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Investigation of Carbon Dioxide Variations over Some 3 

Selected Points in Nigeria Using Neural Network Model 4 

ABSTRACT 5 

Atmospheric pollution due to carbon dioxide emission from different fossil fuels and deforestations are 6 
considered as a great and important international challenge to the societies. This study is to investigate carbon 7 
dioxide (CO2) distribution over some selected points in Nigeria using neural network. Neural network model 8 
was used to estimate daily values of carbon dioxide, study spatial temporal variations of carbon dioxide, and 9 
study the annual variations of estimated and observed carbon dioxide in Nigeria. The study areas used in this 10 
work are thirty six (36) points location over Nigeria as shown in Figure 1. The data used in this work is a 11 
satellite carbon dioxide (COଶ) data obtained from www.gmes-atmosphere.eu/data between 2009-2012. The 12 
neural network architecture used comprises of three main layers; an input layer, a hidden layer and an output 13 
layer. Four input data were considered which include year, day of year (DOY) representing the time, latitude 14 
and longitude. Twenty hidden neurons were employed, while the output is the desired data of carbon dioxide. 15 
The results show that the increase in trend of CO2 in dry season in every part of the country is on yearly bases. 16 
In the wet season, the concentration of CO2 in Nigeria is not as much as in the dry season case, probably due 17 
to absorption of the gas by precipitation. The similarity in the estimated and observed signatures reveals that 18 
neural network model performance were excellent and efficient in determination of spatial distribution of 19 
CO2, thereby proving to be useful tool in modeling the greenhouse gases. The continuous annual increase of 20 
CO2 distribution suggests continuous increase of the greenhouse gas in Nigeria. This reveals high 21 
contributions of CO2 to climate change and global warming in Nigeria. This contributions of CO2 in Nigeria if 22 
left unchecked will increase adverse effects on livelihoods, such as crop production, livestock production, 23 
fisheries, forestry and post-harvest activities, because the rainfall regimes and patterns will be altered, floods 24 
which devastate farmlands would occur. It will also result to increase in temperature and other natural 25 
disasters like floods, ocean and storm surges, earth tremors which not only damage Nigerians' livelihood but 26 
also cause harm to life and property. Finally, we recommend that more years and points location should be 27 
used to investigate carbon dioxide distribution in Nigeria. Again, mitigation of carbon dioxide emission in 28 
Nigeria should also be carried out. 29 
  30 
Keywords: Fossil Fuels; Deforestation; Carbon dioxide Emission; Spatial Variation; Temporal variation; 31 

Neural Networks;  Architecture, climate change. 32 

1.  INTRODUCTION 33 

Climate change is a topical issue worldwide because of its attendant problems that are threatening the 34 

sustenance of man and his environment. This is evident in an increase in average global temperatures due to 35 

increased emission of greenhouse gases, such as carbon dioxide [12]. These are particularly becoming more 36 

severe in the under-developed and developing countries of which Nigeria is one. It has become a reality in 37 

developing countries like Nigeria, Ghana etc with grievous repercussions on human beings. These changes 38 

result in upsetting seasonal cycles, affecting water supply, agriculture and food production, rise in sea-levels, 39 

recurring flooding, off season rains, drought and famine, overheating, drying up of lakes and reduction in 40 
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river. These cause harm to ecosystem. For developed countries which are the major contributors to climate 41 

change, the impacts are less severe due to, high adaptation techniques, and technologies, effective research 42 

proven policies, mechanized agricultural system and wealthy economic status [9] 43 

 44 

Neural network has been largely used in solving different problems in numerous fields such as rainfall-runoff, 45 

water quality, sedimentation, variations of greenhouse gases, distributions and estimations of meteorological 46 

parameters and rainfall forecasting [1]. It has proven to be a good model for estimations, providing good 47 

accuracy for long term estimations, an impressive performance for modeling climatic parameters and proved 48 

to be an excellent modeling for gaseous pollutants [3, 7, 10]. Neural networks (also called computer neural 49 

networks) belong to a branch of artificial intelligence called machine learning. They are a system of 50 

information processing techniques inspired by the manner in which the human brain works, and so the name 51 

neural network. Neural networks can learn trends and patterns in data and consequently be able to correctly 52 

predict future trends and data patterns. 53 

 54 

Although there are some researches on the variations of greenhouse gases and gaseous pollutants in some 55 

regions of Nigeria [11, 14 ], but none has been known at the time of this study to have studied the Neural 56 

