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Abstract: The physics system that helps us in the study of this paper is a nonlinear hybrid electrical
line with crosslink capacitor. Meaning it is composed of two different nonlinear hybrid parts
Linked by capacitors with identical constant capacitance. We apply Kirchhoff laws to the circuit
of the line to obtain new set of four nonlinear partial differential equations which describe the
simultaneous dynamics of four solitary waves. Furthermore, we apply efficient mathematical
methods based on the identification of coefficients of basic hyperbolic functions to construct exact
solutions of those set of four nonlinear partial differential equations. The obtained results have
enabled us to discover that, one of the two nonlinear hybrid electrical line with crosslink capacitor
that we have modeled accepts the simultaneous propagation of a set of four solitary waves of type
(Pulse; Pulse; Pulse; Pulse), while the other accepts the simultaneous propagation of a set of four
solitary waves of type (Kink; Kink; Kink; Kink) when certain conditions we have established are
respected. We ameliorate the quality of the signals by changing the sinusoidal waves that are
supposed to propagate in the hybrid electrical lines with crosslink capacitor to solitary waves
which are propagating in the new nonlinear hybrid electrical lines; we therefore, facilitate the
choice of the type of line relative to the type of signal that we want to transmit.

Keywords: Hybrid electrical line, crosslink capacitor, construction, solitons solution, solitary
wave, Nonlinear Partial Differential Equation, Kink, Pulse

1. Introduction

The signal propagated in the electrical lines where the parameters of its components are constant
is a sinusoidal wave whose amplitude decreases exponentially and loses a lot of energy contrary
to solitary wave signal which conserves its velocity, its shape and does not loses energy during its
movement. Work has been carried out to study the hybrid line using numerical simulation with the
goal of better matching to a resistive load. They projected that a hybrid line made of parallel plate
with nonlinear capacitors and inductors could be developed to produce solitons with frequency
between 1-2GHz [1, 2]. If solitons could be propagated in electrical lines, they will resist better on
dissipation factors; for this reason, we have decided to carry out research on what means we could
modify the component parameters of a hybrid electrical line with crosslink capacitor so that it
accepts the propagation of solitary waves. We therefore define analytically the nonlinear flux
linkage of inductors and the nonlinear charge of capacitors constituting the two parts linked by
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capacitors in the line. The use of these definitions and the application of Kirchhoff laws to the
circuit of nonlinear hybrid electrical line with crosslink capacitor has enabled us to model a set of
four nonlinear partial differential equations which describe the dynamics of solitary waves in the
line. To construct exact solitary wave solution of each set of four nonlinear partial differential
equations, we have used the mathematical methods presented in [3-16] and particularly the
Bogning-Djeumen Tchaho-Kofane method [17-22]. For one of the set of four nonlinear partial
differential equations, we have obtained a solution which is a set of four solitary waves of type
(Pulse; Pulse; Pulse; Pulse) and for the other we have obtained a solution which is a set of four
solitary waves of type (Kink; Kink; Kink; Kink). Our work is developed in the following order: in
section two, we model a nonlinear hybrid electrical line with crosslink capacitor; in section three
we find the solitary wave solution of type (Kink; Kink; Kink; Kink); in section four we find the
solitary wave solution of type (Pulse; Pulse; Pulse; Pulse). We conclude our work in section 5.

2. General modeling of nonlinear hybrid electrical line with crosslink capacitor.

Let us consider a nonlinear hybrid electrical line shown in figure 1. The line is constituted by a
good number of identical networks numbered by the positive integer n. The network number n is

constituted by a capacitor with capacitance C, which link the two nonlinear hybrid parts; two
capacitors in which each of the charge g and g, changes respectively in nonlinear manner in
terms of the voltage u;' and u; across each capacitor; two inductors in which each of the magnetic

flux ¢" and ¢, changes respectively in nonlinear manner in terms of the current i’ and i, that
flow through each inductor.

up~t ulf it
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I‘.‘.u—l ul néi-l

