

Original Research Article 1

 2

Meta-Heuristics Approach To Knapsack Problem In 3

Memory Management 4
 5

 6
ABSTRACT 7
 8

The Knapsack Problems are among the simplest integer programs which are NP-hard. Problems in
this class are typically concerned with selecting from a set of given items, each with a specified weight
and value, a subset of items whose weight sum does not exceed a prescribed capacity and whose
value is maximum. The classical 0-1 Knapsack Problem arises when there is one knapsack and one
item of each type. This paper considers the application of classical 0-1 knapsack problem with a
single constraint to computer memory management. The goal is to achieve higher efficiency with
memory management in computer systems.
This study focuses on using simulated annealing and genetic algorithm for the solution of knapsack
problems. It is shown that Simulated Annealing performs better than the Genetic Algorithm for large
number of processes.

 9
 10
Keywords: Knapsack, Memory Management, Genetic Algorithm, Simulated Annealing 11
 12
 13
 14
1. INTRODUCTION 15
 16
A great variety of practical problems can be represented by a set of entities, each having an 17
associated value, from which one or more subsets has to be selected in such a way that the sum of 18
the values of the selected entities is maximized, and some predefined conditions are respected. The 19
most common condition is obtained by also associating a weight to each entity and establishing that 20
the sum of the entity sizes in each subset does not exceed some prefixed bound. These problems are 21
generally called knapsack problems, since they recall the situation of a traveler having to fill up his 22
knapsack by selecting from among various possible objects those which will give him the maximum 23
comfort. One such problem is in computer memory management. 24
 25
Modern computer memory management is for some causes a crucial element of assembling current 26
large applications. First, in large applications, space can be a problem and some technology are 27
efficiently needed to return unused space to the program. Secondly, inexpert implementations can 28
result in extremely unproductive programs since memory management takes a momentous portion of 29
total program execution time and finally, memory errors become rampant, such that it is extremely 30
difficult to find programs when accessing freed memory cells. It is much secured to build more 31
unfailing memory management into design even though complicated tools exist for revealing a variety 32
of memory faults. It is for this basis that efficient schemes are needed to manage allocating and 33
freeing of memory by programs. 34
 35
Optimizing current memory management strategies strength is performed by altering the space 36
allocated to each task. To achieve high levels of multiprogramming while avoiding thrashing such 37
policies vary the load (i.e., the number of active tasks). Additionally, in a system that runs out of 38
capacity probably because the system is undersized, several options are available. This option 39
includes either upgrading the processor (if possible), reduce available functionality, or optimize. 40
A great deal of realistic problems where some predefined conditions are respected such that the sum 41
of the values of the selected entities is maximized can be represented by a set of entities, each 42
having an associated value, from which one or more subsets has to be selected. The most ordinary 43
situation is obtained by establishing that the sum of the entity sizes in each subset does not exceed 44
some prefixed bound by associating a weight/size to each entity. 45

