
 

 

 
 
Theoretical verification of formula for charge function in time q = c * v 
in RC circuit for charging/discharging of fractional & ideal capacitor 

 

 
 

Abstract 
In this paper we apply the newly developed charge storage expression as a function of time i.e. via 
convolution operation of time varying capacity function and applied voltage function to a capacitor 
i.e. q = c* v. This new formula is different to usual and conventional way of writing capacitance 
multiplied by voltage to get charge stored in a capacitor i.e. q = cv. We apply this new formula to RC 
circuit as charging/discharging the capacitors (ideal and fractional ones) via constant dc voltage or 
current sources. This paper gives validity of usage of this new formula in RC circuits. 
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1. Introduction 
This is continuation of our earlier deliberations regarding verification of the new 
formula q(t) c(t)* v(t) ; [1], [40]. This paper is from deliberations regarding usage of this 
formula in Project: Design & Development of Power-packs with Aerogel Supercapacitors & 
Fractional Order Modeling BRNS Santion No. 36(3)/14/50B/2014-BRNS/2620 dated 11.03.2015; 
where we wish to use this new developed formula.  
 
The voltage change when appears at a capacitor, it reacts or relaxes via relaxation current. The 
time varying capacity function c(t)  is the one that defines the response function; and by 
principle of causality [1] we write q(t) c(t)* v(t)  where v(t)  is the input impressed voltage. 
This is different to usual formula q(t) c(t)v(t) . This new formulation is deliberated in detail 
with c(t) as for ideal loss less capacitor case, as well as time varying capacity function (fractional 
capacitor case) in [1]. The capacity function c(t) is the function which decays with time, and has 
the form -αc(t) t ; 0 1   and acts only at the time of application of voltage change. For ideal 
case of loss-less capacitor the capacity function is c(t) (t)  ; [1]. In this paper we will always 
take the power-exponent of power-law of decaying capacity function i.e.  as between zero and 
one, i.e. 0 1   . This power-law decay function is in singular at origin and is in tune with 
singular power law decay relaxation current given by Curie-von Schweidler (universal law) of 
dielectric relaxation [2]-[5]. In this universal dielectric relaxation law, the relaxing current is a 
decaying power-law as i(t) t , when uncharged system of dielectric is stressed by a constant 
voltage. The use of this universal dielectric relaxation law gives current voltage relation of a 
capacitor as given by fractional derivative [6]-[10]. The non-singular decaying function gives all 
together different form of current voltage relations in capacitor is discussed in [11], [38]. The use 
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of non-singular kernel in integration for the formula for fractional derivative and application is 
developing topic. This concept is used and studied in pioneering works [23]-[36], for several 
dynamic systems.   
 
Here we are taking singular function c(t) as ‘time varying capacity function’, as because the 
same gets derived from basic universal dielectric relaxation law i(t) t of Curie-von 
Schweidler [1]. In this paper we will take capacitor with time varying capacity function 
c(t) C t (i.e. a fractional capacitor), and will use the formula [1], where the voltage 
excitation v(t) is applied at time t = 0 to an uncharged capacitor 

t t

0 0
q(t) c(t)*v(t) c(t )v( )d c( )v(t )d             

With this new formula q(t) c(t)* v(t)  applied we discuss various cases of q(t)  i.e. charge 
stored in capacitor and i(t) , the circuital current etc. for RC charging/discharging circuit with 
ideal capacitor and fractional capacitor.   
 
We note a priori that the constant C  is proportionality constant of the relation of time varying 

capacity function i.e. c(t) t  , and not Fractional Capacity. The fractional capacity of a 
fractional capacitor we will represent as FC  which has units of 1Farad / sec  , and we will use 

F αC C Γ(1- α)   to relate the two [1], [40]. The equation of current and voltage, and impedance 

for fractional capacitor is following, given by fractional derivative α α α
tD d / dt  [6], [7] [8], [12], 

[13]; is following 

F
F

d v(t) 1i(t) C ; Z(s) ; 0 1
dt s C



  


      

With limit 1  we get classical ideal loss less capacitor that is following 
d v(t) 1i(t) C ; Z(s)

dt s C
   

The fractional capacitor appears in studies with super-capacitors and other memory based 
relaxation phenomena [14]-[22]. We assume that the fractional capacitor has no resistance, (like 
ideal capacitor has no resistance) and is excited by ideal voltage sources (that has zero output 
impedance), in the RC charging circuits. We will use Laplace Transform technique in all our 
analysis. In all the cases in subsequent sections, we will apply this new formula 
q(t) c(t)* v(t) and give the validity justification. Recently this formula q(t) c(t)* v(t)  is 
getting experimentally validated [39], for super-capacitors.  
 
Therefore charge in a capacitor is q(t) c(t)* v(t) , is given via convolution operation and not 
with the usual way that we write as q(t) c(t)v(t) .  Let us have a capacitor with capacity 
function in time as power-law c(t) C t  ( 0 1   ), that is fractional capacitor, is charged 
via resistance R.   Let a voltage inv (t)  or current ini (t)  be applied to an uncharged capacitor in the 
RC circuit at time t 0 . Then charge function in time is given as convolution (*) operation 
as 0q(t) c(t)* v (t) , with 0v (t)  is the voltage profile on the capacitor, in the RC circuit of 

Figure-1. This charge q(t)  is also 
t

0
q(t) = i(τ)dτ  , where i(t) is current flowing through the 

capacitor in the RC circuit. This comes from normal circuit theory application, and we will show 
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that this 0q(t) c(t)*v (t) is same that we get from normal circuit theory. For each case we also 
study the ideal loss less capacitor given by capacity function as c(t) C (t)  , and 
apply 0q(t) c(t)* v (t) .  
 