Figure 1: presentation of a nonlinear hybrid electrical line with crosslink capacitor.
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Applying Kirchhoff’s laws to the circuit shown in figure 1, we obtain the following equations:

ul —ut = —% 1)
uy —up :—%ﬁ (2)
p_iri_c, 6(“1;;”5) X (3)
i il =—C, o\ -ts) oo (@)

ot ot

To obtain the continuum model, the left hand side of each equation (1); (2) ; (3) et (4) has to be
approximated to a spatial partial derivative with respect to x =nh which represents the distance
measured from the beginning of the line. h represent the distance that separates two consecutive
nodes and which is equivalent to the spatial sampling derivatives period. Using respectively Taylor

n

expansion of u™ ; uy™ ;i and i)™ closely to u; uj ; i’ and i by considering the terms
till fourth order we obtain the set of four partial differential equations in the following manner:

h* g'u] & +h_zazuln _poul o

24 ox* 6 ox®* 2 ox? ox ot

h* a'u;  h° &uy +h_282u§ _pou of

24 ox* 6 ox® 2 ox? ox ot
h_484i1n +h_383i1” +h_282i1n +h£+c a(uf—u§)+aq1” 0
24 0x* 6 ox 2o0x2  ox 0 ot ot
notp n ot ety o oW o) ey
24 0x 6 ox° 2 ox2 ox  °

(5)

ot ot

Finally, we obtain the continuum model of the nonlinear hybrid electrical line with crosslink
capacitor presented in figurel by the set of four nonlinear partial differential equations below:
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h* d'u(xt) h® 83u1(x,t)+h_2 o%u, (x,t)

24 ox* 6 ox° 2 o

" aul(x,t)_6¢1(il(x,t))
oX ot

h* ', (x,t) h° 0%, (xt) . h? &°u, (xt)

24 ox* 6 ox° 2 ox

0 (xt) o4, (i,(x.1))

~0
OX ot
h_“a"il(z(,t)+h_383i1(>;,t)+h_262i1(>2(,t)+h8il(x,t)
24 0Ox 6 ox 2 OX OX
+COa(ul(x,t)—uz(x,t))+8q1(ul(x,t)):O
ot ot
4 - - :
h*a |2(Z<,t)+h_8 |2(>3<,t)+h_8 IZ(Z(’t)+ha|2(X't)
24 0Ox 6 Ox 2  0OX oX
¢, a(ul(x,tgu2 (x.t)) N aa, (u(;t(x,t)) 0 )

3. Construction of a set of four solitary wave solutions of type (Kink ; Kink; Kink ;
Kink) relative to general differential equation (6)

We define each of nonlinear charges g, (u,(xt)), a,(u,(x,t)) of the capacitors and each of
nonlinear magnetic flux linkage ¢, (i, (x.t)), ¢,(i,(x.t)) of the inductors under the analytical

shape given below:

¢ (i (x ) (X,)+ E,if (x,t)+ E4i (X, 1)+ E,ift (x,t)

¢2(|2(x t))=Fi, (X, t)+ F,iZ (xt)+Fi5 (x,t)+Fi; (x,t) -
ay (u, (x.t)) = Ai (x,t)+ Au? (x,t)+ Au’ (x,t)+ Auy (x,t)

0, (U, (X,1)) = By, (X,t)+ B,us (x,t)+Byus (x,t)+B,us (x,t)

With E, ; E,; E;; E,; R F A A A A B B, ; By and B, are non-nil
real numbers which will be chosen convenlently. Let us note that E, and F, stand for inductance,
E, and F, stand for inductance per unit current, E; and F, stand for inductance per unit current
of power two, E, and F, stand for inductance per unit current of power three, A and B, stand for
capacitance, A, and B, stand for capacitance per unit voltage, A, and B, stand for capacitance
per unit voltage of power two, A, and B, stand for capacitance per unit voltage of power three.
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By substituting each of the nonlinear charge ¢, (u,(x.t)), g,(u,(xt)) and each of the nonlinear
magnetic flux ¢ (i,(x.t)), ¢,(i,(xt)) of (7) in (6) we obtain the set of four nonlinear partial

