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Abstract 
In this paper, we consider a competitive reaction-diffusion model to describe the existence of 
travelling wave solutions of two competing species. Moreover, the non-linear system is also 
studied by introducing different competitive-cooperative coefficients (constant and space 
dependent) which leads to the persistence and extinction of organisms in a biology. If the 
diffusion coefficients and other parameters are positive constant, it is seen that one species is 
in extinction by the other and coexistence is also possible under certain conditions on 
carrying capacity. The results are numerically investigated by using the Finite difference 
method (FDM). 
 
Keywords:  Nonlinear PDEs, Travelling wave solutions, Reaction-diffusion, Crank-Nicolson 
scheme. 
AMS Subject Classification: 92D25, 35K57 (primary), 35K61, 37N25. 
 
1. Introduction 

In nature there are two or more species compete for the same limited food source or in some 
way inhibit each other’s growth. This type of interspecies interactions is known as mutual 
competitive suppression, or competition for a common resource [1]. Their dynamics is 
considerably very rich, and also of great importance for the functioning of ecosystems. To 
describe the dynamics of two competing populations, the basic 2-species Lotka–Volterra 
competition model with diffusion can be used [2], which has the following set of equations: 

⎩
⎪
⎨

⎪
⎧
𝜕𝑢
𝜕𝑡

= 𝑑1∆𝑢 + 𝑢(1 − 𝑎𝑢 − 𝛾𝑣)

𝜕𝑣
𝜕𝑡

= 𝑑2∆𝑣 + 𝑣(1 − 𝑏𝑢 − 𝛿𝑣)

� 

 
 
(𝑥, 𝑡) ∈ ℝ × [0,∞) 

 
 

(1.1) 
 

 
where, 𝑢 and 𝑣 are the density of the two interacting species, 1 𝑎⁄ , 1 𝛿⁄  are carrying 
capacities, γ, b  are competition coefficients and  d1,  d2 are diffusion coefficients, all non-

negative. Here ∆ is an operator which can also be written as ∆ = 𝜕2

𝜕𝑥2
 . Note that the 

competition model (1.1) is reaction-diffusion type and not a conservative system like its 
Lotka–Volterra predator–prey counterpart. 

In modern mathematics, the theory of traveling wave solution of partial differential equation 
is applied to describe different phenomena in ecology [3], farming [4], forestry [5], cell 
culture [6] and other natural sciences [7]. In this paper, we will study the traveling wave 
solution of the competitive reaction-diffusion system (1.1). We evaluate an approximate 
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transformation of the traveling wave equations into monotone form and we reduce the 
existence proof to application of well-defined theory about monotone traveling wave systems 
[8]. Let us now consider the system (1.1) as follows: 
 

⎩
⎪
⎨

⎪
⎧𝜕𝑢
𝜕𝑡

= d
𝜕2𝑢
𝜕𝑥2

+ 𝑢(1 − 𝑎𝑢 − 𝛾𝑣)

𝜕𝑣
𝜕𝑡

= d
𝜕2𝑣
𝜕𝑥2

+ 𝑣(1 − 𝑏𝑢 − 𝛿𝑣)

� 

 
 
(𝑥, 𝑡) ∈ ℝ × [0,∞) 

 
 

(1.2) 
 

For traveling wave solutions of the above systems, we will consider the following 
hypotheses: 

[𝐴1] 𝑎 < 𝑏 
[𝐴2] 𝛾 < 𝛿 

We will discuss the existence and uniqueness of the traveling wave solutions of the form 

�𝑢 ��1
d
𝑥 + 𝑐𝑡� , 𝑣 ��1

d
𝑥 + 𝑐𝑡�� joining the equilibria �0, 1

𝛿
� and �1

𝑎
, 0� as �1

d
𝑥 + 𝑐𝑡 

moves from −∞ to +∞. It means, when the second species move from carrying capacity to 
extinction, first species move from extinction to carrying capacity. If the inequality of 
hypothesis in [𝐴1] is interchanged, the existence of traveling wave solutions activating from 
(0, 0) to positive coexistence equilibrium which proved in [9]. However, if [𝐴2] is 
interchanged, [10] and [11] assured us the existence of traveling wave solutions activating 
from one equilibrium on one positive axis to the equilibrium on another positive axis. 
Generally, we are able to observe that in some papers [8, 9] and [10] are used to solve the 
existence of traveling wave solutions using dynamical system and ordinary differential 
equation methods. We get help for studying about traveling wave solutions on other 
interacting species in related papers [13, 14, 15] and [16]. We can also be found various types 
of boundary value problems including the system (1.2) in [17, 18, 19, 20] and [21]. These 
books are not related to traveling wave solutions. The novelty of this work is that we use an 
alternative method of upper–lower solutions to prove the existence of traveling wave 
solutions. Moreover, we make the resulting system into a monotone system by changing the 
variable in the second equation of system (1.2) with reversing order.  
 

2. Existence of Travelling Wave Solution 
In this section, we will show the existence of travelling wave solution and explore the system 

(1.2) which has of the form �𝑢 ��1
d
𝑥 + 𝑐𝑡� , 𝑣 ��1

d
𝑥 + 𝑐𝑡�� adding the equilibria �0, 1

𝛿
� 

and �1
𝑎

, 0� as �1
d
𝑥 + 𝑐𝑡 moves from −∞ to +∞. 