 46
The goal of this paper is to maximize the number of processes in a limited memory space. 47
 48
 49
 50
2. LITERATURE REVIEW 51
 52
Knapsack problems have been studied intensively in the past decade attracting both theorist and 53
practitioners. The theoretical interest arises mainly from their simple structure which both allows 54
exploitation of a number of combinational properties and permits more complex optimization problems 55
to be solved through a series of knapsack type. From a practical point of view, these problems can 56
model many industrial applications, the most classical applications being capital budgets, cargo 57
loading and cutting stock. In this section a review of literature on knapsack problems and applications 58
is presented. 59
 60
The knapsack problem (KP) is a traditional combinatorial issue used to show numerous modern 61
circumstances. ―Since Balas and Zemel a dozen years ago introduced the so-called core problem as 62
an efficient way of solving the Knapsack Problem, all the most successful algorithms have been 63
based on this idea. All knapsack Problems belong to the family of NP-hard problems, meaning that it 64
is very unlikely that polynomial algorithms for these problems can be devised [1]. 65
 66
The Knapsack problem has been concentrated on for over a century with prior work dating as far back 67
as 1897. ―It is not known how the name Knapsack originated though the problem was referred to as 68
such in early work of mathematician Tobias Dantzig suggesting that the name could have existed in 69
folklore before mathematical problem has been fully defined [2]. 70
Given a knapsack of limit, Z, and n dissimilar items, Caceres and Nishibe [3] algorithm resolved the 71
single Knapsack problem using local computation time with communication rounds. With dynamic 72
programming, their algorithm solved locally pieces of the Knapsack problem. The algorithm was 73
implemented in Beowulf and the obtained time showed good speed-up and scalability [4]. 74
Heuristic algorithms experienced in literature that can generally be named as population heuristics 75
include; ―genetic algorithms, hybrid genetic algorithms, mimetic algorithms, scatter-search 76
algorithms and bionomic algorithmsǁ. Among these, Genetic Algorithms have risen as a dominant 77
latest search paradigm [5]. 78
 79
Eager about making use of a easy heuristic scheme (simple flip) for answering the knapsack 80
problems, Oppong [6] offered a study work on the application of usual zero-1 knapsack trouble with a 81
single limitation to determination of television ads at significant time such as prime time news, news 82
adjacencies, breaking news and peak times. 83
Martello et al [7] presented a new algorithm for the optimal solution of the 0-1 Knapsack problem, 84
which is particularly effective for large-size problems. The algorithm is based on determination of an 85
appropriate small subset of items and the solution of the corresponding "core problem": from this they 86
derived a heuristic solution for the original problem which, with high probability, can be proved to be 87
optimal. The algorithm incorporated a new method of computation of upper bounds and efficient 88
implementations of reduction procedures. 89
 90
Huttler and Mastrolilli [8] addressed the classical knapsack problem and a variant in which an upper 91
bound is imposed on the number of items that can be selected. It was shown that appropriate 92
combinations of rounding techniques yield novel and more powerful ways of rounding. Moreover, they 93
presented a linear-storage polynomial time approximation scheme (PTAS) and a fully polynomial time 94
approximation scheme (FPTAS) that compute an approximate solution, of any fixed accuracy, in 95
linear time. These linear complexity bounds give a substantial improvement of the best previously 96
known polynomial bounds. 97
 98
Hanafi and Freville [9] described a new approach to tabu search (TS) based on strategic oscillation 99
and surrogate constraint information that provides a balance between intensification and 100
diversification strategies. New rules needed to control the oscillation process are given for the 0 /1 101
multidimensional knapsack (0/1 MKP). Based on a portfolio of test problems from the literature, our 102
method obtains solutions whose quality is at least as good as the best solutions obtained by previous 103
methods, especially with large scale instances. These encouraging results confirm the efficiency of 104
the tunneling concept coupled with surrogate information when resource constraints are present. 105

Rinnooy et al. [10] proposed a class of generalized greedy algorithms is for the solution of the multi-106
knapsack problem. Items are selected according to decreasing ratios of their profit and a weighted 107
sum of their requirement coefficients. The solution obtained depended on the choice of the weights. A 108
geometrical representation of the method was given and the relation to the dual of the linear 109
programming relaxation of multi-knapsack is exploited. They investigated the complexity of computing 110
a set of weights that gives the maximum greedy solution value. Finally, the heuristics were subjected 111
to both a worst-case and a probabilistic performance analysis. 112
 113
Balachandar and Kannan [11] presented a heuristic to solve the 0/1 multi-constrained knapsack 114
problem (0/1 MKP) which is NP-hard. In this heuristic the dominance property of the constraints is 115
exploited to reduce the search space to find near optimal solutions of 0/1 MKP. This heuristic was 116
tested for 10 benchmark problems of sizes up to 105 and for seven classical problems of sizes up to 117
500, taken from the literature and the results were compared with optimum solutions. Space and 118
computational complexity of solving 0/1 MKP using this approach were also presented. The 119
encouraging results especially for relatively large size test problems indicate that this heuristic can 120
successfully be used for finding good solutions for highly constrained NP-hard problems. 121
Elhedhli [12] considered a class of nonlinear knapsack problems with applications in service systems 122
design and facility location problems with congestion. They provided two linearizations and their 123
respective solution approaches. The first is solved directly using a commercial solver. The second is a 124
piecewise linearization that is solved by a cutting plane method. 125
 126
Devyaterikova et al. [13] presented discrete production planning problem which may be formulated as 127
the multidimensional knapsack problem is considered, while resource quantities of the problem are 128
supposed to be given as intervals. An approach for solving this problem based on using its relaxation 129
set is suggested. Some L-class enumeration algorithms for the problem are described. Results of 130
computational experiments were presented. 131
Chen et al. [14] presented pipeline architectures for the dynamic programming algorithms for the 132
knapsack problems. They enabled them to achieve an optimal speedup using processor arrays, 133
queues, and memory modules. The processor arrays can be regarded as pipelines where the 134
dynamic programming algorithms are implemented through pipelining. 135
 136
 137
3. METHODOLOGY 138
 139
Because of their wide range of applicability, knapsack problems have known a large number of 140
variations such as: single and multiple-constrained knapsacks, knapsacks with disjunctive constraints, 141
multidimensional knapsacks, multiple choice knapsacks, single and multiple objective knapsacks, 142
integer, linear, non-linear knapsacks, deterministic and stochastic knapsacks, knapsacks with convex 143
/ concave objective functions, etc. 144
 145
This is a 0-1 knapsack problem, pure integer programming with single constraint which forms a very 146
important class of integer programming. 147
The 0-1 Knapsack Problem (KP) can be mathematically formulated through the following integer 148
linear programming. 149
 150