differential equation written as:
h_“a“ul(x,t)_h_383ul(x,t)+h_282ul(x,t)_haul(x,t)
24 ox* 6 ox° 2 ox X
+(—El—2E2i1(x,t)—3E3if(x,t)—4E4if(x,t))8ll(a)t('t)=0
h* 0%, (xt) h° 83u2(x,t)+ h? 62u2(x,t)_h6u2(x,t)
24 ox* 6 ox° 2 ox OX
+(—F1—2F2i2(x,t)—3F3i§(x,t)—4F4i§(x,t))a'zé:’t)=o
4 A4y 3 A3: 2 A2: .
h*a |1(Z<,t)+h_a |1(>3<,t)+h_a Il()z(’t)+hall(x’t)—co au, (x,t)
240X 6 ox 20X OX ot
+(C0+A+2A2u1(x,t)+3A3uf(x,t)+4A4uf(x,t))%;('t):
4 g4 3 5% 2 2] i
h*o |2(z<,t)+h_a |2(>3<,t)+h_8 IZ(Z(’t)+haIZ(X’t)—CO ou, (x,t)
24 OX 6 OX 20X OX ot
+(Cy+ B+ 2By, (1) + 3B (x,1) + 4B,u3 (x,)) auza(tx’t) _0 ®)

Let us use Bogning-Djeumen Tchaho-Kofane method [17-22] to come out with the solution of (8)
under the analytical shape below:

u, (x,t)=atanh(kx—vt)
u, (x,t)=btanh (kx—vt)

t)=
i,(x,t) =etanh (kx—vt)
t)=

i, (X, f tanh (kx—vt)

Where a, b, e, f, are wave amplitudes; k the wave vector and v the velocity which are non-zero
real numbers to be determined in terms of modeled line parameters. Replacing u, (x,t) ; u, (x,t) ;

©)

i,(x,t) eti,(x,t) givenby (9)in (8)we yield the following set of four equations which are written
in a simplified form:
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2 1
3E,e°v —hak —=h’ak® + Eev |————
( €V —hak —h’ak®+ 1ev)cosh2(kx—vt)
+(2E262V—1h4ak4 —h%ak? + 4E464V)M
3 cosh® (kx—vt)
+(h4ak4—4E4e4V)M+(—3E3ESV+h3ak3)+=0
cosh® (kx—vt) cosh® (kx —vt)
2 1
3F,fv—hbk —=h®bk*+Ffv |—————
( o 3 o jcoshz(kx—vt)
inh (kx —
+(2F2f2V—1h4bk4—h2bk2+4F4f4V)w
8 cosh® (kx—vt)
inh(kx —
+(h4bk4_4F4f4v)w+(_3psfav+hsbka)+:O
cosh® (kx —vt) cosh* (kx—vt)
2 1
otk e Aav-Cavscpy |
1 sinh (kx —vt)

3A@V-hek’)——+(h'ek! +4AEY) L
hev-me )C05h4(kX_Vt)+( T 4aV)coshf’(kx—v't)

+(_2A232V—£h4ek4 _ h%k? —4A4a4v)w o
3 cosh® (kx—vt)
10
(—3Bsb3V+hfk +gh3fk3—Ble—Cobv+Coavj+ (10)
3 cosh® (kx —vt)
(BB k(s a ) S
cosh* (kx—vt) cosh® (kx—vt)
inh (kx —
+(—252b2V—£h“fk“ —h?fk? —4B4b4vjw+ 0
3 cosh® (kx—vt)

The set of equations (10) is valid if and only if each of its basic hyperbolic function coefficients is
nil. This permits us to obtain the following set of sixteen equations:
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3E,e’v —hak —%h"’ak3 +Eev=0