Network based modeling of spatial variations with respect to carbon dioxide over Nigeria.  [4] stated that the 57 

problems in trying to establish a weather station networks in Africa includes the technological and scientific 58 

underdevelopment of many African countries exacerbated by extensive poverty and political instability. These 59 

have given advantages to satellite data monitoring. Researchers have revealed that satellite data could be used 60 

in place of ground based data if equipment for in-situ measurements is not available [2, 6]. They opined that 61 

the advent of satellite monitoring will provide a more detailed analysis of atmospheric studies over a wide 62 

region in Nigeria and Africa in extension. 63 

2. MATERIALS AND METHODS 64 

2.1 The Study Area and Data Source 65 

The study areas used in this work are thirty six (36) location points over Nigeria as shown in Figure 1, which 66 

is the gridded map of the selected stations in Nigeria. Table 1 shows the coordinates of the selected stations 67 

over Nigeria. These stations were selected based on the interval of 1.50 (from one point to another) of the 68 

gridded map to cover Nigeria.  Nigeria is in West African region bordered by Benin Republic in the west, 69 

Chad and Cameroon in the east, and Niger in the north. Its coast in the south lies on the Gulf of Guinea in the 70 

Atlantic Ocean. Nigeria comprises of thirty-six states with the Federal Capital Territory in Abuja. It has a total 71 

land area of 923,768 km², populated by over 140,003,542 people [15]. The country is found in the Tropics, 72 

where the climate is seasonally damp and very humid. It is affected by four climate types; these climate types 73 
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are distinguishable, as one moves from the southern part of Nigeria to the northern part of the country through 74 

its middle belt 75 

The data used in this work is a satellite carbon dioxide (COଶ) data obtained from www.gmes-76 

atmosphere.eu/data between 2009-2012. Satellite data were used for this study because there were no ground 77 

based measured greenhouse gases in Nigeria at the time of this research. The data which were in NetCDF 78 

format were extracted, converted to binary format, sorted and merged to file using Matlab program. The data 79 

were daily data.  The interval between one point and another in the study area (Figure 2) is 1.5<sup>o</sup>, 80 

where 1<sup>o</sup> represents about 111 km 81 

 82 

 83 

 84 

 85 

 86 

 87 

 88 

 89 

Figure 1: Gridded Map Showing Data Points of the selected stations in Nigeria 90 

 91 

 92 

 93 

 94 
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Table 1: Coordinates of the selected Stations and their Data Points over Nigeria 95 

Points         Y  Latitude (oN)          X   
Longitude 

(oE) 

Stations Local 
Government Area

State 

1 4.59 5.84 Apoi Creek Southern Ijaw Bayelsa 
2 4.25 7.25 Offshore Atlantic Ocean  Atlantic Ocean 
3 5.75 5.75 Ukpe Sobo Okpe Delta 
4 5.75 7.25 Obiohoro Osu Unuimo Imo 
5 5.75 8.75 Nsarum Etung Cross River 
6 7.25 4.25 Mowo Isokan Osun State 
7 7.25 5.75 Idosale Ose Ondo State 
8 7.25  7.25 Allomo Ofu  Kogi 
9 7.25 8.75 Ahile Gboko  Benue  
10 7.25 10.25 Danjuma Ussa  Taraba 
11 7.25 11.75 Filinga Sekenoma Gashaka Taraba 
12 8.75 4.25 Alajere Moro  Kwara 
13 8.75 5.75 Pategi Pategi Kwara 
14 8.75 7.25 Kabi Kuje Abuja 
15 8.75 8.75 Arugwadu Lafia Nassarawa 
16 8.75 10.25 Ibi Ibi  Taraba 
17 8.75 11.75 Tainho Yorro Taraba 
18 10.25 4.25 Luma Borgu Niger 
19 10.25 5.75 Beri Mariga  Niger 
20 10.25 7.25 Gwagwada Chikun Kaduna 
21 10.25 8.75 Bauda Lere  Kaduna 
22 10.25 10.25 Dindima Bauchi Bauchi 
23 10.25 11.75 Pelakombo Bayo Borno 
24 10.25 13.25 Mubi Hong Adamawa 
25 11.75 4.25 Giro Suru Kebbi 
26 11.75 5.75 Bukkuyum Bukkuyum Zamfara 
27 11.75 7.25 Lugel Faskari Katsina 
28 11.75 8.75 River Armatai Dawakin Kudu Kano 
29 11.75 10.25 Galadao Katagum Bauchi 
30 11.75 11.75 Damaturu Fune Yobe 
31 11.75 13.25 Dalori Jere Borno 
32 13.25 4.25 Gudu Gudu Sokoto 
33 13.25 5.75 Kadagiwa Wurno Sokoto 
34 13.25 10.25 Nguru Yusufari Yobe 
35 13.25 11.75 Yunusari Yunusari Yobe 
36 13.25 13.25 Abadam Abadam Borno 