We will validate and verify this new formula q(t) c(t)* v(t)  in circuit theory with RC circuit, 
in this paper. The aim of the paper is not to show profiles of circuit voltage current or charge, 
with variation ofα ; but rather validate the new formula 0q(t) c(t)* v (t) , with that of solution 
obtained by circuit theory techniques. Thus we are not drawing MATLAB simulated figures for 
voltage current and charge functions. 
 
 
2. Charge storage q(t)  by step input voltage in mv (t) = V u(t)  excitation to RC circuit 
with ideal loss less capacitor 
In classical circuit theory, if we charge an ideal capacitor, C (initially uncharged) through a 
resistor R , via a step input voltage in mv (t) = V u(t) (Figure-1) we get voltage across capacitor as 

exponential rise as t /RC
0 mv (t) V (1 e )  .  In Figure-1 consider 1Z (s) R  , and 2Z (s) is ideal 

capacitor with capacity function as c(t) C (t)  . Therefore we have following impedance 
function 

   2
1 1 1Z (s)

s c(t) s C (t) sC
  

 
                                    (1) 

The above Eq. (1) is new way of writing Z(s) for capacitor ideal or fractional we got from 
application of formula q(t) c(t)* v(t) in our earlier discussion [40]. That we got by 
differentiating this convolution expression to get i(t)  and taking Laplace transform to arrive at 

Eq. (1), i.e.    1
Z(s) V(s) / I(s) s c(t)


   .  

We have from circuit theory and Figure-1 the following expressions 

   

 

2 m
0 in in m in

1 2

m
m1 1

RC RC

Z (s) VV (s) v (t) , v (t) = V u(t) , v (t)
Z (s) Z (s) s

V 1 1V
RCs s s s

 


 
     

 

                (2)                              

The inverse Laplace Transform of Eq. (2) gives following voltage charging equation for capacitor 
t /RC

0 mv (t) V (1 e ); t 0                                                          (3) 
The current flowing in the RC circuit at t 0 is following 

    m m
1 1

Cs RC

V /s V1 1 t/RCm1
RR s

Vi(t) e
R

  
                                               (4) 

Therefore the charge function q(t) is  
t t /RCm

0 0

t /RC
m

Vq(t) i( )d e
R

V C(1 e ); t 0





   

  

                                                   (5) 

We apply the formula q(t) c(t)* v(t) to ideal capacitor given by c(t) C (t)  across which we 
are having a voltage profile as t /RC

0 mv (t) V (1 e )  , to write following 
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0

t/RC m m
m 1

RC

Q(s) c(t) v (t)

V VC (t) V (1 e ) C
s s





 
       

 

 
                     (6) 

The inverse Laplace transform of Eq. (6) above gives 
t /RC

mq(t) V C(1 e )                                                          (7) 

Eq. (7) is same as Eq. (5) that we got via circuit theory applying
t

0
q(t) i( )d   . This gives 

validation of formula q(t) c(t)* v(t) for classical ideal loss less capacitor case. 

t = 0

mV
1Z (s)

2Z (s)

0V (s)

inv (t)

ov (t)

 
Figure- 1: The constant voltage charging RC circuit 

 
 
3. Charge storage q(t)  by step input voltage in mv (t) = V u(t)  excitation to RC circuit 
with fractional capacitor 
In Figure-1 consider 1Z (s) R  , and 2Z (s) is fractional capacitor with capacity function 

as c(t) C t ; with 0 < α < 1  . Therefore we have following impedance function [40] 

     2 1

F
F

1 1 1Z (s)
s c(t) s C t s C (1 )s

1 1 ; C C (1 )
s C (1 ) s C

 
 

  
 

  
 

    
 

 
                              (8) 

Here we will use a constant voltage excitation of mV  from time t 0 , to time ct T  (as charging 
phase, through a known resistor R )  and thereafter we will switch to discharging phase i.e. 
voltage source will be made zero (Figure-2). By this we record the charging and discharging 
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profile 0v (t) , and then apply 0q(t) c(t) * v (t)  to get charge, and then current. From the circuit 
diagram of Figure-1, we write the following [37] 

   

 F

2 m
0 in in m in

1 2
1

m m
1

FF RC

Z (s) VV (s) v ( ) , v (t) = V u(t) , v ( )
Z (s) Z (s) s

V V ks 1; k
(s k) RCRC s s

t t








 


  


 

                     (9) 

Now use   α-β

α
p!sαp+β-1 (p) α

α,β s -a
t E (at ) = [10], [12], [13] to get  -1

α
1 α αs

α,α+1s -a
= t E (at ) , by 

putting p 0 , α = α ,β = α +1 , where the α
α,βE (at ) is two parameter Mittag-Leffler function; as 

defined in infinite series in following expression 
m α m¥ ¥

α
α,β α,(α+1)

m=0 m=0

(x) (-kt )E (x) = , E (-kt ) =
Γ(αm+β) Γ(mα + α +1)                   (10) 

With this we obtain the following from Laplace inverse of Eq. (9) 

 
 

m

α

F-α

V k1 α
0 m α,α+1s(s k)

m t
α,α+1 RC

F

v (t) V kt E (-kt )

V t E -
RC


 







 




                                          (11) 

We have alternate derivation via series expansion [13], [37] as follows 

  1 -1 2 3m m k
0 1 s

2 3
m

1 2 3

2 3

m 1 2 1 3 1

V k V kV (s) 1 ; (1+ x) = 1- x + x - x +...
s(s k)

V k k k k1 ...
s s s s

k k kV ..
s s s

s 



 

   

  

  


 
     

 
 

    
 

              (12) 

Use Laplace pair  n+1
(n 1) nt
s

   to invert term by term the above Eq. (12) to get following 

 α

F-α

2 2 3 3

0 m

2 2 3 3

m

n
α t

m m α m α RC
n 0

kt k t k tv (t) V ...
( 1) (2 1) (3 1)

kt k t k tV 1 1 ...
( 1) (2 1) (3 1)

( kt )V 1 V 1- E (-kt ) = V 1- E -
(n 1)

  

  





 
           

  
                

             


             (13) 

Where, αE (x) is one parameter Mittag-Leffler function used in Eq. (13), with x
1E (x) = e . 

