
 

1 
 

Original Research Article 1 

 2 

A NEW SMOOTHING METHOD FOR TIME SERIES DATA IN THE 3 

PRESENCE OF AUTOCORRELATED ERROR 4 

 5 

Abstract 6 

Spline Smoothing is used to filter out noise or disturbance in an observation, its performance 7 

depends on the choice of smoothing parameters. There are many methods of estimating 8 

smoothing parameters; most popular among them are; Generalized Maximum Likelihood 9 

(GML), Generalized Cross-Validation (GCV), and Unbiased Risk (UBR), this methods tend to 10 

overfit smoothing parameters in the presence of autocorrelation error. A new Spline Smoothing 11 

estimation method is proposed and compare with three existing methods in order to eliminate the 12 

problem of over fitting associated with the presence of Autocorrelation in the error term. It is 13 

demonstrated through a simulation study performed by using a program written in R based on 14 

the predictive Mean Score Error criteria. The result indicated that the predictive mean square 15 

error (PMSE) of the four smoothing methods decreases as the smoothing parameters increases 16 

and decreases as the sample sizes increases. This study discovered that the proposed smoothing 17 

method is the best for time series observations with Autocorrelated error because it doesn’t over 18 

fit and works well for large sample sizes. This study will help researchers overcome the problem 19 

of over fitting associated with applying Smoothing spline method time series observation. 20 

Key words: Autocorrelation, Generalized Maximum Likelihood, Generalized Cross-Validation, 21 

Splines Smoothing, Time series and Unbiased Risks.  22 
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1.0 Introduction 24 

In non-parametric regression, smoothing is of great importance because it is used to filter out 25 

noise or disturbance in an observation; it is commonly used to estimate the mean function in a 26 

nonparametric regression model, it is also the most popular methods used for prediction in non-27 

parametric regression models.  The general spline smoothing model is given as: 28 
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                                                                     (1)  29 

Where; Yi is the observation values of the response variable y, f is an unknown smoothing 30 

function, Xi is the observation values of the predictor variable x and εi is normally distributed 31 

random errors with zero mean and constant variance. 32 

The main objective of this research is to estimate f (.) when x i= ti but not necessarily equally 33 

spaced, with t1 < . . . < tn (time) and εi is assumed to be correlated. Diggle and Hutchinson 34 

(1989). Therefore, this research shall consider the spline smoothing for non-parametric 35 

estimation of a regression function in a time-series context with the model; 36 
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Where; Yi = observation values of the response variable y, f = an unknown smoothing function, ti 38 

is the time for i = 1 . . . n, eti = zero mean autocorrelated stationary process. 39 

Smoothing spline arises as the solution to a nonparametric regression problem having the 40 

function f(x) with two continuous derivatives that minimizes the penalized sum of squares 41 

                                                    
 

              
 
                                                    

 

 

 

   

 

Where;  denotes a smoothing parameter, the smoothing parameter   represents the rate of 42 

exchange between residual error and roughness of the curve f, the parameter λ controls the trade-43 

off between goodness-of-fit and the smoothness of the estimate. If λ is 0 then       simply 44 
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interpolates the data, if λ is very large, then        will be selected so that        is everywhere 45 

0, which implies a globally linear least-squares fit to all data. Wahba et.al (1995). There is the 46 

need to tackle the problem associated with estimating the best spline smoothing methods for time 47 

series observation in the presence of correlational error. Diggle and Hutchinson (1989). 48 

There are vast literatures on Spline Smoothing modeling of time series data in the presence 49 

autocorrelated error; Diggle and Hutchinson (1989), Yuedong (1998), Yuedong et. al. (2000), 50 

Opsomer, Yuedong and Yang (2001), Wahba et. al. (1995), Carew et. al (2002), Hall and 51 

Keilegom (2003), Francisco-Fernandez and Opsomer (2005), Hart and Lee (2005), Krivobokova 52 

and Kauermann (2007), Shen (2008), Kim, Park, Moon, and Kim (2009), Morton et.al. (2009), 53 