 96 

2.2.  Methods  97 

A total of 20 neural networks were trained; the difference between them is in the number of hidden layer 98 

neurons we applied (we varied the number of hidden layer neurons from 1 to 20). The neural network 99 

architecture used for the training was 4-20-1. The architecture comprises of three main layers; an input 100 
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layer, a hidden layer and an output layer. The available data is split into three portions: 70% for the 101 

training, 15% for validation and the remaining 15% for testing before the neural network training. The 102 

performance of the simulation was tested using root mean square error (RMSE) computed to determine 103 

the best network. MATLAB codes were used to implement the neural network algorithm for the training. 104 

In the MATLAB implementation of this algorithm, MATLAB had to normalize the data by default before 105 

presenting it as input data to the network. Normalization of the training data was done using the 106 

mapminmax processing function, which is default for the MATLAB training algorithm used in this work. 107 

The mapminmax function normalizes the training data so that inputs fall in the range (-1, 1) by mapping 108 

the minimum and the maximum values to -1 and 1, respectively [8]. 109 

 110 

There are no specific or perfect rules for deciding the most appropriate number of neurons in a hidden 111 

layer. Using an excessive number of hidden-layer neurons causes over-fitting, while a lesser number leads 112 

to under-fitting. Either scenario greatly degrades the generalization capability of the network with 113 

significant deviance in prediction and forecasting accuracy of the model [16]. Using a larger number of 114 

hidden layer neurons usually leads to better predictions (because the prediction errors will reduce) for 115 

data within the range of the training data set. If however, the same network is used to predict data outside 116 

the range of the training data set, the errors decreases, and then increase after a certain number of hidden 117 

layer neurons. We define the best network as the one that gives the least prediction error on forecasted 118 

data using root means square errors (RMSE).   119 

Equations (1) - (7) were the mathematical illustrations of the processes of the Neural Network training from 120 

input to the output of the parameter as shown in Figures 2 and 3. Thus,  121 

                        ∑ሺI୵୫ ∗  I୫  bଵሻ = nଵ    1  122 

                         fଵ (nଵ) = tansig(nଵ) = 
భି షభ

భ ା  షభ
 = Hvm     2 123 

     ∑ሺܮ௪ ௩ܪ ∗      ܾଶሻ =   nଶ      3               124 

           fଶሺnଶሻ ൌ purelinሺnଶሻ = Om      4 125 

   fଶሺnଶሻ ൌ purelin (ܮ௪ ௩ܪ ∗      ܾଶ) = nଶ ൌ Om   5 126 

  Om = Lwm * Hvm +  b2       6 127 

   Om = Lwm * (tansig(Iwm * Im + b1)) +  B2     7 128 

where I୫ is the input matrix containing inputs variables of the study (year, day of the year, latitude, 129 

longitude),  I୵୫ depict input weight matrix, b1 is bias vector one, Hvm is the hidden variable matrix, Lwm 130 

is layer weight matrix, b2 is bias vector two, Om is the output matrix, while tansig (fଵ) and purelin ሺfଶሻ 131 

were hyperbolic tangent sigmoid function used between the input and the hidden layers and linear transfer 132 

functions used from hidden layers to the output layer as activation functions.  133 
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 Figure 2: Schematic Diagram of Neural Network Training Window 147 
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 160 