Therefore for classical ideal capacitor with limit 1 , we have normal exponential 
charging t /RC

0 mv (t) V (1 e )  ; writing F 1
C C 

 .   

For voltage charging expression for fractional order impedance 1
2 FZ (s) s C 

  , Eq. (8) we 
have from Eq. (11) and Eq. (13) the following 
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    α α

F-α F-α

αmt t
0 m α α,α+1RC RC

F-α

Vv (t) = V 1- E - = t E -
RC

                         (14) 

For charging current of circuit of Figure-1 with 1Z = R and α
F-α

1
2 s C

Z (s) = , we have 

1 2Z(s) = Z (s) + Z (s) and write the following 

  F-α
F-α

α-1
m m m

α 11 RCs C

V V V1 sI(s) =
Z(s) s R s +s R + 

            
                                  (15) 

Using   n-1

n
n s

n s -a
E (at )  , [10], [12], [13] we get inverse Laplace transform of above Eq. (15) as 

 α

F-α

m t
α RC

Vi(t) = E -
R

                                                        (16) 

Clearly for ideal i.e. in limit α 1 case we get mV -t /RC
Ri(t) = e .  Therefore the charge q(t) is from 

Eq. (16) the following  

 α

F-α

t t
m τ

α RC0 0

Vq(t) = i(τ)dτ = E dτ
R

-                                              (17) 

We apply the formula q(t) c(t)* v(t) to fractional capacitor given by c(t) C t across 

which we are having a voltage profile as   α

F-α

t
0 m α RCv (t) = V 1- E - , to write following steps 

     
       

     
 

   

 

α

F-α

F-α F-αm

F-α

F-α

F-α

F-α

0

t
m α RC

1
m F-α RC CV k1 1

RC (1 )2-α αs(s k) 1
RC

2 -1
m

αα 1
RC

1
1m m

α 1
RC

Q(s) c(t) v (t)

C t V 1 E

V C
C (1 )s ; k = , C

s s +

V s sE ( kt )
R s ks +

V s Vs
R Rs +







  

 









  

     

      

               

 

 



   α

F-α

1 t
α RCs E 




           (18) 

Taking inverse Laplace transform of Eq. (18) by recognizing  t 1

0
f(τ)dτ s F(s) we write 

 α

F-α

t
m τ

α RC0

Vq(t) E dτ
R

-                                                   (19) 

The same result as in Eq. (17) we got by using 
t

0
q(t) = i(τ)dτ validates the verification of 

formula q(t) c(t)* v(t) . Put 1   in Eq. (19) and we get ideal loss-less capacitor 
with F-αC = C , and x

1E (x) e to write the following case 

 
 

α

F-α

t t -τ/RCm mτ
α RC0 0

1

-t/RC
m

V Vq(t) E dτ e dτ
R R

V C 1- e

-


 



 
                         (20) 
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The above Eq. (20) is charge build up relation for ideal-loss less capacitor, same as Eq. (5) and 
Eq. (7). 

We take the integration of Mittag-Leffler function as    t α
α α,20

E kτ dτ = t E ( kt )-   with 
m(x)

α,β (αm )m 0
E (x) 

 
  . This we will prove this in next section. So we have charge build up 

function on a fractional capacitor in RC charging circuit as follows 

 

 

α

F-α

t m
α RC0

m
α,2 F-α

Vq(t) E dτ
R

V t E ( t / RC ) ; t 0
R

- 





  


                           (21) 

 
 

4. Proof of formula    
t α α

α α,20
E -kτ dτ = t E (-kt ) used 

We verify the formula used    t α
α α,20

E kτ dτ = t E ( kt )-  as in following steps 

 
α 2 2α 3 3αt tα

α0 0

α+1 2 2α+1 3 3α+1

α 2 2α 3 3α

α,2

kτ k τ k τE -kτ dτ = 1- + - + .... dτ
Γ(α +1) Γ(2α +1) Γ(3α +1)

kt k t k tt ...
(α +1)Γ(α +1) (2α +1)Γ(2α +1) (3α +1)Γ(3α +1)

kt k t k tt 1 ... , (m 1) m (m)
Γ(α + 2) Γ(2α + 2) Γ(3α + 2)

t E (-

 
 
 

    

 
         

 



 

 
m

α
α,β

m 0

(x)kt ) ; E (x)
(αm )






 

        (22) 

Let us verify this for 1  from Eq. (22) 

 

     

F-α

m m αm
m

α,2 F-α α,2
m 01;C C

2 3
m

2 3

2 3 4
m

2 3

2 3t t t t
RC RC RC R

m

V t ( 1) a xq(t) E ( t / RC ) ; E ( a x )
R (αm 2)

V t t tt 1 ...
R (RC)Γ(3) (RC) Γ(4) (RC) Γ(5)

V C t t tt ...
RC (RC)(2)! (RC) (3!) (RC) (4)!

V C 1 1
1! 2! 3!


 

 


   

 

 
     

 
 

     
 

     



 

       

 

4
C

2 3 4t t t t
RC RC RC RC

m

t/RC
m

...
4!

V C 1 1 ...
1! 2! 3! 4!