2E2e2v—%h4ak4 —h*ak® +4E,e'v=0

h*ak*-4E,e'v=0
-3E,e’v+h’ak® =0

3F, v —hbk — 2 h°bk® + F, fv = 0
3

2F2f2v—%h4bk4 —hbk? + 4F, fv =0

h*bk* —4F, f v =0
~3F, f3v+h%k® =0

—3A,a% +hek + % h’k® - Aav—-C,av+C,bv =0

—2Aa%v —%h“ek4 —h%k?-4Aa'v=0
3Aa°v—h%k® =0
h'ek* +4Aa'v=0

—3B,b%v + hfk + 2hegiee - Bbv-C,bv+Cyav=0
3 (11)

2B b2 — S h fk* —h? fk? — 4B bV = 0
3

3B,b°v—h*fk® =0
h*fk* +4B,bv =0

Haven solved the set of equation (11), it has permitted us to present in (12) the solution with
conditions of the set of four nonlinear partial differential equations obtained in (8) which model
the dynamic of a set of four solitary wave of type (Kink; Kink; Kink; Kink):

a:*/_48A2A“+54A32 . (A3E32)‘1‘\/—48A2A4+54A32 _ f_Bg‘Af(A3E§)‘1‘\/—48A2A4+54A32 _

8A, 8E. A, 8E,A’B?

: -8A(AES )i J-48AA, +54A2
81E,A; ’

3
E, B; (AES)* (—48A,A, +54A7)
2 512A’ESB;]
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3 3
1 [ (AED)(HABAA+B4AT) | hfak S

k= 1 373 i b el Sy aall
(A:;E:)Z 216h A3 4e’v 4f°y 4f%y
Ai_—h3ek3a3+3heka3—3C0va4+3C0va3b _ Bl_—h3fk3b3+3hfkb3—300vb4+3C0vb3a _
B 3va’ T 3vb* ’
—hak —Ehke2+h3k3e2
—hak (-3¢° + h’k%e®) - 2 _ —hbk (-3 +h%k*f°)
- e’y ' 2 3e’v ' L 3fv '
—hbk(—ihkf2+h3k3f2j
F,= . ; Ay<0; E; <0 ; 54A7 > 48AA, ;
3f'v
1
3 33
1 | —(AED)*(-48AA, +54A7 )2
[ 2 e 216h° A2
u, (xt)= ABAA TR o (AE3)* A
8A, )
8A; (AES)* J-48A,A, +54A2
+ 2 t
81E, A
s FRY
\ N 1| —(AES)*(-48AA, +54A )
BS(AE2)*(-48 54A%)? : 216h°A°
(xg)=— B | EAES AN (ag): .
B,(AE)" 512 A°E?B; )
B 8Af(A3E33)51/—48A2A4+54A32t
" 81E,A’
3 33
1| —(AE) (-48AA, +54A2): (12)
1 X
EZ)4 J-48A A, +54A? : 216h° A2
il(x,t)=(A3 ) ABAA + 54N tanh| (AES )’ %
8E;A, .
8A; (AE]) J-48A,A, +54A
+ t
81E,A’
1 | —(AES)*(-48AA, +54A7 )2 ’
1 X
BIAZ(AED)* [-48A,A, +54A? 2 216h°A°
i,(x,t)= A (AE) \/4 :\2 A tanh| (AES )’ A
8E,A/B, .
sAj(ASEg)Z,/—48A2A4 +54A2
+ t
81E,A’
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For the values of the following parameters: A, =37x10FN, A =-7,28x10"F/V?,
A, =-30x10"F/N°®, E,=—47x10°H/A?, B,=7,28x10"°F/V?, B,=47x10“FN?,
h=-10"m, the expressions of four Kink solitons (12) can be re-written as
U, = 22,31tanh (12258,84x+1,06x10°t), U, =1424,11tanh (12258,84x+1,06x10°),
i, =—1,39tanh (12258,84x+1,06x10°t ) , i, =3,63tanh (12258,84x+1,06x10°t ) . This permits to
obtain in figure 2 the representation of real profile of those four Kink solitons.