 161 

Figure 3: Feed Forward Neural Network Training Structure from Input to Output 162 

The size of I୵୫ is h-by-4 because there are 4 input layer neurons. The size of  L୵୫ is 1-by-h because 163 

there is one output layer neuron. The sizes of  bଵ,  nଵ,  H୴୫, bଶ and nଶ are h x 1, h x 1, h x 1, 1 x h and 1 164 

x 1 respectively, where h is the number of hidden layer neurons. 165 

To decide an optimal number of hidden-layer neurons in this work, we simulated a system of networks, 166 

varying the number of hidden-layer neurons in the networks from 1 to 20. Finally, the performance of the 167 

simulation was tested using root mean square error (RMSE) computations as given by [3]  168 

RMSE = ටሺp െ obsሻଶതതതതതതതതതതതതത
    8 169 

where p and obs depict estimated and observed data respectively.  170 

In this work, the best network obtained using the RMSE values at the end of the training was network (net) 171 

13, that means at net 13 the best neural network model were observed.  Thus, nets 13 were employed in the 172 

model to generate the following: 173 

1. The estimated values of  CO2; 174 

2.  The plots of the spatial and temporal distributions of CO2; 175 

3.  The plots of the annual variations of the estimated and observed CO2. 176 

It is important to note that in this work, the month of January represents dry period or season, while the 177 

month of July was used to represent wet season. Furthermore, for temporal consideration, few stations in 178 

the Northern part (Dindima in Bauchi State and Damaduru in Yobe State) and Southern part (Apoi Creek in 179 

Bayelsa state) were used as case studies between the periods 2010 and 2014. 180 

4. RESULTS AND DISCUSSION  181 

The result of the simulation of a system of networks indicates net 13 (indicated by a downward arrow) as the 182 

best network of CO2.  183 
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Figure 4: Variations of the Number of hidden layer neuron with root means square errors (rmse) of 191 
 CO2. 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 Figure 5: Network Diagram of the Model 206 

Figure 5 shows the networks of the simulation from input layer through the hidden layers to the output layer.  207 

On the other hand, Figures 6 and 7 present, respectively, the plots of spatial variations in CO2 for the period of 208 

dry and wet seasons in Nigeria. The temporal variation in estimated and observed values of CO2 for Apoi 209 

Creek, Dindima and Damaturu are shown in Figures 8-9 respectively, while Figure 10 gives the trend in 210 

variation of the average annual values of both the estimated and observed CO2.  211 
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 219 

Figure 6: The spatial variations in CO2 (ppm) for dry season over Nigeria for the periods: (a) 2009 220 

(b) 2010 (c) 2011 and (d) 2012 221 
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Figure 7: The spatial variations in CO2 (ppm) for wet season over Nigeria for the periods: (a) 2009 233 

(b) 2010 (c) 2011 and (d) 2012 234 
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Figure 8: The temporal variations in carbon dioxide at Apoi Creek, Bayelsa State (4.59 oN: 5.84 oE) 246 

for the periods:  (a) 2010 (b) 2011 (c) 2012 (d) 2013 and (e) 2014 247 

 248 
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 257 

 258 

  259 

Figure 9: Temporal variations in carbon dioxide at Damaturu, Yobe State (11.75 oN: 11.75 oE) for 260 
the periods: (a) 2010 (b) 2011 (c) 2012 (d) 2013 and (e) 2014 261 
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Figure 10:  The yearly variations of estimated and observed value of Carbon dioxide. 267 

The dry season distribution of CO2 in Nigeria between 2009 and 2012 (fig. 6 (a – d)) shows a trend where 268 

by in 2009, high CO2 concentration (378.5 – 380.5 ppm) were identified with stations in the South and 269 