V C 1 e

 
  

 
  
            

 

         (23) 

Thus we have verified the validity of formula q(t) c(t)* v(t) in RC charging circuit with 
fractional capacitor. 
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5. Charging/discharging a super-capacitor in RC circuit 
5-a) Charging Phase 
The differential equation corresponding to Figure-1 for 1  , is ordinary differential equation 
(ODE), with 1Z (s) = R and 1

2 sCZ (s) =  is following 

0
0 in

dv (t)RC v (t) v (t)
dt

                                                      (24) 

For 1  we get fractional differential equation (FDE), with 1Z (s) = R and α
F-α

1
2 s C

Z (s) =  is 

following 
α

0
F-α 0 inα

d v (t)RC v (t) v (t)
dt

                                                   (25) 

A super-capacitor is modeled as Equivalent Series Resistance (ESR) series with impedance of a 
Fractional Capacitor of order  [15]-[22]. We now consider a lumped ESR ( sR ) for super-

capacitor, thus for Figure-1 we have 
α

s F-α
α α

F-α F-α

s R C +11
2 s s C s C

Z (s) R   while charging impedance 

remains at 1Z (s) R . Therefore for any input voltage  in inV (s) = v (t) , we write the charging 
current (in Laplace domain) as  

α
F-α

α
F-α inin

CH α1
s F-α ss C

s C V (s)V (s)I (s) = =
R + R + s C (R + R ) +1

                                (26) 

Output voltage across 2Z (s) in Laplace domain is therefore is 

  
α

in sin

F-α s s

F-α s

F-α s

α α
in F-α s F-α

0 CH 2 α α
F-α s F-α

V (s)s RV (s)α
C (R+R ) (R+R )in in s F-α m

inα α 1
F-α s C (R+R )

m
α 1

F-α s C (R+R

V (s)s C s R C +1V (s) I (s) Z (s)
s C (R + R ) +1 s C

+V (s) + V s R C Vput V (s) =
s C (R + R ) +1 s + s

V 1
C (R + R ) s s +

  
    

  

 

 
  
    F-α s

α-1
m s

α 1
s C (R+R ))

V R s
R + R s +

                 

          (27) 

To get 0v (t) we do inverse Laplace transform of Eq. (27) as following 

     
α-1

m sm
α α1 1

F-α s sC (R+R ) C (R+R )F-α s F-α s

V R sV1 1 1
0 0 C (R+R )s s + (R+R ) s +

v (t) = V (s)         
   

                (28) 

Use formula   α-β

α
αp+β-1 (p) α s

α,β s -a
t E (at ) p! . [10], [12], [13] with p = 1 ,α = α , β = α +1  and p = 0 , 

α = α ,β =1 , to write from Eq. (28) the inverse Laplace as 

   α α

F-α s F-α s

αm R st t
0 α,α+1 α,1C (R+R ) C (R+R )

F-α s s

V V Rv (t) t E E
C (R + R ) R + R

               (29) 

Let us keep the step input from time t = 0 to ct = T  , and then at time ct = T , the output voltage is 

   α α
c c

F-α s F-α s

α
T TR c R s

0 c α,α+1 α,1C (R+R ) C (R+R )
F-α s s

V T V Rv (T ) E E
C (R + R ) R + R

               (30) 
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The charge q(t) will be held only in the element F-αC . We calculate now the voltage profile cv (t)  
and then voltage at ct = T , i.e. c cv (T )   for only fractional impedance part i.e. α

F-α

1
s C

of the 

impedance 2Z (s) comprising of sR plus this fractional impedance α
F-α

1
s C

, the voltage is thus 

 
F-α s

α
F-α in m

c CH inα α α
F-α F-α s F-α

m
α 1

F-α s C (R+R )

s C V (s) V1 1V (s) I put V (s) =
s C s C (R + R ) +1 s C s

V 1
C (R + R ) s s +

    
     

    
        

     (31) 

Using the Laplace identity of Mittag-Leffler function   n-1

n
n s

n s -a
E (at )  , [10], [12], [13] we write 

 

  

α

F-α s

α

s F-α

αm t
c α,α+1 C (R+R )

F-α s

t
c m α c(R+R )C

Vv (t) t E -
C (R + R )

v (t) V 1 E , 0 t T



    
                                    (32) 

At ct = T we thus have the voltage at the fractional impedance  

    α α
c c

F-α s s F-α

α
T Tm c

c c α,α+1 m αC (R+R ) (R+R )C
F-α s

V Tv (T ) E - V 1 E
C (R + R )

                    (33) 

The charge q(t) is cq(t) = c(t)*v (t) with fractional capacitor with capacity function 

as -α
αc(t) = C t   having voltage profile and that is   α

s F-α

t
c m α (R+R )Cv (t) V 1 E    as following 

     
       

   
 

 
 

   

α

s F-α

1
m F-α(R+R )C s F-αs F-α

1 F-α(R+R )Cs F-α
s F-α

s F-α

c

t
m α (R+R )C

11
V (R+R )Cm F-α (R+R )C1

C2-α αs s 1
(R+R )C (1 )

2 -1
m

αα 1
s (R+R )C

Q(s) c(t) v (t)

C t V 1 E

k =V C
C (1 )s ;

s s + , C

V s sE ( kt )
R + R ss +

s







 

 

 




  

        

 
   
 

 

 



 

   
s F-α

α

s F-α

1
1m

α 1
s (R+R )C

1m t
α (R+R )C

s

k

V ss
R + R s +

V s E
R + R










               
 

  
 



          (34) 

Taking inverse Laplace transform of Eq. (34) by recognizing  t 1

0
f(τ)dτ s F(s) we write 

   α

s F-α

t
m mτ

α α,2 s F-α(R+R )C0
s s

V V tq(t) E dτ = E ( t / (R R )C )
R + R R + R

-                    (35) 

At ct = T we have charge as 
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 c

s F-α

Tm c
c α,2 (R R )C

s

V Tq(T ) = E
R + R



                                          (36) 