 
Let us consider 

𝑡 = 𝑡̅      and     𝑥 = √d�̅� (2.1) 
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Equation (1.2) can be written as  

⎩
⎪⎪
⎨

⎪⎪
⎧𝜕𝑢
𝜕𝑡̅

= d
1

�√d�
2
𝜕2𝑢
𝜕�̅�2

+ 𝑢(1 − 𝑎𝑢 − 𝛾𝑣)

𝜕𝑣
𝜕𝑡̅

= d
1

�√d�
2
𝜕2𝑣
𝜕�̅�2

+ 𝑣(1 − 𝑏𝑢 − 𝛿𝑣)

� 

where �̅� ∈ ℝ, 𝑡̅ ∈ ℝ+. Now we can simplify above system such that 
 

⎩
⎪
⎨

⎪
⎧𝜕𝑢
𝜕𝑡̅

=
𝜕2𝑢
𝜕�̅�2

+ 𝑢(1 − 𝑎𝑢 − 𝛾𝑣)

𝜕𝑣
𝜕𝑡̅

=
𝜕2𝑣
𝜕�̅�2

+ 𝑣(1 − 𝑏𝑢 − 𝛿𝑣)

� 

 
 

             �̅� ∈ ℝ, 𝑡̅ ∈ ℝ+ 

 
 

(2.2) 

 
Let  

𝑢 = 𝑦𝑀, 𝑣 = 𝑤𝑁, (2.3) 
where 𝑦 = 1

𝑎
 and 𝑤 is a constant satisfying  

1
𝛿

< 𝑤 <
1
𝛾

 (2.4) 

 
Then the system (2.2) becomes  
 

⎩
⎪
⎨

⎪
⎧𝜕(𝑦𝑀)

𝜕𝑡̅
=
𝜕2(𝑦𝑀)
𝜕�̅�2

+ 𝑦𝑀(1 − 𝑎𝑦𝑀 − 𝛾𝑤𝑁)

𝜕(𝑤𝑁)
𝜕𝑡̅

=
𝜕2(𝑤𝑁)
𝜕�̅�2

+ 𝑤𝑁(1 − 𝑏𝑦𝑀 − 𝛿𝑤𝑁)

� 

 

⇒

⎩
⎪
⎨

⎪
⎧ 𝜕𝑀

𝜕𝑡̅
=
𝜕2𝑀
𝜕�̅�2

+ 𝑀(1 −𝑀 − 𝛾𝑤𝑁)

𝜕𝑁
𝜕𝑡̅

=
𝜕2𝑁
𝜕�̅�2

+ 𝑁 �1 −
𝑏
𝑎
𝑀 − 𝛿𝑤𝑁�

� 

 
After rearranging the above system, we get 

⎩
⎪
⎨

⎪
⎧ 𝜕𝑀

𝜕𝑡̅
=
𝜕2𝑀
𝜕�̅�2

+ 𝑀(1 −𝑀 − 𝑧𝑁)

𝜕𝑁
𝜕𝑡̅

=
𝜕2𝑁
𝜕�̅�2

+ 𝑁(𝜌1 − 𝑏1𝑀 − 𝜌1(1 + 𝜌2)𝑁)

� 

 
 

(2.5) 
 

where  
𝑧 = 𝛾𝑤, 𝜌1 = 1,  

𝑏1 =
𝑏
𝑎

, 𝜌2 = 𝛿𝑤 − 1, (2.6) 

Here from [𝐴1] and (2.4), we have 
𝑧 ∈ (0,1),   𝜌2 > 0 (2.7) 

We can make 𝜌2 arbitrarily small by taking 𝑤 close to 1
𝛿
 in (2.4). 
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Theorem 2.1. [3] Let us consider the system (1.2) under [𝐴1] and [𝐴2]. For transforming the 
system (1.2) into system (2.5), we use the change of variables (2.1) and (2.3) with 𝑤 
satisfying (2.4). The parameters in (2.5) are related to those in (1.2) by (2.6) and the 
parameters 𝑧, 𝜌1, 𝜌2 and 𝑏1 satisfy the inequalities in (2.7). 

If (𝑀(𝑡̅, �̅�), 𝑁(𝑡̅, �̅�)) is a solution of (2.5) we can easily verify that  
(𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)) = �𝑢�𝑡̅,√d�̅��, 𝑣�𝑡̅,√d�̅��� = (𝑦𝑀(𝑡̅, �̅�),𝑤𝑁(𝑡̅, �̅�)) (2.8) 

is a solution of (1.2), where 𝑦 and 𝑤 are introduced in (2.3), (2.4). Now we have to find for 
solution of system (2.5). Let us consider the transformation 

�𝑀(𝑡̅, �̅�),𝑁(𝑡̅, �̅�)� = �𝑀(𝑠∗),𝑁(𝑠∗)� where 𝑠∗ = �̅� + 𝑐𝑡̅ 
and it satisfies 

⎩
⎪
⎨

⎪
⎧ lim
𝑠→−∞

�𝑀(𝑠∗),𝑁(𝑠∗)� = �0,
1

1 + 𝜌2
�

lim
𝑠→+∞

�𝑀(𝑠∗),𝑁(𝑠∗)� = (1, 0)

� 

 
 

