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Abstract
Global progress towards reducing high Maternal Mortality Rates (MMR) turned to be defeated by
high maternal mortalities originating from developing countries. In rural Ghana, the lack of logistics,
medical and laboratory equipment are among other key factors responsible for the high MMR
despite several interventions structured to curb this menace. Improvement in the countrys health
care delivery will require substantial investment into maternal and child health especially, in order
to meet the national SDG target on MMR. This paper demonstrates societal benefits of investment
in maternal and child health in order to stimulate stakeholders interest in resource mobilization
by the correlation of MMR with such economic and demographic indicators as Gross Domestic
Product (GDP) and Total Fertility Rate (TFR). The underlying probability distributions for MMR, TFR
and GDP were determined using the corrected Akaike Information Criteria (cAIC) with parameters
estimated via the maximum likelihood framework. MMR and TFR showed a positive association
(0.83) whilst an inverse relation exist between MMR and GDP (-0.67) and TFR and GDP (-0.76).
The contour and joint density plots from appendix A and B indicate a strong lower tail dependence
for the bivariate Frank copula with Gamma and Lognormal margins whereas the Gumbel copula
with Gamma and Lognormal margins shows strong upper tail dependence. Correlation figures
tend to suggests that improved GDP as a consequence of improved socio-economic conditions
of a Ghanaian mother tend to reduce Maternal Mortalities whilst increased fertility rates turn to
increase MMR. Generally, evidence has been drawn to improvement in GDP.
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1 Introduction

Global statistics indicate that there has been a significant reduction in Maternal Mortality Rate (MMR)
from an estimated MMR of 385 in 1990 to an estimated 216 maternal deaths per 100 000 live births
in 2015 representing an approximate reduction of 44%. There have also been records of reduced
annual counts on maternal deaths from approximately 5.32 million to an estimated 3.03 million (43%
decrease) with an approximate global lifetime risk of a maternal death falling considerably from 1 in
73 to 1 in 180 in the same period WHOUNICEF (2015). Although this progress is quite remarkable,
global progress is reversed by high levels of MMR still recorded in developing nations. As stated
by same, developing countries account for approximately 99% (3.02 million deaths) of the global
maternal deaths in 2015, with sub-Saharan Africa alone accounting for roughly 66% (2.01 million).
A country-wise comparison indicated that Nigeria and India were estimated to account for over one
third of all maternal deaths worldwide in 2015, with an approximate 58,000 maternal deaths (19%)
and 45,000 maternal deaths (15 %), respectively. Eighteen (18) other countries in sub-Saharan Africa
were estimated to have very high MMR in 2015 ranging from 500 upwards to 999 deaths per 100,000
live births. Although, Ghana was not listed as part of these 18 countries, a national MMR of 350
deaths per 100,000 live births was too high for Ghana to have achieved the MDG 5 target of 185 per
100,000 live births by 2015 (?).

In sub-Saharan Africa, some notable causes associated with MMR are HIV/AIDS, hemorrhage,
sepsis and eclampsia. Other socioeconomic and intermediate factors include inadequate investment
in health care systems and population growth characterized by high fertility rates (see Jamison
(2006)). For Ghana, most maternal deaths are preventable with postpartum haemorrhage, hypertensive
disorders, abortion and sepsis contributing about 65% of all causes. It is believed such deaths could
have been averted by more than half if accelerated investment were made into providing access to
essential reproductive health services such as family planning, skilled attendants, administration of
oxytocin and misoprostol for management of postpartum haemorrhage, and magnesium sulphate
for treatment of pregnancy-induced hypertensive disorders . In rural Ghana in particular, the lack
of logistics, medical and laboratory equipment are identified as factors responsible for the teaming
number of maternal deaths in rural Ghana despite several interventions towards reducing this menace
Apanga (2018). Especially, in this new era of Sustainable Development Goals (SDGs), if proper
interventions are not taken, it will push the national goal of zeroing maternal deaths down to an
unwanted direction.

While global commitment to address this ”Canker” was fashioned as improving infants and maternal
health in the Millennium Development Goals 4 and 5 and now SDG 3 to reduce the global MMR to
less than 70 per 100,000 births with countries targeting a maternal mortality rate below twice the
global average, improving the country’s health care systems in order to achieve the SDG targets
on maternal and child health and other health related targets will require additional investments. To
demonstrate the accrued societal benefits of investing into maternal and child health is crucial in
stimulating stakeholders interest in resource mobilization Amiri (2013).