For 1
2 s sCZ (s) = R  i.e. with an ideal capacitor with ESR, we have the following 

 
     

     
 

 
 

 
 

t
(R+R )Cs

1
m (R+R )C ss

1
(R+R )Cs

ss

t
(R+R )Cs

c

m

1
V m (R+R )C

m 1s s 1
(R+R )C(R+R )C

m

Q(s) c(t) v (t)

C (t) V 1 e

V C 1 1C V C
s ss s +

q(t) = V C 1 e










   
 

            



 

 

                     (37) 

Charge at the end of ct = T is  
Tc

(R+R )Cs
c mq(T ) = V C 1 e

  
 

                                                     (38) 

The charging current is following from Eq. (37) 
t

(R+R )Cs
m

CH c
s

V edq(t)i (t) = , 0 t T
dt (R + R )



                                         (39) 

The voltage at the end of ct = T is
Tc

(R+R )Cs
c c mv (T ) = V (1 e )


 .  

5-b) Discharging Phase 
After ct T we make the voltage inv (t) 0 i.e. we are draining out the stored charge i.e. 

 c sT / (R+R )C
c mq(T ) = V C(1 e ) during the discharge phase ( ct T ); Figure-2. In the discharge 

phase the voltage c cv (T ) will decay as   st / (R+R )C
c c cv (t ) = v (T ) e  , for ct T , writing ct = t - T . 

At this point the capacity function c(t ) Cδ(t )   will again appear, as there is sudden change 
(differentiability is lost) in voltage from mV to 0 at t 0  (i.e. ct T ). Therefore the discharging 
charge profile q(t ) we write as cq(t ) c(t )*v (t )   as follows 

     
      

   

 
 

s

s

Tt c
(R+R )C (R+R )Cs s

Tc t
(R+R )C (R+R )Cs s

c c

t /(R+R )C
c c

c c
1

(R+R )C

c c c c m

m c

Q(s) c(t ) v (t ) , t T

C (t ) v (T ) e

v (T )
C

s

q(t ) = Cv (T )e ; v (T ) V 1 e

V C 1 e e ; t 0; t T









 

 

  



 
    

  

   

 

 

                           (40) 

The discharging current ct T is as follows 
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t
(R+R )Cs

Tc
(R+R )Cs

t t
(R+R )C (R+R )Cs s

DIS c c c

m
c c

s s

dq(t ) dei (t ) = Cv (T ) , t T
dt dt

V 1 ev (T ) e e
(R + R ) (R + R )



 





 


  

 


   

                     (41) 

 
The negative sign in Eq. (41) indicates that discharge current is opposite to that of charging 
current. Now we carry on with the above logic for a fractional capacitor with α

F-α

1
2 s s C

Z (s) = R  . 

This value   α
c

s F-α

T
c c m α (R+R )Cv (T ) V 1 E    ; Eq. (33) of voltage becomes the initial voltage 

while we discharge the super-capacitor with time defined as ct = t - T , for discharge phase where 

inv (t ) 0    .  
Now we see the discharge profile, as the charged fractional capacitor F-αC  with above 
value c cv (T )  Eq. (33) discharges through R . The discharge current is now for t 0  , negative to 
the charging current is following 

 α αF-α F-α s

1
c c c c

DIS 1 α 1s s C s s C (R+R )

v (T ) / s v (T )sI (s)
R + R + (R + R ) s



   


                       (42) 

The inverse Laplace transform of Eq. (42) gives discharge current for ct T as following 

    

c c
1

s αs CF-α

αα
c

s F-α s F-α

v (T )/s1
DIS R+R +

T(t )c c
α c c m α(R+R )C (R+R )C

s

i (t )

v (T ) E ; t T , v (0) V 1 E
R R





    
 

      



      (43) 

For 1  we have for ideal loss less capacitor F-αC = C from Eq. (43) 

  Tt c
(R+R )C (R+R )Cc c s s

1
s sC

v (T )/s1 c c
DIS c c c mR+R +

s

v (T )i (t ) e ; t T , v (T ) V 1 e
R R

             
       (44) 

The discharging profile of q(t ) with initial charge cq(0) = q(T ) is 

 

τ τ
(R+R )C (R+R )Cs s

t
(R+R )Cs

Tc
(R+R )Cs

τ=tt c c
c c c0 τ=0s

c c c c

c m c c

v (T )q(t ) = q(0) + e dτ Cv (T )e ; t T
R R

q(0) Cv (T )e Cv (T )

q(T ) = q(0) = V C 1 e Cv (T )



  





      

  

 



                  (45) 

Thus we get q(t ) for ct T with ct = t - T as following 

 Tt c
(R+R )C (R+R )Cs s

c c c c m cq(t ) Cv (T )e ; v (T ) V 1 e ; t T
                        (46) 

The voltage profile across the fractional capacitor while discharging process is  

    αα
c

s F-α s F-α

T(t )
c c c α c c c m α(R+R )C (R+R )Cv (t ) v (T )E , t T , v (T ) V 1 E              (47) 

The charge q(t )  profile during the discharge phase is cq(t ) = c(t )* v (t )   for ct T is following 
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α

s F-α

s F-α s F-α

c

(t )
c c α F-α(R+R )C

-1 1
1 1c c

F-α c c1 1
(R+R )C (R+R )C

1 α α
F-α c c t α

F-α

Q(s) c(t ) v (t )

C (t ) v (T )E ; C C (1 )

v (T )s sC (1 )s C v (T )s
s s

1C v (T ) D E ( kt ) ; k =
(R + R )Cs

s


 

 
 

  




 

    

 
        

 

 

 



           (48) 

In above steps Eq. (48), we have used α α
ts F(s) D f(t) , for 

-1s
s k

F(s) 


  , αf(t) = E ( kt )  . 

