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Abstract  6 

A modified approximate analytic solution of the cubic nonlinear oscillator “ 3 0x x  ” has been 7 

obtained based on an iteration procedure. Here we have used the truncated Fourier series in each 8 

iterative step. The approximate frequencies obtained by this technique show a good agreement 9 

with the exact frequency. The percentage of error between exact frequency and our fifth 10 

approximate frequency is as low as 0.009%. The calculation with this technique is very easy. 11 

This easily-calculated modified technique accelerates the rapid convergence, reduces the error 12 

and increases the validity range of the solution. 13 
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1. Introduction:  16 

Most nonlinear phenomena are models of our real-life problems. Nonlinear evolution of 17 

equations is widely used as models to describe complex physical phenomena in various fields of 18 

science, especially in fluid dynamics, solid state physics, plasma physics, mathematical biology 19 

and chemical kinetics, vibrations, heat transfer and so on. Nonlinear systems are classified 20 

differently and ‘nonlinear cubic oscillator’ is one of them and has its own merit. In this situation 21 

Perturbation method, Homotopy method, Homotopy Perturbation method, Harmonic Balance 22 

method, Rational Harmonic Balance method, Parameter Expansion method, Iteration method, etc 23 

are used to find approximate solutions to nonlinear problems.  24 

The perturbation method is the most widely used method in which the nonlinear term is small. 25 

The method of Lindstedt-Poincare (LP) [1-3], Homotopy method [4-7], Homotopy perturbation 26 

method [8] and Differential Transform method [9-11] are the most important among all 27 



 

 

perturbation methods. An important aspect of various perturbation methods is their relationship 28 

with each other. Among them, those by Krylov and Bogoliubov [2] are certainly to be found 29 

most active. In most treatments of nonlinear oscillations by perturbation methods only periodic 30 

oscillations are treated, transients are not considered. They have introduced a new perturbation 31 

method to discuss transients. 32 

Harmonic balance (HB) method is another technique for finding the periodic solutions of a 33 

nonlinear system. If a periodic solution does not exist of an oscillator, it may be sought in the 34 

form of Fourier series and its coefficients are determined by requiring the series to satisfy the 35 

equation of motion. HB method which is originated by Mickens [12] and farther work has been 36 

done by Mickens [13-15], Lim & Wu [16], Hu [17], Hu & Tang [18], Wu et al. [4], Gottlieb [8], 37 

Alam et al. [19], Haque et al. [20], Hosen [21] and so on for solving the strong nonlinear 38 

problems. However, in order to avoid solving an infinite system of algebraic equations, it is 39 

better to approximate the solution by a suitable finite sum of the trigonometric function. This is 40 

the main task of the harmonic balance method. Thus approximate solutions of an oscillator are 41 

obtained by harmonic balance method using a suitable truncation Fourier series. The method is 42 

capable of determining an analytic approximate solution to the nonlinear oscillator valid even for 43 

the case where the nonlinear terms are not small i.e., no particular parameter needs to exist. 44 

The parameter expansion methodology was introduced in a paper by Senator & Bapat [22]. 45 

Subsequently, it was extended in a publication of Mickens [23]. However, the full generalization 46 

of this concept was done by He [24]. Recently this method was used by Mickens [31] in his book 47 

Truly Nonlinear Oscillation and before that also by Xu [25], Zengin et al. [26] etc. 48 

Rational harmonic balance approximation technique [27-29] is a useful alternative procedure for 49 

calculating a second-order nonlinear dynamical systems. This technique was introduced by 50 

Mickens [27] and has been extended in its applications by Beléndez et al. [29].  A major 51 

advantage of rational approximation is that it gives an implicit inclusion of all the harmonics 52 

contributing to the periodic solutions.  53 

Recently, some authors use an iteration procedure [30-35] which is valid for both small and large 54 

amplitude of oscillation, to attain the approximate frequency and the harmonious periodic 55 

solution of such nonlinear problems. Besides this, the method of Matko & Šafarič [36], Matko 56 

[37], Matko & Milanović [38] are used to find an approximate solution in the case of large 57 

amplitude of oscillations. 58 



 

 

The iterative technique is also used as a technique for calculating approximate periodic solutions 59 

and corresponding frequencies of truly nonlinear oscillators for both small and large amplitude 60 

of oscillations. The method was originated by R.E. Mickens [30]. Latter, Xu & Cang [39] 61 

provided a general basis for iteration method to calculate the approximate periodic solutions of 62 

various nonlinear oscillatory successfully. Further, Mickens used the iterative technique to 63 

calculate a higher-order approximation to the periodic solutions of a conservative oscillator. 64 

