔ, ߭ሻ ൌ න
݁జ௧

ݐ െ ݔ

ଵ

ିଵ

 ሺ18ሻ                                                                                                                             ݐ݀

and with the help of Equation (17), it is obtained that 

                    ࣴଵሺݔ, ߭ሻ ൌ ሺܣ  ,ݔሻࣴሺܤݔ ߭ሻ  ܤ2
߭݊݅ݏ

߭
,                                                                                             ሺ19ሻ 

where ܣ, ሻݔ are obtained from the coefficients in  ଵܲሺܤ ൌ ܣ    ,From Okecha [12]  .ݔܤ

 ܴ݁ሾܼሺݔ, ߭ሻሿ ൌ 
௦జ௧

௧ି௫

ଵ

ିଵ
ݔ݀ ൌ ଵሻݓሺ݅ܥሻݔሺ߭ݏܿ െ ଵሻݓሻܵ݅ሺݔሺ߭݊݅ݏ  ଶሻݓሻܵ݅ሺݔሺ߭݊݅ݏ െ  ଶሻ       ሺ20aሻݓሺ݅ܥሻݔሺ߭ݏܿ

,ݔሾࣴሺ݉ܫ ߭ሻሿ ൌ 
௦జ௧

௧ି௫

ଵ

ିଵ
ݐ݀ ൌ ଵሻݓሻܵ݅ሺݔሺ߭ݏܿ  ଵሻݓሺ݅ܥሻݔሺ߭݊݅ݏ െ ଶሻݓሻܵ݅ሺݔሺ߭ݏܿ െ   ,ଶሻ      ሺ20bሻݓሺ݅ܥሻݔሺ߭݊݅ݏ

where 

ଵݓ          ൌ ߭ሺ1 െ ଶݓ   ,ሻݔ ൌ െ߭ሺ1   ሻ                                                                                                                           ሺ21ሻݔ

and ݅ܥ and ܵ݅ are the cosine and sine integrals respectively. Furthermore, by applying Equation (19), 

                                      ܴ݁ሾ ଵࣴሺݔ, ߭ሻሿ ൌ
ଶ௦జ

జ
 ,ݔሾܼሺܴ݁ ݔ  ߭ሻሿ                                                                                    ሺ22aሻ 

,ݔሾࣴଵሺ݉ܫ   ߭ሻሿ ൌ ,ݔሾࣴሺ݉ܫ ݔ  ߭ሻሿ                                                                                             ሺ22bሻ 

 

2.2. Error Bound Analysis 

An error bound based on the Lagrange interpolating polynomials shall be given but first consider the 

following lemma and theorem. 

Lemma 1.  Given any function ݂ሺݔሻ of bounded variation in ሾܽ, ܾሿ, there can be found a polynomial 

ܳሺݔሻ, of degree ݊, such that  

                                                                |݂ሺݔሻ െ ܳሺݔሻ| ൏ ߳,                                                                                              ሺ23ሻ  

whenever ݊ → ∞, ߳ →  0 (Jackson's Theorem) [11]. 

Theorem 1.  Let ݂ be a function in ࣝାଵሾെ1,1ሿ and let   be a polynomial of degree  ݊ that 

interpolates the function ݂ at ሺ݊  1ሻ distinct points ݔ, ,ଵݔ ⋯,ଶݔ , ݔ ∈ ሾെ1,1ሿ . Then, for each ݔ ∈ ሾെ1,1ሿ 

there exists a point ߦ௫ ∈ ሾെ1,1ሿ such that ([15]): 



 

  ݂ሺݔሻ െ ሻݔሺ ൌ ∏ ሺݔ െ ሻݔ

ୀ

ሺశభሻ൫కሺ௫ሻ൯

ሺାଵሻ!
,                                                                            ሺ24ሻ  

Let ݃ሺݔሻ be the exact solution of Equation (1) and ሺݔሻ be the interpolation polynomial of ݃. Assume 

that ݃ is sufficiently smooth, then ݃ as ݃ ൌ   ݁ can be written, where ݁ is the error term 

expressed as 

                                      ݁ሺݔሻ ൌෑሺݔ െ ሻݔ



ୀ

݃ሺାଵሻ൫ߦሺݔሻ൯

ሺ݊  1ሻ!
                                                                                           ሺ25ሻ 