According to Jamison (2006), the root causes and correlates of maternal mortality must be
understood in attempt to address the high MMR we are confronted with. Consequently, we seek
to understand how MMR relates TFR and GDP in Ghana.

Definitions

Maternal mortality is defined as deaths occurring in women, while pregnant or within 42 days of
termination of pregnancy irrespective of the duration and site of the pregnancy, from any cause related
to or aggravated by the pregnancy or its management, but not from accidental or incidental causes
WHO (1992).
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It measured using the Maternal Mortality Ratio (MMR) which is defined as the number of maternal
deaths per every 100,000 live births. That is

MMR =
NMD

NLB
× 100000 (1.1)

where NMD: is the number of maternal deaths, NLB : Number of live births.
In this paper, we seek to study how Ghana’s MMR is related to the Gross Domestic Product

(GDP) and the rapid population growth which is characterized by the Total Fertility Rate (TFR).
According to the Population Reference Bureau, Total Fertility Rate (TFR) is the average number
of children a woman would have assuming that current age-specific birth rates remain constant
throughout her childbearing years. It is calculated by summing across the average number of births
per woman in five-year age groups. That is

TFR = 5×
∑

(ASFR) = 5×
(
Nbw[15− 19]

Pw[15− 19]
+ · · ·+ Nbw[45− 49]

Pw[45− 49]

)
, (1.2)

where Nbw: number of births to women aged, Pw: population women aged. This means that TFR
depends not only on the number of births but also on the number of women across the childbearing
age groups; hence it is important to note that an increase in the number of births does not necessarily
lead to an increase in TFR. The GDP, on the other hand, is the sum of consumption (C), investment
(I), government spending (G) and net exports (X −M) that is :

GDP = C + I +G+ (X −M).

2 Method and Material

2.1 Data and Source
The Data used for this study contains MMR, TFR and GDP indicators of Ghana from 1990 to 2018
obtained on-line from the Ghana Economic OutlookF.Econs and World-BankWorldBank. The R
statistical software as used for the analysis.

2.2 Definition : Copulas and Sklar’s theorem
For an n-variate distribution F ∈ F (F1, . . . , Fn), with ith univariate marginal Fi, the copula associated
with F is a distribution function C : [0, 1]n → [0, 1] that satisfies F (y) = C(F1(y1), . . . , Fn(yn), y ∈ Rn.
If F is a continuous n-variate distribution function with univariate marginals F1, ..., Fn, and quantile
functions F−1

1 , . . . , F−1
n , so that C(u1 . . . un) = F (F−1

1 (u1), . . . , F−1
n (un)) then, the function C is

called a Copula. The theorem by SklarSklar (1959) states that for a joint distribution function F , there
is a unique copula C that satisfies

F (y) = C(F1(y1), . . . , Fd(yd)) = P (U1 ≤ F1(y1), . . . , Ud ≤ Fd(yd)), y ∈ Rd

.

2.3 Modeling with copula
The joint CDF (Cumulative Distribution Function) of a multi-dimensional copula, R(x, y, z) for the
random vector (x, y, z) can be defined as

R(x, y, z) = C(F (x), G(y), H(z)), x, y, z ∈ R, (2.1)
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where F (x),G(y), H(z) are marginal distributions and C : [0, 1]3 → [0, 1]. The Sklar theorem suggest
that, withR(x, y, z) known, C,F (x), G(y), H(z) can be uniquely determined. As a direct consequence
of equation (1), a model for (X,Y, Z) can be structured with

C ∈ C(θ), F ∈ F (σ), G ∈ G(ω), H ∈ H(τ)

selected from a known parametric family. Needless to say that the choice of an appropriate copula,
therefore, is very crucial and achievable through the so-called Frechet-Hoeffding bounds. The joint
cdf of the n-variate cdf with uniform marginals is bounded both below and above by Frechet-Hoeffding
bounds FL and FU defined as

FL(y1, . . . , yn) = max

[ n∑
i=1

Ui − (n− 1), 0

]
= W (2.2)

and
FU (y1, . . . , yn) = min(F1(y1), . . . , Fn(yn)) = M (2.3)

so that

max

[ n∑
i=1

Ui − (n− 1), 0

]
≤ (F1(y1), . . . , Fn(yn)) ≤ min(F1(y1), . . . , Fn(yn))

except that for some n > 2, F may or may not be a cdf under certain conditions( see theorem 3.6,
Joe (1997)), both FL and FU are cdf when n = 2. More generally, the copula representation for the
Freechet-Hoeffding bounds is defined as

CL(y1, . . . , yn) ≤ C(y1, . . . , yn) ≤ CU (y1, . . . , yn)

= W (u, v) ≤ C(u, v) ≤M(u, v), u, v ∈ [0, 1],

see Trivedi (2005).