(2.9) 
 

Using this transformation, relating back to (2.5), we are now finding for solution of  

⎩
⎪
⎨

⎪
⎧ 𝑐

𝜕𝑀
𝜕𝑠∗

=
𝜕2𝑀
𝜕𝑠∗2

+ 𝑀(1 −𝑀 − 𝑧𝑁)

 𝑐
𝜕𝑁
𝜕𝑠∗

=
𝜕2𝑁
𝜕𝑠∗2

+ 𝑁(𝜌1 − 𝑏1𝑀 − 𝜌1(1 + 𝜌2)𝑁)

� 

 
 
𝑠∗ ∈ (−∞,∞) 

 
 

(2.10) 

 
Theorem 2.2. [3] System (1.2) has a travelling wave solution of the form 

(𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)) = �𝑦𝑀��
1
d
𝑥 + 𝑐𝑡� ,𝑤𝑁��

1
d
𝑥 + 𝑐𝑡�� 

 
(2.11) 

for any 𝑐 > 2 under the hypotheses [A1], [A2] and newly [A3] such that  
[A3] 𝑏 ≤ 2𝑎. 

 
Now, (M, N) is a function of one variable which is denoted by s∗ satisfying (2.10) for  
s∗ ∈ (−∞,∞) and (2.9) as 𝑠∗ → ±∞ and also 𝑀(𝑠∗) and 𝑁(𝑠∗) are positive monotonic 
functions for 𝑠∗ ∈ (−∞,∞). Remarkable thing is that 

⎩
⎪
⎨

⎪
⎧ lim
𝑡→−∞

�𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)� = �0,
1
𝛿�

lim
𝑡→+∞

�𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)� = �
1
𝑎

, 0�

� 

 
 

(2.12) 

 

Proof: The change of variables  
𝑢1(𝑠∗) = 𝑀(𝑠∗)  

𝑢2(𝑠∗) =
1

1 + 𝜌2
− 𝑁(𝑠∗) (2.13) 
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For 𝑠∗ ∈ (−∞,∞), turns (2.10) into 
 

⎩
⎪
⎨

⎪
⎧ 𝑐

𝜕𝑢1
𝜕𝑠∗

=
𝜕2𝑢1
𝜕𝑠∗2

+ 𝑢1 �1 − 𝑢1 − 𝑧 �
1

1 + 𝜌2
− 𝑢2��

𝑐
𝜕𝑢2
𝜕𝑠∗

=
𝜕2𝑢2
𝜕𝑠∗2

+ �
1

1 + 𝜌2
− 𝑢2� (𝑏1𝑢1 − 𝜌1(1 + 𝜌2)𝑢2)

� 

=

⎩
⎪
⎨

⎪
⎧ 𝑐

𝜕𝑢1
𝜕𝑠∗

=
𝜕2𝑢1
𝜕𝑠∗2

+ 𝑢1 �1 − 𝑢1 −
𝑧

1 + 𝜌2
+ 𝑧𝑢2�

𝑐
𝜕𝑢2
𝜕𝑠∗

=
𝜕2𝑢2
𝜕𝑠∗2

+ �
1

1 + 𝜌2
− 𝑢2� (𝑏1𝑢1 − 𝜌1(1 + 𝜌2)𝑢2)

� 

  

             =

⎩
⎪
⎨

⎪
⎧ −

𝜕2𝑢1
𝜕𝑠∗2

+ 𝑐
𝜕𝑢1
𝜕𝑠∗

= 𝑢1 �
1 + 𝜌2 − 𝑧

1 + 𝜌2
− 𝑢1 + 𝑧𝑢2� ,

−
𝜕2𝑢2
𝜕𝑠∗2

+ 𝑐
𝜕𝑢2
𝜕𝑠∗

= �
1

1 + 𝜌2
− 𝑢2� (𝑏1𝑢1 − 𝜌1(1 + 𝜌2)𝑢2),

� 

 
 

                        (2.14) 
 

 
This equation is also monotone for following conditions such that 

0 ≤ 𝑢1, 0 ≤ 𝑢2 ≤
1

1 + 𝜌2
 . 

Now we have to construct a pair of coupled upper solutions for the system (2.14). Let us 
consider an increasing function 𝑢�(𝑠∗) satisfying the following Kolmogorov-Petrovskii-
Piscunov (KPP) equation for 𝑐 > 2 such that 

−
𝑑2𝑢�
𝑑𝑠∗2

+ 𝑐
𝑑𝑢�
𝑑𝑠∗

= 𝑢�(1 − 𝑢�) 
(2.15) 

 

For 𝑠∗ ∈ (−∞,∞) and also lim𝑠∗→−∞ 𝑢�(𝑠∗) = 0 and lim𝑠∗→∞ 𝑢�(𝑠∗) = 1. Let 

𝑢�1(𝑠∗) = 𝑢�(𝑠∗), 𝑢�2(𝑠∗) =
1

1 + 𝜌2
𝑢�(𝑠∗),   (2.16) 