Wang, Meyer and Opsomer (2013), Adams, Ipinyomi and Yahaya (2017) Chen and Huang 54 

(2011).  55 

The aim of this study is to propose a new smoothing method (PSM) by modifying two of the 56 

existing spline smoothing methods (i.e. the Generalized Cross Validation (GCV) and Unbiased 57 

Risk (UBR)) and compare it with three existing estimation methods namely; Generalized 58 

Maximum Likelihood (GML), Generalized Cross Validation (GCV) and Unbiased Risk (UBR) 59 

for time series observations in the presence of Autocorrelated error in order to eliminate the 60 

problem of over fitting associated with the presence of Autocorrelation in the error term. Section 61 

one presents the introduction to the study. Section two reviews the existing spline smoothing 62 

method and the proposed selection method, Section 3 presents the Monte Carlo simulation study, 63 

equation used for generating values in simulation and experimental design and data generation, 64 

section four compares the four methods via a simulation study, and finally, the result discussion 65 

and conclusion were presented in last section. 66 

2.0: Parameter Estimation 67 
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2.1: Generalized Cross-Validation (GCV) with Autocorrelation Structure 68 

The term generalized cross-validation (GCV) was coined by Wahba (1977) and was applied by 69 

Hastie and Tibshirani, (1999), Aydin and Memmedli (2011). Diggle and Hutchinson (1989) and 70 

Wahba (1983) introduced the Autocorrelation structure in GCV, this is given as;                                                                                                                          71 

                   72 

                                                          
                   

                
                                                           

                    73 

Where; (Sλ) = the ith diagonal element of smoother matrix, W = V-1 = [vij], the correlation 74 

structure, y = (yl, . . . ,yn)
T
 and f = (f(t1) ,. . . ,f(tn))T  75 

2.2: Generalized Maximum Likelihood (GML) Estimation Method with Autocorrelation 76 

Structure 77 

The Generalized Maximum Likelihood (GML) estimation method is an empirical Bayes type 78 

criteria developed by Wecker and Ansley (1983) and Wahba (1985) while Yuedong (1998) 79 

proposed the GML methods for correlated observations with one smoothing parameter given by; 80 

                                         
           

               
 

   

                                                                             

 Where; det 
+
 (I – Sλ) is the product of the n – m nonzero eigenvalues of (I – Sλ), λ is Smoothing 81 

parameter, w is the correlation structure, Sλ is the diagonal element of smoother matrix, n is n1 + 82 

n2, Pairs of measurement/observations and m is number of zero eigenvalues. 83 

2.3: Unbiased Risk (UBR) Estimation Method with Autocorrelation Structure 84 

The UBR method or CP criterion was suggested by C.L. Mallows’ (1973) and had been applied 85 

successfully by Craven and Wahba (1979), Gu (1992); Wahba, Wang, Gu (1995); Klein, and 86 

Klein (1995) and (Wang, 1998), but Yuedong (1998) provides UBR method with a known 87 
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Autocorrelation structure for selecting smoothing parameters for spline estimates with non-88 

Gaussian data. It is written as; 89 

                                             

 
   

 
           

 

  
 
                  

                                                        

                   90 

Where; n is pairs of measurement/observations {xi,yi}, W is the correlation structure, λ is 91 

Smoothing parameters, Sλ = is the ith diagonal element of smoother matrix. 92 

2.4 Proposed Smoothing Method (PSM) with Autocorrelation Structure 93 

A Spline Smoothing model is defined as 94 
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xfy                                                                   (7) 95 

Where; Y is the variable of interest, X is vector of the predictor variable, f is Regression function 96 

and  is error term. There is a number of option to consider when model (7) above is to be used 97 

in order to take care of non-linearity, they include; Data transformation, additive terms e.g. 98 

quadratic or cubic term and Spline smoothing. This study is interested in Spline Smoothing 99 

because it considers non-linearity based on the regression curve by introducing a kink or bends 100 

in the Ŷ , this kinks is produced by hinge function and the point of bend on the fit is called knots. 101 