South-West. By 2010 and 2011, the concentration of CO2 shifted to about two-third of the locations in 270 
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Nigeria with more predominance in the Eastern part of the country. Surprisingly, by 2012, the 271 

concentration of CO2 has increased in all parts of the country. This implies that the trend in variation of 272 

dry season CO2 in every part of the country is on yearly bases. This trend of increase of CO2 is supported 273 

by [13] who suggests that human activities cause emissions of greenhouse gases such as CO2 into the 274 

atmosphere, thereby causing climate change and unpredictable weather conditions in the world. 275 

In the wet season, the concentration of CO2 in Nigeria is not as much as it is in the dry season case (fig. 7 276 

(a – d)), probably due to absorption of the gas by precipitation. It is interesting to also note that CO2 277 

concentrations from Figure 7 (a – d) are higher in the Northern parts of Nigeria which could be due to 278 

heavy rain in the South. In Figures 6 and 7, therefore, show that during wet seasons we have lower 279 

concentrations of CO2 in South, while the higher concentration occur in the North-East during the dry 280 

season for 2010 and 2011. The reverses were the case in 2009 during dry seasons, while in 2012 the 281 

concentrations were all over Nigeria. In wet season, the highest concentration of carbon (iv) oxide occurs 282 

in the North, while the lowest occurs in the South. This could be as a result of heavy rain fall occurring in 283 

the Southern part of Nigeria during the periods under study, implying that rain washes away carbon (iv) 284 

oxide from the atmosphere.  285 

From Figures 8 and 9, it could be observed that the signatures of the estimated and observed CO2 vary in 286 

similar manner with lowest values occurring between days 150-300 (May-August). This reveals high 287 

performance and accurate estimations of the model. This agrees with [3, 7, 10]. Neural network model, 288 

therefore, can be used to estimates carbon dioxide and other atmospheric parameters if equipment for in-289 

situ measurements is not available. Figure 10 reveals that concentrations of carbon dioxide increase 290 

significantly between 2009 – 2014 in Nigeria with the observed and estimated varies showing the same 291 

trend. The increase in carbon dioxide concentrations suggest that contribution of human activities to 292 

carbon dioxide concentration in Nigeria were continuous and are becoming alarming. This agrees with [5, 293 

17], who stated that atmospheric concentrations of greenhouse gases, which include carbon dioxide and 294 

methane, were increasing daily in Nigeria, mainly due to human activities, such as use of fossil fuel.  295 

This increase reveals high contributions of CO2 to climate change and global warming in Nigeria. This 296 

contribution in Nigeria if left unchecked will cause adverse effects on livelihoods, such as crop production, 297 

livestock production, fisheries, forestry and post-harvest activities, because the rainfall regimes and 298 

patterns will be altered, floods which devastate farmlands would occur. It will also result to increase in 299 

temperature and other natural disasters like floods, ocean and storm surges, earth tremors which not only 300 

damage Nigerians' livelihood but also cause harm to life and property. 301 

 302 

 303 



 

12 
 

5.  Conclusion  304 

The investigation on the spatial and temporal distributions of CO2 has been carried out in Nigeria using 305 

Neural Network model. The spatial variations of CO2 reveal that the least concentration occurs in the 306 

South, while the highest concentration occurs in the North-East during the dry season for 2010 and 2011. 307 

The reverses were the case in 2009 during dry seasons, while in 2012 the concentrations were all over 308 

Nigeria. In wet season, the highest concentration of carbon dioxide occurred in the North, while the lowest 309 

occurred in the South. This could imply that heavy rain fall occurring at the Southern part of Nigeria 310 

during wet periods has the ability of washing out carbon dioxide from the atmosphere. The result obtained 311 

suggests that neural networks model performance proved an efficient and useful tool in modeling the 312 

greenhouse gases. The yearly variations show continuous increase of CO2 in Nigeria. This contribution in 313 

Nigeria if left unchecked will cause adverse effects on livelihoods. It will also result to increase in 314 

temperature and other natural disasters like floods, ocean and storm surges, earth tremors which not only 315 

damage Nigerians' livelihood but also cause harm to life and property. Finally, we recommend that more 316 

years and points location should be used to investigate carbon dioxide distribution in Nigeria. Again, 317 

mitigation of carbon dioxide emission in Nigeria should also be carried out. 318 

 319 
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