Theorem : 1
If C is an n-dimentional copula, then for every u in [0, 1]n,

Wn(u) ≤ C(u) ≤Mn(u)

In our case where n = 3, the Frechet-Hoeffding lower bound W 3 is not copula in the sense of the
aforementioned. However, it is the best possible lower bound in this regards:

Theorem 2
For n > 3 and any u in[0, 1]n, there is an n-copula C which depends on u such that

C(u) = Wn(u)

For every n ≥ 2,C : [0, 1]2 >W 2(the Frechet-Hoeffding lower bound ),and every C : [0, 1]n <Mn(the
Frechet-Hoeffding upper bound). See P.Embrechts (2001).

2.4 Fitting Marginal Distributions
To select the appropriate marginal distribution, the dataset is fitted to : Exponential, Normal, Lognormal,
Weibull, Pareto Gamma and Gumbel distributions and with their model parameters estimated via
Maximum Likelihood Estimation(MLE). The model selection procedure is based on the Akaike Information
Criterion (AIC) as discussed briefly below.
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Akaike Information Criterion (AIC)
The Akaike Information Criterion (AIC)is based on Kullback-Leibler (K-L) information loss (due to
Kullback and Leibler, 1951). Let f denotes full reality or truth (f is non-parametric) and let the
distribution g denote an approximation to the truth f . Also let I(f, g) be the information loss when
model g is used to approximate f ; this is defined for continuous functions as;

I(f, g) =

∫
f(y) log

(
f(y)

g(y | θ)

)
dy.

This can be expressed as the difference between statistical expectations with respect to the truth f .

I(f, g) = Ef [log f(y)]− Ef [log(g(y | θ))],

Ef [log f(y)] is an unknown constant that depends only on the unknown true distribution so that;

−Ef [log(g(y | θ))] = I(f, g)− C

Multiplying the left hand side by −2 and rearranging yields the so-called Akaike Information Criterion.

AIC = −2 log(L(θ̂ | y)) + 2K.

An additional bias adjustment criterion called AICc (Hurvich and Tsai, 1989 cited in Burnham (1998)
Burnham and Anderson,1998) is used and defined as follow;

AICc = −2 log(L(θ̂ | y)) + 2K +
2K(K + 1)

n−K − 1
, (2.4)

since the data points used is < 40. To allow for quick comparison and ranking of candidate models,
the ∆iAICc is used. If ∆iAICc ≤ 2, there is substantial support for making inferences with the
model, for 4 ≤ ∆iAICc ≤ 7 there is less substantial evidence and for ∆iAICc > 10 there is no
substantial evidence and such models fail to explain the random variation inherent in the data. (see
Burnham (1998)).

2.5 Fitting Copula Models
Since the fitting of marginal distribution herein is based on MLE, let (x1, · · · , xn) be some observation
with fj(.; θj) and Fj(.; θj) as the jth marginal density and distribution function respectively. Then the
MLE involves maximizing the likelihood

L(x; θ) =

d∏
j=1

c(Fi(xi,j ;βj);α)fi(xi,j ;βj), i = 1, . . . , n,

where α denote the parameter of the copula C and θ is a parameter vector. The loglikelihood function
is

l(θ) =

n∑
i=1

log c

(
F1(xi,1;β), . . . , Fi(xi,d;β), α) +

n∑
i=1

d∑
j=1

log fi(xi,j ;β)

)
.