 
For 0 ≤ 𝑢2 ≤ 𝑢�2(𝑠∗), we can easily observe that 
 

−
𝑑2𝑢�1
𝑑𝑠∗2

+ 𝑐
𝑑𝑢�1
𝑑𝑠∗

− 𝑢�1 �
1 + 𝜌2 − 𝑧

1 + 𝜌2
− 𝑢�1 + 𝑧𝑢2� 

 
= −

𝑑2𝑢�
𝑑𝑠∗2

+ 𝑐
𝑑𝑢�
𝑑𝑠∗

− 𝑢� �1 −
𝑧

1 + 𝜌2
− 𝑢� + 𝑧𝑢2� 

 = 𝑢�(1 − 𝑢�) − 𝑢� �1 −
𝑧

1 + 𝜌2
− 𝑢� + 𝑧𝑢2� 

 = 𝑢� �1 − 𝑢� − 1 +
𝑧

1 + 𝜌2
+ 𝑢� − 𝑧𝑢2� 

 = 𝑢� �
𝑧

1 + 𝜌2
− 𝑧𝑢2� 

 ≥
𝑧

1 + 𝜌2
𝑢�(1 − 𝑢�) > 0 (2.17) 

for all 𝑠∗ ∈ (−∞,∞). For 0 ≤ 𝑢1 ≤ 𝑢�1(𝑠∗), we also can check that 
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−
𝑑2𝑢�2
𝑑𝑠∗2

+ 𝑐
𝑑𝑢�2
𝑑𝑠∗

− �
1

1 + 𝜌2
− 𝑢�2� (𝑏1𝑢1 − 𝜌1(1 + 𝜌2)𝑢�2) 

 
=

1
1 + 𝜌2

�−
𝑑2𝑢�
𝑑𝑠∗2

� + 𝑐
1

1 + 𝜌2
𝑑𝑢�
𝑑𝑠∗

− �
1

1 + 𝜌2
−

𝑢�
1 + 𝜌2

� �𝑏1𝑢1 − 𝜌1(1 + 𝜌2)
𝑢�

(1 + 𝜌2)� 

 
= −

1
1 + 𝜌2

𝑑2𝑢�
𝑑𝑠∗2

+
𝑐

1 + 𝜌2
𝑑𝑢�
𝑑𝑠∗

−
1

1 + 𝜌2
(1 − 𝑢�)(𝑏1𝑢1 − 𝜌1𝑢�) 

 
=

1
1 + 𝜌2

�−
𝑑2𝑢�
𝑑𝑠∗2

+ 𝑐
𝑑𝑢�
𝑑𝑠∗

− (1 − 𝑢�)(𝑏1𝑢1 − 𝜌1𝑢�)� 

 =
1

1 + 𝜌2
[𝑢�(1 − 𝑢�) + (1 − 𝑢�)(𝑢�𝜌1 − 𝑏1𝑢1)] 

 ≥
1

1 + 𝜌2
𝑢�(1 − 𝑢�)(1 + 𝜌1 − 𝑏1) 

 ≥ 0    
for all 𝑠∗ ∈ (−∞,∞). We can say that the inequalities are true cause 

1 + 𝜌1 − 𝑏1 = 1 + 1 −
𝑏
𝑎

= 2 −
𝑏
𝑎
≥ 0 

by hypothesis [𝐴3]. Consider a pair of functions denoted by �̅�1(𝑠∗) and �̅�2(𝑠∗) and defined 
by 

�̅�1(𝑠∗) = 𝑢�1(−𝑠∗), �̅�2(𝑠∗) = 𝑢�2(−𝑠∗)  (2.18) 

Now let us consider the monotone system 

⎩
⎪
⎨

⎪
⎧ ∂2𝜂1

𝜕𝑠∗2
+ 𝑐

𝜕𝜂1
𝜕𝑠∗

+ 𝜂1 �
1 + 𝜌2 − 𝑧

1 + 𝜌2
− 𝜂1 + 𝑧𝜂2� = 0,

∂2𝜂2
𝜕𝑠∗2

+ 𝑐
𝜕𝜂2
𝜕𝑠∗

+ �
1

1 + 𝜌2
− 𝜂2� (𝑏1𝜂1 − 𝜌1(1 + 𝜌2)𝜂2) = 0,

� 

 
 

(2.19) 

For 𝑠∗ ∈ (−∞,∞), the problem reduces to  

⎩
⎪
⎨

⎪
⎧ ∂2�̅�1

𝜕𝑠∗2
+ 𝑐

𝜕�̅�1
𝜕𝑠∗

+ �̅�1 �
1 + 𝜌2 − 𝑧

1 + 𝜌2
− �̅�1 + 𝑧𝜂2� ≤ 0,

∂2�̅�2
𝜕𝑠∗2

+ 𝑐
𝜕�̅�2
𝜕𝑠∗

+ �
1

1 + 𝜌2
− �̅�2� (𝑏1𝜂1 − 𝜌1(1 + 𝜌2)�̅�2) ≤ 0,

� 

 
 

(2.20) 

For 𝑠∗ ∈ (−∞,∞), all0 ≤ 𝜂2 ≤ �̅�2(𝑠∗), 0 ≤ 𝜂1 ≤ �̅�1(𝑠∗). In the region , 0 ≤ 𝜂1 ≤ 1 and 
0 ≤ 𝜂2 ≤

1
1+𝜌2

, the system (2.19) is monotone. When 𝜂1 = �̅�1(𝑠∗)is the first equation and 

𝜂2 = �̅�2(𝑠∗) is the second equation for all 𝑠∗ ∈ (−∞,∞), particularly (2.20) is absolutely 
true. Here let 
 𝑓1(𝜂1, 𝜂2) = 𝜂1 �

1 + 𝜌2 − 𝑧
1 + 𝜌2

− 𝜂1 + 𝑧𝜂2� 

 𝑓2(𝜂1, 𝜂2) = �
1

1 + 𝜌2
−  𝜂2� (𝑏1𝜂1 − 𝜌1(1 + 𝜌2)𝜂2) 

Hence 𝑓𝑖 �𝑆, 𝑆𝑏1
2𝜌1(1+𝜌2)

� > 0 for 𝑖 = 1,2 and 𝑆 > 0 is sufficiently small. Let 𝑉1 be a class of 

vector valued functions 𝜂(𝑠∗) ∈ 𝐶2(−∞,∞) is monotonically decreasing and satisfying 
lim𝑠∗→±∞ 𝜂(𝑠∗) = 𝑀±������⃗  with 𝑓 = (𝑓1,𝑓2),𝑀+������⃗ = (0,0) and 𝑀−������⃗ = �1, 1

1+𝜌2
�.  
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We have 𝑐 ≥ 𝑀∗ for the existence of the function (�̅�1(𝑠∗), �̅�2(𝑠∗)) satisfying (2.20) where 

𝑀∗ = 𝑚𝑎𝑥 �𝐼𝑛𝑓𝜂��⃗ ∈𝑉1 �𝑆𝑢𝑝𝑠∗,𝑉1

𝑑2𝜂𝑉1
𝑑𝑠∗2

+𝑓𝑉1(𝜂��⃗ (𝑠∗))
𝑑𝜂𝑉1
𝑑𝑠∗

� , 0�. 

Since the function 𝑓 can be reduced at the top left corner of the rectangle �𝑀+������⃗ , 𝑀−������⃗ � =
[0,1] × [0, 1

1+𝜌2
], then the system (2.14) has a solution which is a function denoted defined by  

(𝑢�1(𝑠∗),𝑢�2(𝑠∗)) ≔ (�̂�1(𝑠∗), �̂�2(𝑠∗))  
After setting 𝑀(𝑠∗) = 𝑢�1(𝑠∗) and 𝑁(𝑠∗) = 1

1+𝜌2
− 𝑢�2(𝑠∗) for 𝑠∗ ∈ (−∞,∞) as in (2.13), 

then (𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥)) as defined in (2.11) is a travelling wave solution of system (1.2) for 
𝑥 ∈ (−∞,∞), 𝑡 > 0, satisfying (2.12) as described in the statement of theorem 2.2.  
 

3. Examples and Applications  

3.1 Effects of competitive constant coefficients 
We consider the following system with the boundary and initial conditions as follows 

⎩
⎨

⎧ 𝜕𝑢
𝜕𝑡

= d
𝜕2𝑢
𝜕𝑥2

+ 𝑢(1 − 2𝑢 − 𝑣)

  
𝜕𝑣
𝜕𝑡

= d
𝜕2𝑣
𝜕𝑥2

+ 𝑣(1 − 3𝑢 −
19
10

𝑣)

� 

 
 

(3.1) 
 

Where,𝑎 = 2, 𝛾 = 1, 𝑏 = 3, 𝛿 =  19
10

, with the domain 𝜎 = (0,1) and homogeneous Neumann 
boundary conditions  

𝜕𝑢
𝜕𝜂

=
𝜕𝑣
𝜕𝜂

= 0 

Here [𝐴1] to [𝐴2] are readily satisfied and [𝐴3] is always true for 𝑏 ≤ 2𝑎. Now, our goal is 
to solve these equations numerically by using Implicit Finite Difference Method such as 
Crank-Nicolson method [22]. First we discretize the above equations (see Appendix 1.) and 
after that constructing the algorithm in FORTRAN languages by code block software; we can 
have the solutions which are graphically presented by following figures. 
 

             
Figure-3.1: The illustration of the solutions 𝑢(𝑡, 𝑥) (left) and 𝑣(𝑡, 𝑥) (right) according to 
system of system of equation (3.1) for different diffusion coefficients at same time 𝑡 = 200.  

x

u(
t,x

)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

d =0.1
d =5.0
d =10.0
d =20.0

d =0.11

2
2
2
2

x

v(
t,x

)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

d =0.1
d =5.0
d =10.0
d =20.0

d =0.11

22
2
2
2

UNDER PEER REVIEW



8 
 

The behavior of diffusion coefficients and domain is reported in Figure-3.1. We take different 
values of diffusion coefficients at time 𝑡 = 200 over domain 𝑥. Considering one diffusion 
coefficient is fixed such as d1= 0.1 and another one is replaced by different values such as 
d2= 0.1, 5, 10, 20 and we can observe from the above figure, the solutions are coinciding 
separately. That means the solutions 𝑢(𝑡, 𝑥) and 𝑣(𝑡, 𝑥) do not depend on different values of 
diffusion coefficient.  

          
Figure-3.2: The graphical representation of average solutions at different times 𝑡 = 10, 20 
and taking same diffusion coefficient d1 = d2=0.1. 
 