Spline Smoothing is simpler to plot and easy to interpret when the relationship is between y and 102 

(x, x
2
). The number of knots is denoted by  , model (7) above can also take the form; 103 
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2

1211  (Polynomial regression)                   (8) 104 

The main purpose of the conversional regression analysis is to minimize the residual Sum of 105 

Square (RSS), if RSS is used to compare regression models, the largest model would be chosen 106 

even though its not the best model. It is worthy to note that in Spline Smoothing, a method of 107 
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selection known as Cross Validation (CV) was proposed by Wahba (1979). In place of RSS in 108 

the conventional simple regression analysis, the error term is therefore defined as; 109 
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Recall that; 112 
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 for the fitted value when a number of knots are 113 

introduced 114 

Then; 115 
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Cross Validation method is defined in terms of variance, thus; 117 
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 118 

The main of this proposed selection method was to minimize the variance as much as possible in 119 

order to have a precise estimate of the parameter of interest, 120 

Where; 121 


S is smoothen matrix, it is the squared diagonal matrix and its diagonal entries are denoted by 122 

  TI
xnxxxS

1
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And; 124 
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Recall that;  126 

                                                                                                                                             

Where; I is an identity matrix and               is a squared matrix with diagonal entries127 
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Remember that )(
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 , CV selection method is therefore given as; 129 
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 131 

Since the Euclidean distance makes use of the summation and trace of a matrix, a new spline 132 

smoothing selection method was proposed by Wahba (1979) called Generalized Cross Validation 133 

(GCV) defined as; 134 
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135 

GCV uses additives operation by considering Euclidean distance and trace of a matrix 136 
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 137 

Using Multiplicative operations, another Spline Smoothing selection method was proposed by 138 

Wahba (1976) called Generalized Maximum Likelihood (GML) defined as  139 
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Where; M is number of zero eigenvalues, n – m = non-zero eigenvalues of (1 – Sλ) for correlated 141 

error terms such as   12 
 w . Where; W = the correlation structure 142 

GML becomes modified as 143 
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144 

To extend GCV, Unbiased Risk method was proposed with correlation structure; 
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And from equation (15), GCV method for estimating spline smoothing (λ) in the presence of 

146 

autocorrelation structure was given by, 

147 

                         
                   

           
                                                                                          

      

 

148 

A new Spline Smoothing estimation method is proposed to allow for the presence of correlation 149 

structure when UBR (19) and GCV (20) methods were modified when k is set as 1, as seen 150 

below;
 

151 

Combining equations (19) and (20) and substituting k = 1,           
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 Now the behavior of the minimize λ in GCV and UBR methods under the substituted value of k 153 

= 1 yield.  154 

          

        
 

          

                

 
   

 
 

        
 

 
 
                   

 

                                                                                                    

Factorizing equation (22) 155 

          

        
 

          

                

 
   

 
 

        
 

 
 

 

                

                                                                                                        

The Proposed Smoothing Method (PSM) we derived is the minimizer of V (λ) given by 

156 

          
        

 
          

                
  

 
 

 

                

 
   

 
 

        
                                                             

          
 

 
  

 

        

 

          

 
 

  
 
 

        
                                                                                               

 

          

 
         

 

          

  
 
 

        
                                                                                                     

 
Where; n is Pairs of observations, λ is the Smoothing parameter, W and         

 
           157 

are the Autocorrelation structures and Sλ is the diagonal element of smoother matrix. 158 

3.0 Material and method 159 

3.1 Equation used for generating values in simulation 160 



 

10 
 

A simulation study is conducted to evaluate and compare the performance of the four estimation 161 

methods presented in previous sections. The model considered is    162 

                                       
     

 
                                                                                