The Parameter estimation is based on the two-staged Inference Functions for Marginals(IFM) method
Joe (1996). To be precise;

α̂IFM = argmax

n∑
i=1

log c

(
F1(xi,1; β̂IFM ), . . . , Fi(xi,d; β̂IFM ), α

)
(2.5)

and

βIFM = argmax

n∑
i=1

log fi(xi,j ;βj). (2.6)
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2.6 Dependence Measure
For the random vector (X,Y, Z), the dependence structure is obtained through pairwise comparison
of the outcomes (X,Y ),(X,Z) and (Y,Z). A basic measure of association between two random
variables is the Pearson’s correlation coefficient which is regarded as inappropriate and often misleading
P.Embrechts (2001). The Spearman’s rho and Kendall’s tau coefficients which are the most commonly
used provide the best alternative as a measure of dependence for non-elliptical distributions to which
the linear correlation coefficient is inefficient.

2.6.1 Kendall’s tau and Spearman’s rho

A : Spearman’s rho

The copula C model by itself characterize the dependence in a pair (X,Y ). Suppose that a random
sample pair (X1, Y1), . . . , (Xn, Yn) is given from some pair (X,Y ). Also let (Si, Ti) denote the ranked
pair of (X,Y ). Rescaling the axes by a factor of 1

n+1
, we obtain a set of points in the unit square

[0, 1]2. The rational is to compute the correlation between the rank (Si, Ti) via the Pearson’s approach
so that

ρn =

∑n
i=1(Si − Si)(Ti − Ti)√∑n
i=1(Si − Si)2(Ti − Ti)2

∈ [−1, 1],

where

Si =

∑n
i=1 Si

n
=
n+ 1

2
=

∑n
i=1 Ti

n
= Ti

ρn =
12

n(n+ 1)(n− 1)

n∑
i=1

SiTi − 3
n+ 1

n− 1

ρn shares with Pearson’s classical correlation coefficient, rn, the property that its expectation vanishes
when the variables are independent. An asymptotically unbiased estimator of ρ is

ρ = 12

∫
[0,1]2

uvdC(u, v)− 3 = 12

∫
[0,1]2

C(u, v)dudv − 3 (2.7)

which also takes the form
ρ = 12

∫
[0,1]2
{C(u, v)− uv}dudv,

see Genest (2007).
This can also be written as

ρ = 12E(UV )− 3,

where
E(UV ) =

∫ ∞
0

∫ ∞
0

UV dC(U, V )

, see P.Embrechts (2001).

B : Kendall’s tau

The Kendell’s tau just like the Spearman’s rho is based on ranks. Kendall’s correlation coefficient,
defined as follows
Definition : Consider two independent and identically distributed continuous bivariate random variables
(X,Y ) and (X∗, Y ∗) with marginal distribution F (X) for X and (X∗ and marginal distribution F (Y )
for Y and Y ∗.The measure of association, Kendall’s tau, τk(X,Y ), is given by

τk(X,Y ) = P [(X −X∗)(Y − Y ∗) > 0]− P [(X −X∗)(Y − Y ∗) < 0]
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This can be interpreted as the difference between probability of concordance and the probability of
dis-concordance between the random variables. Two pairs (u1, u2),(v1, v2) ∈ [0, 1]2 are concordant,
if both components(u1, u2) are either both greater or both less than their respective components of
the second pair, (v1, v2), i.e. if

(u1 − v1)(u2, v2) > 0

else, they are discordant. In copula terminology, Kendall’s tau is defined as

τk(X,Y ) =

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1 (2.8)

= 4E[C(UV )]− 1

(see Frees and Valdez, 1998; Klugman et al, 2012).

2.6.2 Tail Dependence

It may interest one wanting to know for example; the probability that MMR fall below (or exceed) some
level given that the TFR is also below (or exceed) another value. This conditional probability that
one index is extreme given another extreme event often requires a dependence measure for upper
and lower tails of the distribution. Now lets consider the random variables X and Y with marginal
distributions G(X)and H(Y ). The index of upper tail dependence, IU

IU = lim
v→1

P{X > G−1(v) | Y > H−1(v)}

this is equivalent to
IU = lim

u→1P
{G(X) > u | H(Y ) > u}

= lim
v→1

P{U > v | V > v} = lim
v→1

P{U > v, V > v}
P (V > v)

, U, V ∈ [0, 1]

= lim
v→1

1− P (U ≤ v)− P (V ≤ v) + P (U ≤ v, V ≤ u)

1− P (V ≤ v)

IU = lim
v→1

1− 2v + C(v, v)

1− v . (2.9)

This justifies the assertion that the copula in itself is a measure of dependence and that the tail
dependency of Xand Y can be measured via the Copula rather than their marginal distributions. The
index of lower tail dependence, IL is obtained by substituting v = 1− v. so that

IL = lim
u→0

C(v, v)

v
, v ∈ [0, 1], (2.10)

see Kullback (1951).