The above figures (Figure-3.2) represent us the nature of the average solutions verses time. 
By taking same diffusion coefficient d1 = d2 =0.1 at different times 𝑡 = 10 (left) and 𝑡 =
20 (right), we observe that the values of these solutions are changed or decreased over 
different times. That is, average solutions are varies on time. 

            
Figure-3.3: Comparison at different times 𝑡 = 10, 𝑡 = 20, 𝑡 = 200 and corresponding 
average solutions of 𝑢(𝑡, 𝑥) (left) and 𝑣(𝑡, 𝑥) (right) for same diffusion coefficient d = 0.1 
according to (3.1). 
 
From Figure-3.2, we have known that the average solutions are time dependent. Those 
descriptions of Figure-3.2 are same as for the above figure-3.3. Here we represent the 
multiple plot of the average solutions at different times 𝑡 = 10 (solid), 𝑡 = 20 (longdashed) 
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and 𝑡 = 200 (dashed). So, generally we can say that solutions of the system (3.1) are 
diffusion coefficient independent but obviously depend on time. 
 
3.2 Effects of spatially distribute competition coefficients 
 
Let us consider a generalized form of (1.2), when competition coefficients are spatially 
distributed: 

⎩
⎪
⎨

⎪
⎧𝜕𝑢
𝜕𝑡

= d
𝜕2𝑢
𝜕𝑥2

+ 𝑢(𝑘(𝑥) − 𝑎(𝑥)𝑢 − 𝛾(𝑥)𝑣)

𝜕𝑣
𝜕𝑡

= d
𝜕2𝑣
𝜕𝑥2

+ 𝑣(𝑘(𝑥) − 𝑏(𝑥)𝑢 − 𝛿(𝑥)𝑣)

� 

 
 
 

 
(3.2) 

where 𝑘(𝑥) is the carrying capacity and 𝑎(𝑥), 𝛾(𝑥), 𝑏(𝑥), 𝛿(𝑥), 𝑘(𝑥) are all functions of 𝑥 
and positive. Our next step is to establish some results using the equation (3.2). Rewrite the 
equations as 

⎩
⎪
⎨

⎪
⎧𝜕𝑢
𝜕𝑡

= d
𝜕2𝑢
𝜕𝑥2

+ 𝑢(1 − (1.1 + 𝑠𝑖𝑛(𝜋𝑥))𝑢 − (2.0 + 𝑐𝑜𝑠(𝜋𝑥))𝑣)

𝜕𝑣
𝜕𝑡

= d
𝜕2𝑣
𝜕𝑥2

+ 𝑣(1 − (1.2 + 𝑠𝑖𝑛(𝜋𝑥))𝑢 − (2.2 + 𝑐𝑜𝑠(𝜋𝑥))𝑣)

� 

 
 

(3.3) 
 

with 𝜎 = (0, 1), 𝑘(𝑥) = 1, 𝑎(𝑥) = 1.1 + 𝑠𝑖𝑛(𝜋𝑥) < 𝑏(𝑥) = 1.2 + 𝑠𝑖𝑛(𝜋𝑥), and 𝛾(𝑥) =
2.0 + 𝑐𝑜𝑠(𝜋𝑥) < 𝛿(𝑥) = 2.2 + 𝑐𝑜𝑠(𝜋𝑥) . 
 
Using same numerical strategy in section 3.1, we produce the following results: 

              
Figure-3.4: Solutions of (3.3) for same diffusion coefficient d1= d2= 0.1, initial value 
𝑢0 = 0.8,𝑣0 = 0.8 at increasing times 𝑡 = 10, 𝑡 = 20 and 𝑡 = 200 over the domain. 
 
We can see that 𝑢(𝑡, 𝑥) (left) and 𝑣(𝑡, 𝑥) (right) are the solutions of the system (3.3) which 
shows two species are decreasing over the domain for same diffusion coefficient at different 
times. It also satisfies the third hypothesis 𝑏(𝑥) < 2𝑎(𝑥).  Now we consider (3.3) with 
different diffusion coefficient as d1= 0.1 and d2= 0.5, 1.0, 5.0, 10.0, 20.0 at same time. It is 
observed (Figure-3.5) that all the solutions for different diffusion coefficients coincide. That 

x

u(
t,x

)

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

t=10
t=20
t=200

d =d =0.11 2

x

v(
t,x

)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

t=10
t=20
t=200

d =d =0.11 2

UNDER PEER REVIEW



10 
 

is, solutions do not depend on diffusions coefficients and they decrease. So, variation of 
diffusion coefficient does not effect on two species. 
 

            
Figure-3.5: Solutions of (3.3) for d1= 0.1, 𝜎 = (0,1), 𝑢0 = 𝑣0 = 0.8 for various 
d2= 0.5, 1.0, 5.0, 10.0 and 20.0 at time 𝑡 = 200. 
 
We can investigate the solutions for increasing of times from 10 to 200 using same diffusion 
coefficient of (3.3) which is shown in the following Figure-3.6. Average solutions are 
indicating by 𝑢(𝑡, 𝑥) (left) and 𝑣(𝑡, 𝑥) (right). When time varies, we observe that solutions 
are decreasing with 𝑢0 = 𝑣0 = 0.8 for same diffusion coefficient 0.1 over the domain. 
 

          
Figure-3.6: Average solutions of (3.3) for same diffusion coefficient 0.1 at different times 
𝑡 = 10, 𝑡 = 20 and 𝑡 = 200 respectively. 
 