If ݑሺݔሻ is the Lagrange polynomial series solution of Equation (1), then ݑሺݔሻ satisfies Equation (1) 

on the nodes and so ݑሺݔሻ and ሺݔሻ are the solutions of ݑܣ ൌ ܿ and ݑܣ ൌ ܿ  ∆ܿ, where  

                                       ∆ܿ  ൌ න
݁జ௧݁ሺݐሻ

ݐ െ ݔ

ଵ

ିଵ

    ሺ26ሻ                                                                                                                ݐ݀

Theorem 2.  Assume that ݑሺݔሻ and ݃ሺݔሻ are Lagrange polynomial series solution and the exact 

solution of Equation (1) respectively, and let ሺݔሻ denote the interpolation polynomial of ݃ሺݔሻ. If 

,ܣ ,ݑ ,ݑ ܿ  and ∆ܿ are defined as above, and ݃ሺݔሻ is sufficiently smooth, then 

                |݃ሺݔሻ െ |ሻݔሺݑ  ߳    ሺ27ሻ                                                                                                                                ,ߞܰ 

where  ݉ܽݔழழ|ݑሺݔሻ െ |ሻݔሺݑ   ܰ,  [15] 

Proof:  By adding and subtracting    ሺݔሻ  on the left hand side of Equation (27), 

|݃ሺݔሻ െ |ሻݔሺݑ  |݃ሺݔሻ െ |ሻݔሺ  ሻݔሺݑ| െ  |ሻݔሺ

 ൌ |݁ሺݔሻ|  ሻݔሺݑ| െ ሺݔሻ|. 

is obtained. By using Equation (2) and Lemma 1,  

|݃ሺݔሻ െ |ሻݔሺݑ  ߳  อ݈ሺݔሻ



ୀଵ

ሺݑ൫ݐሻ െ  ሻ൯อݐሺݑ

 ߳  อ݈ሺݔሻ



ୀଵ

อ |ሺݑሺݐሻ െ  |ሻሻݐሺݑ

 ߳  ܰ  อ݈ሺݔሻ



ୀଵ

อ 

 ൌ  ߳    ܰ อ݈ሺݔሻ



ୀଵ

อ 

 ߳    ,ߞܰ 

 

is obtained where that the upper bound of |∑ ݈ሺݔሻ

ୀଵ | ൌ ቚ∑

ሺ௫ሻ

ሺ௫ି௫ሻ
′ ሺ௫ሻ


ୀଵ ቚ is ߞ. 

 

3. NUMERICAL EXAMPLE 

Consider the integral equation 

                                                                                                න
sinሺ12ݐሻ

ݐ െ ݔ

ଵ

ିଵ

ݐሻ݀ݐሺݑ ൌ ݂ሺݔሻ, െ1 ൏ ݔ ൏ 1 ,       ሺ28ሻ 

where it is chosen that 

݂ሺݔሻ ൌ න ݁௧
ଵ

ିଵ

sinሺ12ݐሻ

ݐ െ ݔ
 ݐ݀



 

so that the exact solution will be ݑሺݔሻ ൌ ݁௫. The interpolation points are chosen to be the zeros of the 

Legendre polynomial,  ܲሺݔሻ of degree 6   

ଵݐ ൌ  0.238619186083197, ଶݐ ൌ െ 0.238619186083197  

ଷݐ ൌ ସݐ         ,0.661209386466265  ൌ െ 0.661209386466265 

ହݐ                 ൌ ݐ            ,0.932469514203152  ൌ െ 0.932469514203152            

Furthermore, the collocation points are chosen to be 

ݔ                                                           ൌ െ1 
ଵ

ସ
ሺ݅  1ሻ,   ݅ ൌ 1, 2, 3, 4, 5, 6                                                     (29) 

Equation (14) is used and ݊ is set equal to 6 to obtain  


ݐሻሺݐሺݑ

ଶ െ 1ሻ

42 ହܲሺݐሻ ܲሺݐሻ



ୀଵ

ሺ2݉  1ሻ ܲሺݐሻࣴሺݔ, 12ሻ

ହ

ୀ

 