Real Kink soliton u1

=
=
=
=

o

=}
1
==

real Kink soliton uz2
=

Real Kink soliton i1
=la = ko

real Kink soliton i2

Figure 2: Real profile of the four Kink solitons
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This representation shows real profile of the four Kink solitons which are topological solitons since
the properties of their media are not the same at infinity.

4. Construction of a set of four solitary wave solutions of type (Pulse; Pulse; Pulse;
Pulse) relative to general differential equation (6)

We define each of nonlinear charges q(u;(xt)), d,(u,(xt)) of the capacitors and each of

nonlinear magnetic flux linkage ¢ (i, (x.t)), ¢,(i,(x.t)) of the inductors under the analytical
shape given below:

# (i (x.1)) = Exiy (%, 1) + Eif (%, 1) + (Egiy (%, 1) + Eif (x,t)) 1—i12(E—X2’t)

0

¢, (i, (x.t)) = Fii, (x,t)+ F2i23(x,t)+(F3i2 (x,t)+F,ij (x,t)) 1—i22(%t)

. (13)
(0 040) = A () + A4 (x0) (A 00)+ A (1) -2
A (U, (%,1)) = B, (X, 1)+ B, (x,t)+(Byu, (X, )+ Byu3 (x.1)) 1_u§|(3_?t)

With |EO|>‘il(x,t)‘ ; |FO|>‘i2(x,t)‘ ; |A)|>‘ul(x,t)‘ ;|BO|>‘u2(x,t)‘. E,;E,;E ;E ;F;F;
F,F s AA ;A A B ; B, ; B;and B, are non-nil real numbers which will be chosen
conveniently. Let us note that E,, F, E,, F, stand for inductance ; E,, F,, E,, F, stand for
inductance per unit current of power two; A, B,, A;, B, stand for capacitance ; A,, B,, A,and
B, stand for capacitance per unit voltage of power two. By substituting each of the nonlinear
charge ¢, (u,(x.t)), a,(u,(xt)) and each of the nonlinear magnetic flux ¢ (i, (x.t)), ¢, (i,(x.t))
of (13) in (6) we obtain the set of four nonlinear partial differential equation written as:
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h* o'u (xt) h° o (xt) \ h? 0%u, (x,t) _hﬁul(x,t)
24 ox* 6 ox° 2 o OX

il (xt) N E.if (x.t)+E,i; (x,t) |8i,(x,t)

+| —E, —3E,i’ (x,t)—(E, +3E,i’ (x,1)),[1- =0
1 21( ) ( 3 41( )) EOZ , |12(X't) at
E2 [1-1 2
EO
h* 0%u, (xt) K 83u2(x,t)+ h? 62u2(x,t)_h8u2(x,t)
24 ox! 6 ox° 2 ox ox
i2 2 4 ;
+| —F=3Fi2 (%)~ (F, +3F,i2 (x.1)) g6t Rl (6 Rl (1) 19 (1) _
Fo 2\/ iy (X,t) ot
F2 -2
FO
(14)

h* i (x.t) +h_3 % (x.1) +h_2 0%, (x,t) oh ai (x,1) c au, (x,t)

24 ox* 6 ox 2 ox’ OX ° ot

uf (xt) AU (X )+ A (x.t) [auy (xt) _o

+| C, + A1+2A2uf(x,t)+(A3 +3A4uf(x,t)) 1-

: 2 ot
A . 1_u1(>i,t)
A
4 A% 3 A% 2 A2 :
h* o |2(1<,t)+h_8 |2(>3<,t)+h_a |2(2<,t)+ha|2(x,t)_c0 aou, (x,t)
24 0Ox 6 Ox 2 OX oX ot

Uz (x,t)  Buj (x,t)+Byu; (x,t) |du, (x.t)
B; 2 ot
0 B2 1_u2(>;,t)

0

+| Cy+B,+2B,u3 (x,t)+(B, +3B,uZ (x.t)), [1- =0

Let us use Bogning-Djeumen Tchaho-Kofane method [17-22] to come out with the solution of
(14) under the analytical shape below:

,t)=asech (kx—vt)
t

(15)