 Where; ε’s are generated by a first-order autoregressive process AR (1) with mean 0, standard 163 

deviations 0.8 and 1.0 and first-order correlations (i.e. ρ = 0.2, 0.5 and 0.8) and its 95% Bayesian 164 

confidence interval. Wahba, (1983) and Diggle, (1989). 165 

3.2 Experimental design and data generation 166 

The experimental plan applied in this research work was designed to have three time series 167 

sample Sizes (T) of 20, 60 and 100, three autocorrelation levels, i.e.    = 0.2, 0.5 and 0.8, four 168 

smoothing functions were considered i.e. λ = 1, 2, 3 and 4, two standard deviation were 169 

considered, i.e. σ = 0.8 and 1.0. The data were generated for 1000 replications for each of the 170 

722433  combinations of cases n, , λ, and σ. The criterion used is the PMSE values to 171 

evaluate 


f̂ computed according to each of the estimation given as;  172 

                                                     

 

   

 

                                                                        

The Predictive Mean Square Error can be divided into two terms, the first term is the sum of 173 

square biases of the fitted values while the second is the sum of variances of the fitted values. 174 

Where;       is the observed value and        = fitted/predicted/estimated value. Aydin, 175 

Memmedli and Omay (2013). Simulation study was performed by using a program written in R, 176 

it was used to estimate all the model parameters, the criterion, the effect of autocorrelation on the 177 

estimated parameters and the performances of the four estimation methods i.e. Generalized 178 
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Maximum Likelihood (GML), Generalized Crossed Validation (GCV), Unbiased Risk (UBR) 179 

and the Proposed Smoothing Method (PSM). 180 

4.0 Result 181 

In this study, the results of the proposed Spline smoothing estimation method was compared with 182 

three existing estimation methods namely; the Generalized Cross-Validation, Generalized 183 

Maximum Likelihood and Unbiased Risks, the Predictive mean square errors criterion was used 184 

to measure their efficiency.  185 

4.1. Performance of the four smoothing methods based on predictive mean square error 186 

        criterion when σ = 0.8. 187 

Table one presents the predictive mean square error for the four estimators, three sample sizes, 188 

four spline smoothing levels and three correlation error levels at 0.8 sigma level. It was 189 

discovered that for GCV and for sample size 20 the predictive mean square error of 4.938284 at 190 

λ = 1, decreases to 2.789043 at λ = 2 and further decreased to 2.018062 when λ = 4. The 191 

predictive mean square error increases as the level of autocorrelation increases from 4.938284 192 

when α = 0.2 to 5.735483 when α = 0.5 and to 5.70041 when α = 0.8 for smoothing function (λ) 193 

= 1 and sample size = 20. It was also discovered that the predictive mean square error decreases 194 

as the sample size increases; at n = 20 the PMSE decreased from 4.938284 to 1.353605 at n = 60 195 

and further deceases from 1.353605 to 0.394855 at n = 100 and for smoothing function (λ) = 1.  196 

The predictive mean square error (PMSE) of GML decreases from 3.788134 at λ = 1, to 197 

3.624478 at λ = 3 and then decreased to 3.615046 at λ = 4. At sample size 20 the predictive mean 198 

square error is 3.902353, it decreased to 2.328352 as the sample size increased to 60 and further 199 

decreased to 2.314015 as the sample size increased to 100. It is noticed that the PMSE of GML 200 

increases from 2.638143 to 2.804273 as the autocorrelation error level increases of 0.2 to 0.5, but 201 
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decreases from 2.804273 to 2.625861 as the autocorrelation level increases from 0.5 to 0.8. For 202 

all the other increase in autocorrelation error levels, the PMSE increased correspondingly, thus 203 

there is efficiency in GML. For the Proposed Smoothing Method (PSM), it was discovered that 204 

the predictive mean square error increases as the autocorrelation level increases and decreases as 205 

the sample size increases. At sample size 20 the predictive mean square error of 4.208490 at λ = 206 