                                                                      ൌ 
݁௧ೖሺݐ

ଶ െ 1ሻ

42 ହܲሺݐሻ ܲሺݐሻ



ୀଵ

ሺ2݉  1ሻ ܲሺݐሻ

ହ

ୀ

ࣴሺݔ, 12ሻ                         ሺ30ሻ 

ࣴሺݔ, 12ሻ is evaluated at the collocation points defined in relation (29) by using Equations (16), (17) 

and (18).  By making use of Equations (12a) and (12b)  

෨ࣴ
ଵሺ12ሻ ൌ 2݆ଵሺ12ሻ, ෨ࣴ

ଷሺ12ሻ ൌ െ2݆ଷሺ12ሻ, ෨ࣴ
ହሺ12ሻ ൌ 2݆ହሺ12ሻ   

is obtained. The spherical Bessel functions of the first kind, ݆ሺݔሻ can be evaluated as follows [1 (Eqn. 

10.1.11)] 

݆ሺݖሻ ൌ
sin ݖ 

ݖ
, ݆ଵሺݖሻ ൌ

sin ݖ

ଶݖ
െ
cos ݖ

ݖ
 

                                                          ݆ଶሺݖሻ ൌ ൬െ
1

ݖ

3

ଷݖ
൰ sin  ݖ  െ

3

ଶݖ
cos  ሺ31ሻ                                                                     ݖ

The spherical Bessel functions of the first kind satisfy the following recurrence relation [2] 

                                                           ݆ାଵሺݖሻ ൌ
2݊  1

ݖ
݆ሺݖሻ െ ݆ିଵሺݖሻ, ݊ ∈ ࣴ                                                   ሺ32ሻ 

With the help of Equation (31), the recurrence relation (32), and Matlab software, the different values 

of spherical Bessel functions are obtained. The ܵ݅ and ݅ܥ in the evaluation of ࣴሺݔ, 12ሻ are evaluated 

from a truncated infinite series defined as 

                                                                ܵ݅ሺݖሻ ൌ
ሺെ1ሻିଵݖଶሺିଵሻାଵ

ሺ2ሺ݊ െ 1ሻ  1ሻሺ2ሺ݊ െ 1ሻ  1ሻ!

ହ

ଵ

                                               ሺ33aሻ 

ሻݖሺ݅ܥ                                                                ൌ ߛ  ln |ݖ| 
ሺെ1ሻݖଶ

ሺ2݊ሻሺ2݊ሻ!

ହ

ୀଵ

   ,                                                          ሺ33ܾሻ 

where ߛ ൌ 0.5772156649 is the Euler's constant. By solving the Equation (30), the results in Table 1 

are obtained. 

 

 

 

 

 

 



 

Table 1:      Approximation for 
ሻ࢚ሺܖܑܛ

࢞ି࢚



ି
࢚ࢊሻ࢚ሺ࢛ ൌ  ࢚ࢋ



ି

ሻ࢚ሺܖܑܛ

࢞ି࢚
 ࢚ࢊ

 Approx. (u)ݐ Exact(u)  Abs. Error

0.238619186083197 1.269495716853893 1.269495003157037  0.0000007136968593 

-0.238619186083197 0.787712023380540 0.787714798020595  0.000002774640055 

0.661209386466265 1.937132192317572 1.937133661565611  0.000001469248039 

-0.661209386466265 0.516219270254926 0.516226639307785  0.000007369052859 

0.932469514203152 2.540784657700185 2.540775918748306  0.000008738951879 

-0.932469514203152 0.393534762970032 0.393580556483172  0.000032926782852 

 

From the absolute errors shown on Table 1, it can be seen that the presented method is accurate and 

efficient and can be improved by increasing ݊. 

 

4. CONCLUSION 

Motivated by the work of Okecha [12], an algorithm was developed to solve singular Fredholm integral 

equations of the first kind with oscillatory trigonometric kernel and a test example used was derived 

from example (c) of Okecha [12]. The results obtained shows the convergence of the solution and this 

can be improved by increasing ݊. 
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