Where a, b, e, f, are wave amplitudes; k the wave vector and v the velocity which non-zero real
numbers to be determined in terms of modeled line parameters. Replacing u, (x,t) ; u,(x,t) ;
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i,(xt) et i,(x,t) given by (15) in (14) we yield the following set of four equations which are
written in a simplified form a=A, ; b=B,; e=E, et f =F;:

(—20n* Ajk* + 48E,VE, — T2ESVE, — 24h Ak? )sinh (kx —vt) cosh? (kx —vt)
+(h* Ak +12h* Ak? — 24EVE, )sinh (kx—vt ) cosh* (kx —vt) +(96ESVE, +24h* Ak * )sinh (kx —vt)
+(240° AK® + T2EVE, ) cosh (kx —vt) +(~T2ESVE, — 24hAk + 24EVE, — 28h*Ak® ) cosh® (kx—vt)
+(24hAk — 24EVE, +4h*Ak®)cosh® (kx—vt) = 0
(—20n*Byk* + 48F,vF, —72F;VF, — 24h*B.k* )sinh (kx—vt ) cosh? (kx —vt)
+(h*Bok* +12h°Byk? — 24F,vF, )sinh (kx —vt) cosh* (kx —vt) +(96F5'vF, +24h*B.k* )sinh (kx—vt)
+(24h°Byk® + 72FVF, ) cosh (kx —vt) + (~72F;VF, — 24hB.k + 24F,VF, — 28h°B.k* )cosh® (kx—vt )
+(24hB .k — 24F,VF, +4h*B.k° ) cosh® (kx—vt) =0

(—20n*Eqk* —48AVA, + T2 AVA, — 24h°E -k )sinh (kx —vt) cosh? (kx —vt)

+(—24h°Egk® — T2 AVA, ) cosh (kx— vt )+ (—96 AJVA, + 24h*E k* )sinh (kx—vt )

+(h*Egk* +12h°E k® + 24 A VA, )sinh (kx —vt) cosh* (kx —vt)

(16)

+(72AVA, + 24hE k — 24 AVA +28h°E k® — 24 ANC, + 24BvC, ) cosh® (kx —vt )
+(—24NE k + 24 A\VA — 4h°E k® + 24 AVC, — 24B,C, )cosh® (kx—vt) = 0
(—20n*F,k* —48B,VB, + 72BjvB, — 24h”F,k* )sinh (kx —vt)cosh? (kx —vt)
+(~24n°F,k® — 72B3vB, ) cosh (kx —vt) +(~96B5vB, + 24h*F k* )sinh (kx—vt)
+(h*Fok +12h?F k? + 24B,VB, )sinh (kx —vt) cosh* (kx —vt)

+(72B3vB, + 24hF k — 24B VB, + 28h°F k° — 24B,vC, + 24AVC, )cosh® (kx —vt)

+(—24hF K +24BVB, —4h°F k° + 24BC, — 24 A\C, )cosh® (kx—vt) =0

The set of equations (16) is valid if and only if each of its basic hyperbolic function coefficients
is nil. This permits us to obtain the following set of twenty four equations:
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—20h*Ak* + 48E,VE, — 72EVE, — 24h*Ak® =0
h*B,k* +12h?Bk* — 24F,vF, =0
96ENVE, +24h*AK* =0
24N AK® + T2EVE, =0
~T2ENVE, —24hAK + 24E,VE, —28h°Ak® =0
24hAk —24E,VE, +4h*Ak® =0
—20h*B,k* +48F,VF, - 72FVF, —24h’Bk* =0
h*B,k* +12h*B k* — 24F,vF, =0
96FVF, +24h*Bk* =0
24h°B k* + 72FVF, =0
~T2FVF, — 24hB,k + 24F,vF, —28h°B k* =0
24hBk — 24F,VF, +4h°Bk® =0
—20h*Ek* —48AVA, + T2ANVA, — 24h°Ek?* =0
—24h°Ek® -T2 AVA, =0
—96 ANVA, +24h*Ek* =0
h*Eok* +12h°E k* +24AVA, =0
T2 AVA, + 24hE k — 24 AVA +28h°E k® — 24 AVC, +24BC, =0
—24NhE K + 24 AVA —4h°E k® +24AVC, —24BVC, =0
—20h*F,k* —48B,VB, + 72B3VB, — 24h°F k* =0
—24h°F k* - 72B3vB, =0 (0
—96B3VB, +24h*Fk* =0
h*Fk*+12h*F k? +24B,vB, =0
72BJVB, + 24hF k — 24B,vB, + 28h°F k*® — 24B,vC, + 24AVC, =0
—24hF k +24B,vB, —4h°F k* + 24BvC, — 24 AVC, =0