2 decreases to 4.202272 at λ = 3 and further decreases to 3.615946 when λ = 4. The predictive 207 

mean square error of PSM decreases as the sample size increases, for λ = 1 and autocorrelation 208 

level of 0.2. PSM decreased from 4.188747 at sample size = 20 to 2.853925 at sample size 60 209 

and further decreased to 2.287803 at sample size 100. The predictive mean square error of PSM 210 

increases from 2.853925 to 1.822216 as the autocorrelation error level increases of 0.2 to 0.5 for 211 

sample size is 60 and increases from 1.822216 and 1.812007 as the autocorrelation error level 212 

increases of 0.5 to 0.8 for sample size is 60. The predictive mean square error for UBR increases 213 

as the autocorrelation level increases and decreases as the smoothing levels and sample sizes 214 

increase. At sample size 20 the predictive mean square error of 3.777261 at λ = 1, decreases to 215 

3.469432 at λ = 2, decreases to 3.416732 at λ = 3 but increased slightly to 3.98581 when λ = 4. 216 

The predictive mean square error of UBR decreases as the sample size increases, for λ = 2 and 217 

autocorrelation level of 0.5, UBR decreases from 3.469432 at sample size = 20 to 1.88788 at 218 

sample size 60 and further decreased to 1.431244 at sample size 100. The predictive mean square 219 

error of UBR increases from 3.416732 to 3.526772 as the autocorrelation error level increases of 220 

0.2 to 0.5 for sample size is 20 and increases from 3.526772 and 3.611808 as the autocorrelation 221 

error level increases of 0.5 to 0.8 for sample size the same sample size. 222 

Table 1: The MSE result of the simulated study for GML, GCV, PSM and UBR in the presence of 223 
                 autocorrelation ( ) = 0.3, 0.5 and 0.8 for n = 20, 60 and 100 when standard deviation (σ) = 0.8 224 

                                                                               PMSE 

N = 20  N = 60  N = 100 

Λ Smoothing 
Methods 

 
ρ= 0.2 

 
ρ= 0.5 

 
ρ= 0.8 

 
ρ= 0.2 

 
ρ= 0.5 

 
ρ= 0.8 

 
ρ= 0.2 

 
ρ= 0.5 

 
ρ= 0.8 
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λ = 1 GCV 

GML 

PSM(k=1) 

UBR 

4.938284 

3.788134 

4.188747 

3.777261 

5.735483 

3.902353 

1.977449 

2.810875 

5.700411 

4.557857 

2.05909 

1.449087 

 1.353605 

2.328352 

2.853925 

2.101405 

3.179886 

2.429546 

1.822216 

2.317046 

5.817303 

2.625861 

1.812007 

1.118518 

 0.394855 

2.314015 

2.287803 

1.913073 

4.190077 

2.836043 

1.573442 

2.079789 

4.753061 

2.438085 

1.605743 

0.841755 

λ = 2 GCV 

GML  

PSM(k=1) 

UBR 

2.789043 

2.638143 

4.208498 

3.469432 

3.755684 

2.804237 

2.018938 

2.506771 

5.368908 

1.300494 

2.105152 

1.017353 

 1.123143 

2.19448 

2.823294 

1.88788 

1.374032 

2.018002 

1.879530 

1.616574 

4.406313 

1.027948 

1.778426 

1.230349 

 0.341562 

2.040446 

2.287803 

1.431244 

2.96876 

1.334802 

1.573403 

0.220508 

3.188995 

0.171129 

1.200836 

1.532589 

λ = 3 GCV 

GML 

PSM(k=1) 

UBR 

3.175146 

3.624478 

4.202272 

3.416732 

3.507623 

3.802802 

2.025768 

3.526772 

4.218419 

4.263339 

2.112142 

3.611808 

 2.472227 

2.094332 

1.816911 

1.857928 

1.730359 

2.958588 

0.175471 

2.525618 

1.456264 

2.996486 

1.765224 

2.564013 

 0.334902 

1.990265 

1.531958 

1.361115 

0.815361 

2.22264 

0.467133 

1.866935 

1.992452 

0.8030926 

0.124897 

3.321139 

λ = 4 GCV 

GML 

PSM(k=1) 