2.7 Goodness-of-fit tests on Copula
The goodness-of-fit tests on copula are based on empirical copula.

Cn(u) =
√
n(Cn(u)− Cθn(u)), u ∈ [0, 1], (2.11)

where Cn is the empirical copula defined by

Cn(u) =
1

n

n∑
i=1

I(Û ≤ u), u ∈ [0, 1]d

and Cθn is an estimator of C under the null hypothesis that

H0 : C ∈ {Cθ}.
The estimator θn is based on ranks via the inversion Kendall’s tau and Spearman’s rho, or the
maximum pseudo-likelihood estimator as proposed by Genest (1995).
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3 Numerical Results and Discussions

3.1 Correlation Analysis

The figure 1 shows a pairwise correlation obtain via Kendall’s tau along with scatter plot and probability
histogram. It is observed that while all the pairs are highly correlated, both MMR and TFR are
inversely proportional to GDP.

Figure 1: Correlation analysis on MMR, TFR and GDP of Ghana

3.2 Choice of Bivariate Copula Model

MMR and TFR

The table 1 shows results obtained from fitting bivariate Copula models to Maternal Mortality Rate
and the Total Fertility Rate data with their standard errors in brackets.
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Copula Parameter τk IL IU AICc ∆ AICc
Estimate

Gaussian alpha =0.740 0.530 0.000 0.000 -67.90 24.74

Clayton alpha =3.386 0.629 0.815 0.000 -31.600 61.04
(0.831 )

Gumbel alpha =4.025 0.752 0.000 0.812 -45.31 47.33
(0.683 )

Frank alpha =18.550 0.803 0.000 0.000 -52.95 39.69
(3.491 )

Joe alpha =4.957 0.675 0.000 0.850 -39.11 53.53
(0.953 )

Tawn Par 1=13.180 0.800 0.000 0.850 -92.64 0.000
Type 2 Par 2= 0.860

Table 1: Results for fitting Bivariate Copula to MMR and TFR data

The copula fitting process selects the Tawn type 2 copula model as the best candidate among
the 6 fitted models with a correlation value 0f 0.80 against the empirical correlation value of 0.83;
explaining a strong dependence in the upper tail (i.e IU = 0.85).

MMR vs GDP and TFR vs GDP

From the empirical correlation figures both MMR versus GDP and TFR verses GDP move in the
opposite direction. Only the Gaussian and Frank Copulae allow for negative values of τ . The fitted
results are shown in the tables 2 and 3 below.

Copula Parameter τk IL IU AICc ∆ AICc
Estimate

Gaussian α = -0.71 -0.50 0.00 0.00 -23.19 5.58

Frank α = -8.98 -0.64 0.00 0.00 -28.77 0.00
( 1.965)

Table 2: Model Summary for MMR and GDP data.

The corresponding copula model for this data is given by

C(u1, u2) =
1

−8.98
ln

(
1 +

(e−8.98u1 − 1)e−8.98u2 − 1)

e−8.98 − 1

)
, u1, u2 ∈ [0, 1].
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Copula Parameter τk IL IU AICc ∆ AICc
Estimate

Gaussian alpha =-0.875 -0.67 0.00 0.00 -33.34 8.04

Frank alpha = -13.03 -0.73 0.00 0.00 -41.38 0.00

Table 3: Table 3:Model Summary for TFR and GDP data.

Also, the copula model for this data is

C(u1, u2) =
1

−13.03
ln

(
1 +

(e−13.03u1 − 1)e−13.03u2 − 1)

e−13.03 − 1

)
, u1, u2 ∈ [0, 1].

3.3 Selecting Marginal Distributions

The following tables show the summary of results obtained by fitting the three indicators to distributions
from the ”fitdistplus” and ”actuar” add on packages along with their AIC difference.