Haven solved the set of equation (17), it has permitted us to present in (18) the solution with
conditions of the set of four nonlinear partial differential equations obtained in (14) which model

the dynamic of a set of four solitary wave of type (pulse ; pulse ; pulse ; pulse):

1
_RrANE3 3 3
f=F; k= A‘)[ 64A“E°] : v—64A4EO ;. AA<O0;

a=A: b=B,; e=E = : =
& : : En| 27AA BIAA
h® fk* h* fk* h®A Kk h*Ak* h®B,k® h*B,k*
» =T 552 0 PaT 53 E,=- 2 ; E4:_—3; 2 = o F4=_ 3
3B,V 4Byv 3ev 4e’v 3fv 4f°v
3413 4,414 2412 3,3
Al=—CO+C°B°+h8k +hek : __h'ek™ h7ek : Bl=—C0+C°A°+hfk +hfk _
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In mathematical domain, the nonlinear hybrid electrical line with crosslink capacitor presented in
figure 1 has permitted in the one hand to discover in (8) a set of four nonlinear partial differential
equations which have for exact solution a set of four solitary waves given in (12) and on the other
hand to discover in (14) another set of four nonlinear partial differential equations which have for
exact solution another set of four solitary waves given in (18).

For the values of the following parameters: A, =37x10"F/NV?, A =-30x10%F/V?,
A, =10V, B,=-20V , E,=0,3A, F, =-5A, h=10", the expressions of four Pulse solitons (18)
can be re-written as u, =10sech(1081,08x+341,48t), u, =—20sech(1081,08x+341,48t),
i, =0,3sech(1081,08x + 341,48&), i, =—5sech(1081,08x+341,48t) . This permits to obtain in
figure 3 the representation of real profile of those four Pulse solitons.
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Figure 3: Real profile of the four Pulse solitons

This representation shows real profile of the four pulse solitons which are non-topological solitons
since the properties of their media are the same at infinity.

5. Conclusion

The choice of nonlinear hybrid electrical line with crosslink capacitor for our study is due to the
fact that it permits the simultaneous propagation of four signals contrary to a non-coupled hybrid
electrical line which permits the simultaneous displacement of two signals; let us recall that the
more we will multiply the crosslink capacitor in the line, the more we will multiply the

Page 15 sur 18



simultaneous movement of signals in the line. In the domain of physics in general and particularly
in the domain of telecommunication, the set of four solitary waves obtained in (12) will permit the
manufacturing of a new hybrid electrical line with crosslink capacitor where the flux linkage of its
inductors and the charge of its capacitors vary in nonlinear manner defined in (7). In the same
light, the set of four solitary waves obtained in (18) will permit the manufacturing of another hybrid
electrical line with crosslink capacitor where the flux linkage of its inductors and the charge of its
capacitors vary in nonlinear manner defined in (13). The set of four solitary waves obtained in (12)
and in (18) prove that the quality of signals which are being propagated in the nonlinear hybrid
electrical line with crosslink capacitor was ameliorated as compared to sinusoidal signals which
are being propagate in the hybrid electrical line with crosslink capacitor. In order to bring up new
ideas on the stability of the four sets of solitary waves obtained, it is necessary for us to study next
their modulational instability before carrying out a practical exercise where we will experiment
the applicability and the perfection of the two new hybrid electrical lines with crosslink capacitor.
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