Here, the iteration technique for determining the approximate solution of a cubic nonlinear 65 

oscillator is presented. In this method only linear inhomogeneous differential equations are 66 

required to be solved at each stage of the calculation. It is an important matter for higher order 67 

iteration of the solution. The obtained results are compared with those by Mickens Parameter 68 

Expansion method [31], Mickens HB method [31] and Mickens Iteration method [31].  69 

2. Methodology 70 

Let us suppose that the nonlinear oscillator 71 

( , ) 0x f x x   , (0) , (0) 0,x A x   (1) 72 

Where over dots denote differentiation with respect to time, t. 73 

We choose the natural frequency   of this system. Then adding x2  to both sides of 74 

Eq. (1), we obtain 75 

),(),( -xx 22 xxGxxfx   . (2) 76 

Now, we formulate the iteration scheme as 77 

);,(1
2

1 kkkkk xxGxx     0,1,2,3,.............k   (3) 78 

Together with initial condition 79 

)cos()( 00 tAtx   (4) 80 

Hence 1kx  satisfies the initial conditions 81 

1 1(0) , (0) 0.k kx A x    (5) 82 

At each stage of the iteration, k  is determined by the requirement that secular terms should not 83 

occur in the full solution of   )(1 txk . 84 

The above procedure gives the sequence of solutions: ),(),(),( 210 txtxtx . 85 

The method can proceed to any order of approximation; but due to growing algebraic complexity 86 

the solution is confined to a lower order, usually the second. 87 



 

 

At this point, the following observations should be noted: 88 

(a) The solution for )(1 txk  depends on having the solutions for k less than ( 1)k   89 

(b) The linear differential equation for )(1 txk allows the determination of k  by the 90 

requirement that secular terms be absent. Therefore, the angular frequency, “ ” appearing on 91 

the right-hand side of Eq. (5) in the function ( )kx t , is   k . 92 

3. Solution procedure 93 

Let us consider the cubic nonlinear oscillator  94 

3 0x x     (6)                                  95 

Now adding x2 to both sides of Equation (6), we obtain 96 

2 2 3x x x x    (7) 97 

Now the iteration scheme is according to Eq. (3) 98 

2 2 3
1 1k k k k k kx x x x     (8) 99 

The initial condition is rewritten as 100 

0 ( ) cosx t A   (9) 101 

where 0 .t    For 0.k  the Eq. (8) becomes 102 

2 2 3 3
1 0 1 0x x Acos A cos     (10) 103 

Now expanding 3cos   in a Fourier Cosine series, the Eq. (10) reduces to                         104 

2 2 2 3
1 0 1 0( 0.75 ) cos 0.25 cos3x x A A A       (11) 105 

To check secular terms in the solution, we have to remove Cos  from the right-hand side of Eq. 106 

(11). 107 

Thus we have 108 

0 0.8660254037844386A    (12) 109 

Then solving Eq. (11) and satisfying the initial condition 1(0)x A , we obtain 110 

1( ) 0.958333295 cos 0.041666705 cos3x t A A    (13) 111 

This is the first approximate solution of Eq. (6) and the related 1  is to be determined. 112 

The value of 1  will be obtained from the solution of 113 

2 2 3
2 1 2 1 1 1x x x x    (14) 114 



 

 

Substituting 1( )x t  from Eq. (13) into the right hand side of Eq. (14), we obtain 115 

2 2
2 1 2 1

3 3

3

(0.95833295 cos 0.041666705 cos3 )

(0.6912976924435 cos 0.2774884478877286 cos3

0.029947943020832226 cos5 )

x x A A

A A

A

 

 



  

 





  (15) 116 

Again avoiding secular terms in the solution of Eq. (15), now we obtain117 

1 0.8493257129433129A    (16) 118 

Then solving Eq. (15) and satisfying initial condition, we obtain the second approximate 119 

solution,  120 

2 ( ) 0.955393886 cos 0.04287627 cos3 0.0017298439 cos5x t A A A      (17)  121 

This is the second approximate solution of Eq. (6)  122 

In similar way, the third and fourth approximate solutions are 123 

3 ( ) 0.955116283 cos 0.043038747 cos3 0.00184497 cos5x t A A A      (18) 124 

4 ( ) 0.9550932806 cos 0.043050742 cos3 0.001855971403 cos5x t A A A      (19) 125 