UBR 

2.018062 

3.615946 

4.11762 

3.398581 

3.42688 

2.800514 

2.028096 

3.512612 

2.169436 

1.250932 

2.114477 

4.927715 

 1.094332 

2.175146 

1.814626 

1.857928 

0.173144 

1.938749 

1.701375 

1.94582 

2.74644 

5.985579 

1.760514 

3.615934 

 0.332736 

1.973208 

1.500005 

1.337717 

2.765412 

1.984518 

1.430172 

1.815722 

2.928445 

5.983278 

1.098286 

3.257353 

Table two presents the predictive mean square error for the four estimators, three sample sizes, 225 

four spline smoothing levels, three correlation error levels and at 1.0 sigma level. It was 226 

discovered that for GCV, at α = 0.5 and sample size 20 the predictive mean square error of 227 

2.217985 at λ = 1, decreases to 2.038837 at λ = 2, decreases to 1.975886 at λ = 3 and further 228 

decreased to 0.873763 when λ = 4. The predictive mean square error increases as the level of 229 

autocorrelation increases from 2.217985 when α = 0.2 to 4.652218 when α = 0.5 and to 5.219997 230 

when α = 0.8 for smoothing function (λ) = 1 and sample size = 20. It was also discovered that for 231 

smoothing function (λ) = 2, the predictive mean square error decreases as the sample size 232 

increases; at n = 20 the PMSE decreased from 2.038837 to 1.036064 at n = 60 and further 233 

deceased to 0.106917 at n = 100.  234 

The predictive mean square error (PMSE) of GML decreases as the smoothing parameter 235 

increases. For small sample size and at α = 0.8, the predictive mean square error decreased from 236 

1.460676 at λ = 1 to 1.191663 at λ = 2 then decreases to 1.152826 at λ = 3 and further decreased 237 
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to 1.139958 at λ = 4. The predictive mean square error of GML decreases as the as the sample 238 

size increases. At sample size 20 the predictive mean square error is 1.402249, it decreased to 239 

1.285324 as the sample size increased to 60 and further decreased to 0.917754 as the sample size 240 

increased to 100. It is noticed that the predictive mean square error of GML increases from 241 

1.344602 to 2.150393 as the autocorrelation error level increases of 0.2 to 0.5, and increases 242 

from 2.150393 to 2.723054 as the autocorrelation level increases from 0.5 to 0.8. Thus there is 243 

efficiency in GML, but it was observed that predictive mean square error decreased as the 244 

autocorrelation error level increases. 245 

For the Proposed Smoothing Method (PSM), it was discovered that the predictive mean square 246 

error decreases as the autocorrelation level, smoothing parameter and sample size increases. At 247 

sample size 20 the predictive mean square error of 4.188747 at λ = 1 increased to 4.208498 at λ 248 

= 2 but decreases to 4.02272 when λ = 3 and further decreases to 4.117621 when λ = 4. The 249 

predictive mean square error of PSM decreases as the sample size increases, for λ = 2 and 250 

autocorrelation level of 0.2. PSM decreased from 1.706005 at sample size = 20 to 1.337262 at 251 

sample size 60 and further decreased to 1.111343 at sample size 100. The predictive mean square 252 

error of PSM decreases from 1.9762941 to 1.878994 as the autocorrelation error level increases 253 

of 0.2 to 0.5 for sample size is 20 and further decreases  from 1.878994 to 1.62727 as the 254 

autocorrelation error level increases of 0.5 to 0.8 for sample size is 20.  255 

The predictive mean square error for UBR increases as the autocorrelation level decreases as the 256 

smoothing level and sample size increases.  257 

At sample size 20 the predictive mean square error of 3.946115 at λ = 1, decreases to 2.285086 258 

at λ = 2 to 2.166318 at λ = 3 and further decreases to 1.259853 when λ = 4. The predictive mean 259 

square error of UBR decreases as the sample size increases, for λ = 4 and autocorrelation level of 260 
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0.8, UBR decreases from 2.549091 at sample size = 20 to 2.412688 at sample size 60 and further 261 

decreased to 1.540203 at sample size 100. The predictive mean square error of UBR increases 262 

from 2.166318 to 2.202126 as the autocorrelation error level increases of 0.2 to 0.5 for sample 263 

size is 20 and increases from 2.202126 to 2.563679 as the autocorrelation error level increases of 264 