Consider the fractional derivative operator α
tD as Caputo fractional derivative. We have the 

Caputo fractional derivative of Mittag-Leffler function α
αE (λx )  as α α α

x α αD E (λx ) E (λx )  ; 
[13]. Using this we write the following 

   F-α

1 α 1
F-α c c α (R+R )CQ(s) C v (T ) s kE ( kt ) ; k =

s

                             (49) 

Using inverse Laplace Transform we have  

  F-α

t α 1
F-α c c α (R+R )C0

t αc c
α c0

q(t ) q(0) + C v (T ) kE ( k )d ; k =

v (T )q(0) E ( k )d ; t T
(R + R )

s

s









    

 
      

 




                (50) 

Where we have  m c c

s s F-α

V T T
c α,2R+R (R R )Cq(0) = q(T ) = E



 and   α
c

s F-α

T
c c m α (R+R )Cv (T ) V 1 E    

We use    t α
α α,20

E kτ dτ = t E ( kt )-  (that we derived in Section-4) and write the following 

 

       

α

s F-α

α
c

s F-α
c

s F-α s F-α

tc c τ
α c(R+R )C0

T
m α (R+R )CTm c t

α,2 α,2(R R )C (R+R )C
s s

v (T )q(t ) q(0) E d ; t T
(R + R )

V 1 EV T E t E
R + R (R + R )

s



 






 
      

 

 
     


         (51) 

We put 1  in   αc c

s F-α

tv (T ) τ
α(R+R ) (R+R )C0

q(t ) q(0) E d
s




     ; Eq. (51) and we get what we got 

for classical ideal capacitor F-αC = C , i.e.  τ
(R+R )Cc c s

s

tv (T )
R R 0

q(t ) = q(0) + e dτ
 

   , Eq. (45). 
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Figure-2: Constant voltage charging and discharging voltage profile at super-capacitor 

 
The Figure-2 displays the curve of voltage profile for a constant voltage charge and discharge 
case. Here we point out that the charging curve though similar to exponential charging of a text 
book capacitor -t /RC

0v (t) (1 e )  , but it is not so, for fractional capacitor that is described via 
Mittag-Leffler function. Similarly the discharge profile though similar to exponential 
decay -t/RC

0v (t) e , but is not so for fractional capacitor; here too described by Mittag-Leffler 
function.  All the relations we obtained and also verified our formula q(t) = c(t)*v(t) .  
 
 
6. Charge storage q(t)  by step input constant current in mi (t) = I u(t)  excitation to RC 
circuit with fractional capacitor and ideal capacitor 
In the Figure-1 we take 1Z (s) = R , α

F-α

1
2 s C

Z (s) = and instead of in mv (t) = V u(t) , that is voltage 

source, we take, that as an ideal constant current source i.e. in mi (t) = I u(t) . This constant current 

charging we apply to initially uncharged fractional capacitor, with capacity function -α
αc(t) = C t . 

The fractional capacitor will develop a voltage across it by law governed by fractional derivative 
and fractional integral as follows 

 
α t α -α

F-α tα 0
F-α F-α

d v(t) 1 1i(t) = C ; v(t) = i(τ) dτ D i(t); 0 1
dt C C

               (52) 

Therefore, for constant current mi(t) = I the voltage is fractional integral of a constant mI   

-α -α αm
t t m

F-α F-α F-α

1 1 Iv(t) D i(t) = D I t ; t 0
C C C (1 )

  
  

                        (53) 

for t 0 [12], [13], [37]; we used formula Γ(m+1)-n m m+n
t Γ(m+1+n)D t = t  in Eq. (53). Therefore the charge 

function q(t) is q(t) c(t)* v(t)  as follows 
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n+1

F-α

+1
F-α

c

(n 1)α n1
m C (1 )

( 1)1 1
m F-αC (1 ) s

m
2

Q(s) c(t) v (t)

C t I t ; t

C (1 )s I ; C (1 ) C

I
s

s



 
  

 
  



 

     



 

  
                 (54) 

Thus we have charge function by taking Laplace inverse of above Eq. (54) as 
mq(t) = I t ; t 0                                                          (55) 

The Eq. (55) can be expressed as mq(t) = I r(t) , where r(t)  is unit ramp function at t = 0 . That is 
r(t) = t for t 0 and r(t) = 0 for t < 0 . This Eq. (55) is matter of fact is the current flowing 
through R and F-αC is mi(t) = I for t 0 , and thus the charge will be 

t t

m m m0 0
q(t) = i(τ)dτ = I dτ = I t = I r(t) ; t 0                                       (56) 

For an ideal capacitor with c(t) = Cδ(t) the voltage is m
t I1

mC C0
v(t) = I dτ = t so the charge 

is q(t) c(t)* v(t) as follows 

     
         

  
2

2

c

1 1
m C s

m1
m 2Cs

m m

Q(s) c(t) v (t)

C (t) I t ; t r(t)

IC I
s

q(t) = I t = I r(t); t 0



   

 



 

   
                            (57) 

Thus in the case of constant current charging, we verified the validity of q(t) c(t)* v(t) as for 
any capacitor fractional or ideal loss less capacitor, the mq(t) = I t ; that is always integration of 

current function, i.e. 
t

0
q(t) = i(τ)dτ  , for t 0 . 