Whereas the frequencies 2 , 3  and 4  are 126 

2 0.8474560185405289A    (20) 127 

3 0.8473021830725166A    (21) 128 

4 0.8472887677067594A    (22) 129 

Thus 0 1 2 3 4, , , ,      respectively obtained by Eqs. (12), (16), (20), (21), (22) represent the 130 

approximation of frequencies of oscillator (6). 131 

4. Results and Discussion 132 

An Iteration method is developed based on that by Mickens [30] to solve ‘cubic nonlinear 133 

oscillator’. In this section, we express the accuracy of the modified technique of iteration method 134 

by comparing with the existing results from different methods and with the exact frequency of 135 

the oscillator. To show the accuracy, we have calculated the percentage errors (denoted by Er 136 

(%)) by the definitions. 137 

100{ ( ) ( )} / ( ) ; 0, 1, 2, 3, .....e i eEr A A A i     , (23) 138 

where i  represents the approximate frequencies obtained by the adopted method and e  139 

represents the corresponding exact frequency of the oscillator. 140 



 

 

Herein we have calculated the first, second, third, fourth and fifth approximate frequencies which 141 

are denoted by 0 1 2 3, , ,     and 4  respectively. A comparison among the existing results 142 

showed by Mickens [31] with the obtained results is given in Table 1. 143 

It is noted that Mickens [31] found only first approximate frequency by Parameter Expansion, 144 

and the second approximate frequencies by harmonic balance method. Mickens [31] also 145 

presented only the second approximate frequencies by iteration method.  146 

 147 

Table 1: Comparison of the approximate frequencies obtained by the presented technique and 148 

other existing results with exact frequency e [31] of cubic nonlinear oscillator: 149 

Exact Frequency

e  

0.847213 A  

Amplitude 

A  

First 

Approximate 

Frequency 

0  

Er(%) 

Second 

Approximate 

Frequency 

1  

Er(%) 

Third 

Approximate

Frequency 

2  

Er(%) 

Fourth 

Approximate 

Frequency 

3  

Er(%) 

Fifth 

Approximate

Frequency 

4  

Er(%) 

Mickens 

Parameter 

Expansion 

Method [31] 

0.866025

2.2

A
 

 

_ 

 

_ 

 

_ 

 

_ 

Mickens 

HB Method [31] 

0.866025

2.2

A
 

0.848875

0.2

A
 

 

_ 

 

_ 

 

_ 

Mickens 

Iteration Method 

[31] 

0.866025

2.2

A
 

0.849326

0.2

A
 

 

_ 

 

_ 

 

_ 

Adopted 

Method 

0.866025

2.2

A
 

0.849326

0.25

A
 

0.847456

0.03

A
 

0.847302

0.01

A
 

0.847289

0.009

A
 

 150 

5. Convergence and Consistency Analysis 151 



 

 

The basic idea of iteration methods is to construct a sequence of solutions kx  (as well as 152 

frequencies k ) that has a convergence property 153 

lim
e kx x

k



   Or,  

lim
e kk

  
  

(24) 154 

Here ex  is the exact solution of the given nonlinear oscillator. 155 

In the present method, it has been shown that the solution yield the less error in each iterative 156 

step compared to the previous iterative step and finally 4 0.847289 0.847213e      , 157 

where  is a small positive number and A  is chosen to be unity. From this, it is clear that the 158 

adopted method is convergent. 159 

An iterative method of the form represented by Eq. (3) with initial guesses given in Eq. (4) and 160 

Eq. (5) is said to be consistent if   161 

lim
0k ex x

k
 


   Or, 

lim
0k ek

  


. (25) 162 

In the present analysis we see that  163 

lim
0k ek

  


, as 4 0e   . (26) 164 

Thus the consistency of the method is achieved. 165 

6. Conclusion 166 

An iteration method has been used to solve nonlinear oscillations of conservative single-degree 167 

of freedom systems with odd nonlinearity.  The method is a powerful and effective mathematical 168 

tool in solving nonlinear differential equations of mathematical physics, applied mathematics, 169 

and engineering. The iteration procedure can be carried on if solutions of a higher degree of 170 

accuracy are required. In this paper, the method has been employed for analytic treatment of the 171 

cubic nonlinear differential equation. The adopted method is convergent and obtained solutions 172 

are consistent. Already it has been shown in the Table 1 that, Mickens Parameter Expansion 173 

method [31], Mickens HB method [31] and Mickens Iteration method [31] are not suitable for 174 

higher order approximation because of complexity of calculations and simplifications.  But in 175 

our method it is very easy to calculate higher order approximations and for these reason the 176 



 

 

obtained result is closure to exact result with minimum error. Therefore we conclude that the 177 

performance of this method is reliable, simple and gives many new solutions. 178 
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