0.5 to 0.8 for sample size the same sample size, but it was observed that predictive mean square 265 

error decreased as the autocorrelation error level increases. 266 

Table 2: The MSE result of the simulated study for GML, GCV, PSM and UBR in the presence of autocorrelation ( ) =  267 
                0.3, 0.5 and 0.8 for n = 20, 60 and 100 when standard deviation (σ) = 1.0  268 

   PMSE 

N = 20  N = 60  N = 100 

Λ Smoothing 

Methods 

 

α = 0.2 

 

α = 0.5 

 

α = 0.8 

  

α = 0.2 

 

α = 0.5 

 

α = 0.8 

  

α = 0.2 

 

α = 0.5 

 

α = 0.8 

λ = 1 GCV 

GML 

PSM(k=1) 

UBR 

2.217985 

1.402249 

1.9762941

3.946115 

4.652218 

2.213838 

1.878994 

2.170123 

5.219991 

2.854191 

1.62727 

2.854018 

 1.5079261 

1.285324 

1.681525 

3.477279 

3.032906 

2.424851 

1.655205 

1.895938 

3.355379 

2.860878 

2.622758 

1.904192 

 0.109678 

0.917754 

1.625184 

0.715411 

0.205153 

1.498209 

1.060796 

1.410622 

4.068174 

1.460676 

1.814121 

1.391461 

λ = 2 GCV 

GML  

PSM(k=1) 

UBR 

2.038837 

2.353263 

1.706005 

2.285086 

1.550266 

2.159928 

1.883573 

2.043898 

2.357644 

2.742754 

1.512748 

2.606053 

 1.036064 

1.61744 

1.337262 

1.686028 

3.064901 

1.745815 

1.815278 

1.615925 

3.686213 

1.801702 

1.258637 

1.94976 

 0.106917 

0.916592 

1.111343 

0.715436 

0.204841 

1.484834 

1.555058 

0.391479 

2.641265 

1.191663 

0.824054 

1.213843 

λ = 3 GCV 

GML 

PSM(k=1) 

UBR 

1.975886 

1.344602 

1.691873 

2.166318 

2.465147 

2.150393 

1.799777 

2.202126 

2.230474 

2.723054 

1.490825 

2.563679 

 1.106586 

2.376657 

1.289702 

1.335866 

1.865407 

1.703152 

1.65212 

2.149228 

1.493562 

1.747526 

1.185653 

2.283664 

 0.914299 

0.916174 

1.188291 

0.715459 

1.204822 

0.482901 

1.786081 

0.388746 

1.462472 

1.152826 

1.525496 

1.832608 

λ = 4 GCV 

GML 

PSM(k=1) 

UBR 

0.873763 

1.341634 

1.686857 

1.259853 

1.437364 

2.147087 

1.794844 

2.014616 

2.188967 

2.716225 

1.483121 

2.549091 

 0.106479 

1.296255 

1.2739570

1.221922 

2.800442 

2.050446 

1.659382 

1.578077 

1.430831 

1.895078 

1.159813 

2.412688 

 0.956241 

0.916018 

1.104291 

0.715468 

0.204817 

0.482256 

1.454671 

0.387835 

1.404276 

1.139858 

1.259721 

1.540203 
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 269 

                        (a)                                      (b)                                       (c)                                          (d) 270 
Figure 1: Plots of the observations (. . .) and Estimates (---) With Smoothing Parameters Chosen by GCV (a), GML (b), PSM (c), and UBR (d) 271 
for n = 20 272 