The following figure-3.7 establishes for larger 𝑘(𝑥) = 2.5 + cos (𝜋𝑥) from all other 
parameters such that 𝑎(𝑥) = 1.1 + 𝑠𝑖𝑛(𝜋𝑥), 𝑏(𝑥) = 1.2 + 𝑠𝑖𝑛(𝜋𝑥), 𝛾(𝑥) = 2.0 + 𝑐𝑜𝑠(𝜋𝑥) 
and 𝛿(𝑥) = 2.2 + 𝑐𝑜𝑠(𝜋𝑥) for same diffusion coefficient d1= d2= 0.5. 
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Figure-3.7: Solutions (left) and average solutions (right) of (3.3) using carrying 
capacity 𝑘(𝑥) = 2.5 + cos (𝜋𝑥). 
 
The above figures depict, if the carrying capacity is larger than all other parameters, then left 
illustration shows us 𝑢(𝑡, 𝑥) increases and 𝑣(𝑡, 𝑥) decreases. Similarly, right illustration of 
same figure shows us average solutions of 𝑢 increases and 𝑣 decreases at time 𝑡 = 20 for 
same diffusion coefficient d1=d2=0.5 and same initial value 0.8. Next to test the difference 
between small and larger carrying capacity, we consider the carrying capacity 𝑘(𝑥) = 0.5 +
cos (𝜋𝑥) which is less than all parameters discussed earlier. 
 

      
Figure-3.8: Solutions (left) and average solutions (right) of equation (3.3) using smaller 
carrying capacity 𝑘(𝑥) = 0.5 + cos (𝜋𝑥). 
 
Here 𝑘(𝑥) = 0.5 + cos (𝜋𝑥) is small than parameters 𝑎(𝑥), 𝑏(𝑥), 𝛾(𝑥), 𝛿(𝑥) and also from 
the carrying capacity used in figure-3.7. By considering same for diffusion coefficients, we 
get 𝑢(𝑡, 𝑥) and 𝑣(𝑡, 𝑥) are increases and decreases respectively in figure-3.7; on the other 
hand, both the solutions of species are decreasing at certain time over the domain in figure-
3.8. It’s obvious in nature that with smaller carrying capacity in the competitive species, there 
is a formidable chance for both the species step toward extinction.  
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4. Conclusion 

We introduce an appropriate transformation of the travelling wave solutions using three 
hypotheses and the realistic significances of these hypotheses and models are presented us the 
interconnection between growth, competition, diffusion coefficient etc. of two species and for 
these reasons we observe that the travelling wave can exist. In this paper, we investigate the 
characteristic of competitive reaction-diffusion equations using two species. The selected 
equation based on KPP equation does not depend on the changes of diffusion coefficient over 
the domain and two species are decreasing at certain and increasing of time. We also 
construct two different form of governing equation and observe that one form shows us all 
species are becoming less for different times and these solutions are diffusion coefficient 
independent. One species is increasing and another one is decreasing over the domain if we 
take the larger carrying capacity for same or different diffusion coefficients and for small 
carrying capacity two are decreasing. The numerical results obtained by implicit finite 
difference method using Neumann boundary conditions. 
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Appendix 1 
Implicit Finite Difference Method 

 
To discretized the equation (3.1), at first, we have to use the Taylor series in 𝑡 to form the 
difference quotient 

𝜕𝑢
𝜕𝑡
�𝑡𝑗 , 𝑥𝑖� =

𝑢�𝑡𝑗 + ∆𝑡, 𝑥𝑖� − 𝑢�𝑡𝑗 , 𝑥𝑖�
∆𝑡

−
∆𝑡
2
𝜕2𝑢
𝜕𝑡2

(𝜏𝑗 , 𝑥𝑖) 
(1) 

for some 𝜏𝑗 ∈ �𝑡𝑗 , 𝑡𝑗+1� and  ∆𝑡
2
𝜕2𝑢
𝜕𝑡2

(𝜏𝑗 , 𝑥𝑖) is the error term. Now using central-difference 
method to form the difference quotient by Taylor series in x, we have  

𝜕2𝑢
𝜕𝑥2

�𝑡𝑗 , 𝑥𝑖� = �
𝑢�𝑡𝑗 , 𝑥𝑖 + ∆𝑥� − 2𝑢�𝑡𝑗 , 𝑥𝑖� + 𝑢�𝑡𝑗 , 𝑥𝑖 − ∆𝑥�

(∆𝑥)2 � 

+ �
𝑢�𝑡𝑗 + ∆𝑡, 𝑥𝑖 + ∆𝑥� − 2𝑢�𝑡𝑗 , 𝑥𝑖� + 𝑢�𝑡𝑗 + ∆𝑡, 𝑥𝑖 − ∆𝑥�

(∆𝑥)2 � −
(∆𝑥)2

6
𝜕4𝑢
𝜕𝑥4

(𝑡𝑗 , 𝛾𝑖) 
 

(2) 
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where 𝛾𝑖 ∈ (𝑥𝑖−1, 𝑥𝑖+1) and  (𝑡𝑗 , 𝑥𝑖) is the interior gridpoint and (∆𝑥)2