Distribution Parameter AICc ∆AICc
Estimate

Exponential rate=0.002(0.000) 408.99 57.16
Gamma shape=17.274( 4.437) 351.83 0.00

rate=0.042(0.011)
Lognormal meanlog=5.985(0.045)

sdlog=0.243 (0.032) 351.94 0.11
Gumbel a=361.995(16.696) 352.48 0.65

b=85.134(12.140)
Weibull shape=4.575 (0.659) 353.34 1.51

scale=0.329(1.000)
Normal mean=409.345(18.251) 352.86 1.03

sd=98.287(12.906)
Student t df=0.142(0.028) 565.63 213.80

Table 4: Results for Fitting MMR in Ghana
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Distribution Parameter AICc ∆AICc
Estimate

Exponential rate= 0.216(0.040 ) 149.13 104.581
Gamma shape=89.201(23.382) 351.839 307.283

rate=19.237(5.056 )
Lognormal meanlog=1.528(0.020)

sdlog=0.106(0.014) 45.06 0.520
Gumbel a=4.399(0.081) 44.552 0.000

b=0.413(0.061)
Weibull shape=9.969( 1.405) 48.720 4.231

scale=4.864(0.096 )
Normal mean=4.637(0.092) 45.920 1.374

sd= 0.495(0.064)
Student t df=0.564(0.131 ) 242.373 197.8202

Table 5: Table 5: Summary results from Fitting TFR in Ghana.

Distribution Parameter AICc ∆AICc
Estimate

Exponential rate= 0.049(0.009) 234.731 2.915
Gamma shape=1.539(0.369) 234.14 2.334

rate=0.076(0.021)5
Lognormal meanlog= 2.651(0.160)

sdlog=0.860(0.113) 231.827 0.000
Gumbel a= 12.783(2.290) 242.41 10.592

b=11.765(1.893)
Weibull shape=1.267(0.186) 234.678 2.852

scale=21.955(3.409)
Normal mean=20.287(3.009) 248.306 16.485

sd= 16.204 (2.1276 )
Student t df=0.308(0.064) 333.324 101.504

Table 6: Summary results from Fitting GDP in Ghana.

From tables 4, 5 and 6 (marginal distributions), those with ∆AICc < 2 indicate a strong support
for making inferences.GDP can be described by the Lognormal distribution. All distributions fitted
except the exponential and student t distributions are insufficient evidence for MMR while the Gumbel,
Lognormal, Gamma favors the TFR.

3.4 Fitting Copula with Continuous Marginals
Here we consider only MMR and TFR data where a positive association exists. The best-fitted copula
for this data is the Tawn-Type 2 copula (which extreme value family), however since we cannot specify
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the dimension of this copula through the extreme value copula, we considered the Tawn, Gumbel
and Frank families for situations where the margins are gamma and lognormal for MMR and TFR
respectively. Figure 2 below shows the panel plots obtained from a 2000 simulated samples from the
respective families and marginals;

Figure 2: Panel Plot Frank Copula Gamma and Lognormal margins

C(x, y) = exp−[(− lnx)18.55 + (− ln y)18.55]0.248447
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Figure 3: Panel Plot Gumbel Copula with Gamma and Lognormal margins

C(x, y) = exp−[(− lnx)4.025 + (− ln y)4.025]0.248447
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Figure 4: Panel Plot Tawn Copula with Gamma and Lognormal margins

C(x, y) = x1−ay1−b exp{−[(1− a lnx)0.98 + (−b ln y)0.98]1.02041}
These results indicate that Kendall’s tau of the Frank copula for α = 18.55(0.80) with gamma and
lognormal marginals is very close to the empirical estimate(0.83). In addition, the contour and joint
density plots suggest a strong lower tail dependence between MMR and TFR.

4 Conclusion
The empirical results revealed a strong correlation between indicators; MMR and TFR showed a
positive association(0.83) whilst an inverse relation exist between MMR and GDP(-0.67) and TFR and
GDP(-0.76). The contour and joint density plots from appendix A and B indicate a strong lower tail
dependence for the bivariate Frank copula with Gamma and Lognormal margins whereas the Gumbel
copula with Gamma and Lognormal margins shows strong upper tail dependence. These correlation
figures tend to suggests that improved GDP as a consequence of improvement in socio-economic
conditions of a Ghanaian mother tend to reduce Maternal Mortalities whilst increased fertility rates
(population growth) turn to increase MMR. Generally, evidence has been drawn to improvement
in GDP: logistics, number of skilled birth attendants, access to health fertilities and services, and
general well-being as areas that require attention. Other indirect intervention schemes and programs
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such as family planing and contraceptive use targeted at reducing the high TFR also requires some
considerable level of investment as well as stakeholders recommendation.
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Appendix A: Contour plots
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Appendix B: Density plots
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