 
 
7. Charge storage q(t)  by step input current of a square pulse ini (t)  to RC circuit 
with fractional capacitor and ideal capacitor 
Let the square pulse of current be described as follows 

m m c m di(t) = I u(t) - 2I u(t -T ) + I u(t - T )                                 (58) 
Where u(t - T) = 1 for t T and u(t - T) = 0 for t < T , i.e. unit step function at time t = T  .Then 
with identity   -sTf(t - T) = e F(s)  with f(t - T) = 0 for t < T ; we write 

  c d-sT -sTm m mI 2I II(s) = i(t) - e + e
s s s

                              (59) 

We have voltage across α
F-α

1
2 s C

Z (s)  as follows 

c d c d

2

-sT -sT -sT -sTm m m m m m
α α+1 α+1 α+1

F-α F-α F-α F-α

V(s) = Z (s)I(s)

I 2I I I 2I I1 - e + e - e + e
C s s s s C s C s C s

     
  

      (60) 
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Then taking inverse Laplace of Eq. (60) we get voltage profile across F-αC as 
α αα

m c m dm
c d

F-α F-α F-α

m m c m d

F-α F-α F-α

2I (t - T ) I (t - T )I tv(t) = u(t) - u(t - T ) + u(t -T )
C Γ(α +1) C Γ(α +1) C Γ(α +1)

I r (t) 2I r (t -T ) I r (t -T )- +
C Γ(α +1) C Γ(α +1) C Γ(α +1)

  
            (61) 

We note that  1 -sTe F(s) f(t -T)  , where f(t - T) = 0 for t < T . We can write 

explicitly  1 -sTe F(s) f(t -T)u(t - T)  , where u(t - T) is unit step function at  t = T   . This we  

used in Eq. (61). Also in Eq. (61) we define function r as α
αr (t - τ) = (t - τ) for t   and 

αr (t - τ) = 0 for t < τ . The Laplace transform of r  is,   -(α+1)
αr (t) = Γ(α +1)s therefore we 

have the identity     -sτ -(α+1)
αr (t - τ) = e Γ(α +1)s , which is used in Eq. (60) to get Eq. (61). 

The charge function is q(t) c(t)* v(t) as follows, when the voltage profile v(t) ; Eq. (60) is 
across a fractional capacitor -α

αc(t) = C t . This -α
αc(t) = C t  gets applied at t = 0 , 

ct = T and dt = T ; that is where there is sudden change of state of v(t) ; (that is at points where the 
differentiability of v(t) is lost). We write 

       

 

n+1

c d

c d

c d

(n 1) n
F-α

-sT -sT1 m m m
α+1 α+1 α+1

F-α F-α F-α

-sT -sT1 1m m m
F-α F-αα+1 α+1 α+1

F-α F-α F-α

-sT -sTm m m
2 2 2

m

Q(s) C t v(t) ; t ; C C (1 )

I 2I IC (1 )s - e + e
C s C s C s

I 2I IC s - C s e + e
C s C s C s

I 2I I- e + e
s s s

q(t) = I

s
 

 




 

    

 
    

 





  

m c c m d d

m m c m d

t - 2I (t -T )u(t -T ) + I (t - T )u(t -T )
I r(t) - 2I r(t -T ) + I r(t -T )

          (62) 

In Eq. (62) we define unit ramp function r as r(t - τ) = (t - τ) for t   and r(t - τ) = 0 for t < τ . 
The Laplace transform of r  is,   -2r(t) = s therefore we have the identity     -sτ -2r(t - τ) = e s , 
which is used in Eq. (62). 
This shows verification of our formula q(t) = c(t)* v(t) . In similar way we can analyze the ideal 
loss less capacitor c(t) = C (t) , for this wave form of current pulse. 
 
 
8. Charging/discharging when R is zero ohms in RC circuit with voltage pulses 
In this case Figure-1 has 1Z (s) = 0 . Therefore the voltage source directly gets connected to the 
fractional or ideal capacitor represented by impedance 2Z (s) . This case we have studied for step, 
ramp and sinusoidal voltage excitation in [40]. Here we take square wave case and triangular 
wave case, as extension of [40].    
8-a) Charge storage q(t) in a square wave voltage-on for time cT and thereafter zero 
The following excitation of a square wave pulse is applied to uncharged capacitor 
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m c

c

0 , t 0
v(t) V , 0 t T

0 , t T


  
 

                                                    (63) 

We construct the above Eq. (63) excitation with u(t - τ) = 1 for t   and u(t - τ) = 0 for t < τ ; 
that is unit step function at t =   as m m cv(t) = V u(t) - V u(t - T ) . The Laplace transform is 

    c-sTm m
m m c

V VV(s) = V u(t) V u(t - T ) - e
s s

                            (64) 

We used    d d-st -st
df(t - t ) e f(t) e F(s)    with df(t - t ) = 0 for dt < t in above Eq. (64). 

When this voltage is applied to a time varying capacity function 1c(t) = C δ(t) i.e. ideal loss less 
capacitor we write from q(t) = c(t)* v(t) the following 

          c

c

-sTm m
1

-sTm 1 m 1

V VQ(s) = q(t) = c(t) v(t) = C - e
s s

V C V C= -e
s s

 
 
 

  
                    (65) 

Taking inverse Laplace transform of Eq. (65) we get 

m 1 m 1 c m 1 c

c

0 , t < 0
q(t) = V C u(t) - V C u(t - T ) = V C , 0 t T

0 , t > T


  



                        (66) 

Now when this square-wave is applied for a time varying capacity function as -α
αc(t) = C t i.e. for 

fractional capacitor we write from q(t) = c(t)* v(t) the following 

        c

c

-sTα m m
1-α

-sTm α m α
2-α 2-α

C Γ(1-α) V VQ(s) = q(t) = c(t) v(t) = - e
s s s

V C Γ(1- α) V C Γ(1-α)= - e
s s

  
  
  

  
               (67) 

Taking inverse Laplace Transform of above Eq. (67) we obtain 

1-α 1-α
m α m α c cV C t u(t) V C (t-T ) u(t-T ) 1-αm α

c1-α 1-α

1-α 1-αm α m α
c

0 , t < 0
V C

q(t) = - = t , 0 t T
1-α

V C V Ct - (t -T) , t > T
1-α 1-α




  