6
𝜕4𝑢
𝜕𝑥4

�𝑡𝑗 , 𝛾𝑖� is the error 
term. 
Suppose that, ∆𝑥 = ℎ, ∆𝑡 = 𝐾. Then (1) becomes  

𝜕𝑢
𝜕𝑡
�𝑡𝑗 , 𝑥𝑖� =

𝑢�𝑡𝑗 + 𝐾, 𝑥𝑖� − 𝑢�𝑡𝑗 , 𝑥𝑖�
𝐾

−
𝐾
2
𝜕2𝑢
𝜕𝑡2

(𝜏𝑗 , 𝑥𝑖) 
(3) 

and (2) becomes  
 
𝜕2𝑢
𝜕𝑥2

�𝑡𝑗 , 𝑥𝑖� = �
𝑢�𝑡𝑗 , 𝑥𝑖 + ℎ� − 2𝑢�𝑡𝑗 , 𝑥𝑖� + 𝑢�𝑡𝑗 , 𝑥𝑖 − ℎ�

ℎ2 � 
 

+ �
𝑢�𝑡𝑗 + 𝐾, 𝑥𝑖 + ℎ� − 2𝑢�𝑡𝑗 , 𝑥𝑖� + 𝑢�𝑡𝑗 + 𝐾, 𝑥𝑖 − ℎ�

ℎ2 � −
ℎ2

6
𝜕4𝑢
𝜕𝑥4

(𝑡𝑗 , 𝛾𝑖) 
 

(4) 
Putting (3) and (4) in first part of the system of equation (1.27) and ignoring the local 
truncation error of order O(𝐾2 + ℎ2) consisting of −𝐾

2
𝜕2𝑢
𝜕𝑡2

(𝜏𝑗 , 𝑥𝑖) and −ℎ2

6
𝜕4𝑢
𝜕𝑥4

(𝑡𝑗 , 𝛾𝑖) and 
next discretizing the first part of system of equation (3.1) by Crank-Nicolson scheme, we 
have 

𝑢𝑖
𝑗+1 − 𝑢𝑖

𝑗

𝐾
=

d
2 �
𝑢𝑖+1
𝑗 − 2𝑢𝑖

𝑗 + 𝑢𝑖−1
𝑗

ℎ2
+
𝑢𝑖+1
𝑗+1 − 2𝑢𝑖

𝑗+1 + 𝑢𝑖−1
𝑗+1

ℎ2 � + 𝑢𝑖
𝑗�1 − 2𝑢𝑖

𝑗 − 𝑣𝑖
𝑗� 

⇒ 2𝑢𝑖
𝑗+1 − 2𝑢𝑖

𝑗 =
d𝐾
ℎ2

�𝑢𝑖+1
𝑗 − 2𝑢𝑖

𝑗 + 𝑢𝑖−1
𝑗 + 𝑢𝑖+1

𝑗+1 − 2𝑢𝑖
𝑗+1 + 𝑢𝑖−1

𝑗+1� 

+2𝐾𝑢𝑖
𝑗�1 − 2𝑢𝑖

𝑗 − 𝑣𝑖
𝑗� (5) 

Now let us consider a new parameter 𝑅𝑢 such that 𝑅𝑢 = d𝐾
ℎ2

 and then from (5), we obtain the 
discretized equation in the following form 
−𝑅𝑢𝑢𝑖−1

𝑗+1+(2 + 2𝑅𝑢)𝑢𝑖
𝑗+1 − 𝑅𝑢𝑢𝑖+1

𝑗+1 
= 𝑅𝑢�𝑢𝑖+1

𝑗 + 𝑢𝑖−1
𝑗 � + (2 − 2𝑅𝑢)𝑢𝑖

𝑗 + 2𝐾𝑢𝑖
𝑗�1 − 2𝑢𝑖

𝑗 − 𝑣𝑖
𝑗� (6) 

 
Since equation (3.1) has Neumann boundary conditions. Using central difference formula 
into this boundary condition, we get  
 𝜕𝑢

𝜕𝑥
= 0 ⇒ 𝑢𝑖+1

𝑗 = 𝑢𝑖−1
𝑗  

From the equation (6), 
−𝑅𝑢𝑢𝑖−1

𝑗+1+(2 + 2𝑅𝑢)𝑢𝑖
𝑗+1 − 𝑅𝑢𝑢𝑖+1

𝑗+1 
= 2𝑅𝑢𝑢𝑖−1

𝑗 + (2 − 2𝑅𝑢)𝑢𝑖
𝑗 + 2𝐾𝑢𝑖

𝑗�1 − 2𝑢𝑖
𝑗 − 𝑣𝑖

𝑗� (7) 
 
Now using similar procedure for second part of the system of equation (3.1), using Neumann 
boundary conditions we obtain 
 
−𝑅𝑣𝑣𝑖−1

𝑗+1+(2 + 2𝑅𝑣)𝑣𝑖
𝑗+1 − 𝑅𝑣𝑣𝑖+1

𝑗+1 

= 2𝑅𝑣𝑣𝑖−1
𝑗 + (2 − 2𝑅𝑣)𝑣𝑖

𝑗 + 2𝐾𝑣𝑖
𝑗 �1 − 3𝑢𝑖

𝑗 −
19
10

𝑣𝑖
𝑗� (8) 

Equations (7) and (8) are the discretized version of the equations in (3.1) to be used for 
further numerical implementations. 
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