 273 
                       (a)                                         (b)                                        (c)                                           (d) 274 
Figure 2: Plots of the  Observations (. . .) and Estimates (---) With Smoothing Parameters Chosen by GCV (a), GML (b), PSM (c),and UBR 275 
(d) for n = 60 276 

 277 

                     (a)                                         (b)                                             (c)                                     (d) 278 
Figure 3: Plots of the  Observations (. . .) and Estimates (---) With Smoothing Parameters Chosen by GCV (a), GML (b), PSM (c),and UBR 279 
(d) for n = 100 280 
. 281 
             282 
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 283 
Figure 4: The plot of the GML, GCV, PSM and UBR of the MSE of the simulated study in the presence of autocorrelation when σ = 1, ρ = 284 
0.2 and n = 20 285 
 286 

 287 

Figure 5: The plot of the GML, GCV, PSM and UBR of the MSE of the simulated study in the presence of autocorrelation when σ = 1, ρ = 288 
0.2 and n = 60 289 

 290 

Figure 6: The plot of the GML, GCV, PSM and UBR of the MSE of the simulated study in the presence of autocorrelation when σ = 1, ρ = 291 
0.2 and n = 100 292 
 293 
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Figure 1 and 5 presents the predictive mean square error estimates of GCV, GML, PSM and in 294 

1000 replications. From these plots we can see that the PSM and UBR estimates have small 295 

PSMEs compare with GCV and GML. We conclude that all four methods estimate the 296 

smoothing parameters and the functions well but the PSM and UBR provide better estimates than 297 

GCV and GML in terms of mean-square error. The PSM method is more stable when the sample 298 

size is small, such as when N = 20 while UBR method performs slightly better when N = 60. In 299 

this case there were several replications where GCV and GML providing more estimates of 300 

smoothing parameters which lead to undersmoothing of the data. This behavior of the GCV 301 

method was investigated in Wahba and Wang (1993) and Wang (1998).  302 

Table 3: Summary of the predictive mean square error and ranks of the smoothing 303 

               methods in the presence of autocorrelation error 304 

Autocorrelation                              Smoothing method 

levels GCV GML PSM (k=1) UBR 

α = 0.2  

α = 0.5  

α = 0.8  

1.08 

1.89 

2.63 

1.39 

1.71 

1.99 

1.47 

1.66 

1.27 

1.63 

1.48 

2.09 

Grand mean 

Rank 

1.87 

4 

1.70 

2 

1.47 

1 

1.73 

3 

 305 

Table 4: Summary of the predictive mean square error and ranks of the smoothing 306 

   methods based on sample size 307 

Sample                           Smoothing method 

size GCV GML PSM (k=1) UBR 

n = 20  

n = 60  

n = 100  

2.434 

2.041 

1.124 

2.179 

1.900 

1.047 

1.711 

1.549 

1.145 

2.326 

1.921 

0.951 

Grand mean 

Ranks 

1.867 

4 

1.709 

2 

1.468 

1 

1.732 

3 

 308 

5.0 Conclusion 309 

In this study, Spline smoothing estimation method for time series observations in the presence of 310 

Autocorrelated errors were compared based on three sample sizes. The simulation result under 311 
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the finite sampling properties of PMSE criterion shows that all smoothing methods were 312 

consistent but adversely affected by the presence of Autocorrelation in the error term, the 313 

smoothing methods ranks as follows, PSM, GML, UBR and GCV. The result suggested that 314 

PSM should be preferred when Autocorrelation level is mild and high (α = 0.5 – 0.8) and for low 315 

Autocorrelation levels in the observations, (i.e. α = 0.2 – 0.5) the Unbiased Risk (UBR) should 316 

be considered. It was also observed that GCV and GML were mostly affected by the presence of 317 

Autocorrelation and therefore had an asymptotically similar behavioural pattern. The study also 318 

discovered that the Proposed Smoothing method is preferred mostly at the large sample size and 319 

the proposed Smoothing method do not over fit, as shown in the figures above.  320 
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