             (68)                 

The charge at ct = T is
1-α

m α cV C T
c 1-αq(T ) = , charge at c ct = 2T > T

1-α
m α cV C T 1-α

c 1-αq(2T ) = (2 -1) , charge 

at ct = 3T is
1-α

m α cV C T 1-α 1-α
c (1-α)q(3T ) = (3 - 2 ) . We observe that for a fractional capacitor while the 

voltage is zero, after ct = T , there still is charge holding, as compared with ideal capacitor Eq. 
(66). The current wave form is 
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-α -α -α
m α c m α c

-α -α
m α c c

0 , t < 0
dq(t)i(t) = = V C (t - (t - T ) ) = V C t , 0 t T

dt
V C (t - (t - T ) ) , t > T


  



            (69) 

8-b) Charge storage by voltage as triangular input of voltage 

The following excitation of a square wave pulse is applied to uncharged capacitor 

m

m m

0 , t < 0
V t , 0 t T
Tv(t) =

V 2Vt - (t - T) , T t 2T
T T

0 , t 2T



  


  

 

                                 (70) 

We can write the above excitation as    m mv(t) = V / T r(t) - 2V / T r(t - T) for 0 t 2T  . With 
r(t) unit ramp at t = 0 and is zero for t < 0  and r(t - T) as unit ramp at t = T and zero at t < T . 
With this applied to a ideal capacitor, with 1c(t) = C δ(t)  , we get the following by application of 
q(t) = c(t)* v(t)  

          -sTm m
1 2 2

-sTm 1 m 1
2 2

V 2VQ(s) = q(t) = c(t) v(t) = C - e
Ts Ts

V C 2V C= -e
Ts Ts

 
 
 

  
                      (71) 

Doing inverse Laplace transform of Eq. (71) we get 

m 1

m 1 m 1

m 1 m 1

0 , t < 0
V C t , 0 t T

V C 2V C Tq(t) = r(t) - r(t - T) =
V C 2V CT T t - (t - T) , T t 2T

T T
0 , t 2T



  


  

 

             (72) 

Current is got by differentiation of above Eq. (72) 
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m 1

m 1 m 1

m 1

0 , t < 0
V C , 0 t T

dq(t) V C 2V C Ti(t) = u(t) - u(t - T) =
V Cdt T T - , T t 2T

T
0 , t 2T



  
 
  

 

               (73) 

We take a fractional capacitor and do the following as done above as in Eq. (71) by applying the 
formula q(t) = c(t)* v(t)  

        -sTα m m
1-α 2 2

-sTm α m α
1+(2-α) 1+(2-α)

C Γ(1-α) V 2VQ(s) = q(t) = c(t) v(t) = - e
s Ts Ts

V C Γ(1- α) 2V C Γ(1-α)= - e
Ts Ts

  
  
  

  
               (74) 

We take inverse Laplace transform of above Eq. (74) with following definition of a 
function mr (t - τ) defined as 

 
m -sτ

m m 1+m

(t - τ) , t τ e Γ(1+m)r (t - τ) = ; r (t - τ) =
s0, t < τ

 



                        (75) 

Thus the charge function q(t)  is following from Eq. (74) and Eq. (75) 

   m α m α
1+(2-α) 1+(2-α)

V C Γ(1-α) 2V C Γ(1-α)1 1 -sT
Ts Ts

m α m α
2-α 2-α

m α m α
2-α 2-α

q(t) = - e

V C Γ(1- α) 2V C Γ(1-α)r (t) - r (t - T)
TΓ(3- α) TΓ(3- α)

V C 2V C= r (t) - r (t -T)
T(1-α)(2 - α) T(1- α)(2 - α)

 



 

                             (76) 

We used Γ(1+m) = m (m) in above Eq. (76). We re-write above Eq. (76) as using Eq. (75) 

m α 2-α m α 2-α

2-α
V C r (t) 2V C r (t-T) m α
T(1-α)(2-α) T(1-α)(2-α)

2-α 2-α
m α m α

0 , t < 0
V C tq(t) = - = , 0 t T

T(1-α)(2 -α)
V C t 2V C (t -T)- , T t 2T

T(1-α)(2 -α) T(1- α)(2 - α)




  



 


                 (77)                     
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We have at t = T , 
1-α

m αV C T
(1-α)(2-α)q(T) = at t = 2T , 

1-α 2-α
m αV C T (2 -2)

(1-α)(2-α)q(2T) = .We observe that at t = 2T , 
the voltage is zero, but we have charge as non-zero. Withα 1 , we get q(2T) 0 , Eq. (72) that 
we have analyzed for an ideal loss less capacitor. Differentiating the above we write current as 

1-α
m α

1-α 1-α
m α m α

0 , t < 0
dq(t) V C ti(t) = = , 0 t T

dt T(1-α)
V C t 2V C (t - T)- , T t 2T
T(1- α) T(1- α)






 



 


                          (77) 

Thus we verified q(t) = c(t)* v(t) the formula in RC circuits with charging resistance as zero, for 
triangular and square pulse of voltage excitation. 
 
 
9. Conclusions 
We have applied the new formula of charge storage i.e. via convolution 
operation q(t) c(t)* v(t) , of time varying capacity function and voltage stress for a fractional 
capacitor and ideal loss-less capacitor; for verification in RC charging/discharging circuit; with dc 
voltage and current sources. This new formulation is different to the earlier used formula of 
multiplication of capacity and voltage function. The circuit analysis that we described for each 
cases verifies this formula. Thus this new formulation of stored charge via convolution operation 
is applicable, and can be taken as general formula applicable to fractional capacitor as well as 
ideal capacitor. 
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