Maximize෍ P୨x୨
୬

୨ୀଵ
 [1] 151

 152

Subject to ൌ෍ ൫w୨x୨൯
୬

୨ୀଵ
 ൑ c [2] 153

 x୨ ൌ 0 or 1, j ൌ 1, … , n 154
 155
Where, ௝ܲ refers to the value, or worth of item j, ݔ௝ refers to the item j, ݓ௝ refers to the relative-weight 156
of item j, with respect to the knapsack and C refers to the capacity, or weight-constraint of the 157
knapsack. There exist j = 1…n items, and there is only one knapsack. 158
 159
The use of two major meta-heuristics approaches, Genetic algorithm and Simulated annealing which 160
have been used to solve large scale problems [15] will be considered in this paper. 161
 162

3.1 Simulated Annealing 163
Simulated annealing (SA) is a local search algorithm capable of escaping from local optima. Its case 164
of implementation, convergence properties and its capability of escaping from local optima has made 165
it a popular algorithm over the past decades. Simulated annealing is so named because of its analogy 166
to the process of physical annealing with solids in which a crystalline solid is heated and then allowed 167
to cool very slowly until it achieves stable state. i.e. its minimum lattice energy state and thus is free of 168
crystal effects. Simulated annealing mimics this type of thermodynamic behavior in searching for 169
global optima for discrete optimization problems (DOP). 170
 171
At each iteration of simulated annealing, algorithm applied to a DOP, the objective function values for 172
two solutions (the current solution and a newly generated neighboring solution) are compared. Better 173
solutions are always accepted, while a fraction of inferior solutions is accepted in the hope of 174
escaping local optima in search of global optima. The probability of accepting non-improving solutions 175
depends on a temperature parameter, which is non-increasing with each iteration of the algorithm. 176
The key algorithm feature of simulated annealing is that provides a means to escape local optima by 177
allowing worse moves (i.e. moves to a solution that corresponds to a worse objective value function). 178
As the temperature is decreased to zero, worse moves occur less frequently and the solution 179
distribution associated with the inhomogeneous Markov chain that models the behavior of the 180
algorithm converges to a distribution in which all the probability is concentrated on the set of globally 181
optimal solutions which means that the algorithm is asymptotically convergent. 182
 183
To formally describe simulated annealing algorithm for KP, some definitions are needed. Let Ω be the 184
solution space: define η(ω) to be the neighborhood function for w ∈ Ω. Simulated annealing starts with 185
an initial solution ω ∈ Ω. A neighborhood solution ω 1 ∈ η(ω) is then generated randomly in most 186
cases. Simulated annealing is based on the Metropolis acceptance criterion, which models how a 187
thermodynamic system moves from its current solution ω ∈ Ω to a candidate solution ߱݅ ∈ ሺ߱ሻ in 188ߟ
which the energy content is being minimized. The candidate solution ω 1 is accepted as the current 189
solution based on the acceptance probability. 190
In this survey, finite-time implementations of simulated annealing algorithm are considered, which can 191
no longer guarantee to find an optimal solution, but may result in faster executions without losing too 192
much on the solution quality. Simulated annealing algorithm with static cooling schedule [16] for KP is 193
outlined in pseudo-code. 194
 195
1 Select an initial solution ω =(ϰ1,….., ϰn)∈ Ω; an initial temperature t = t0; 196
2 control parameter value α; final temperature e; a repetition schedule, M that defines the number of 197

iterations executed at each temperature; 198
3 Incumbent solution ← fሺωሻ; 199
4 Repeat; 200
5 Set repetition counter m ൌ 0; 201
6 Repeat; 202
7 Select an integer i from the set ሼ1,2, … . , nሽ randomly: 203
8 If x୧ ൌ 0, pick up item i, i. e. set x୧ ൌ 1, obtain new solution ω1 then 204
9 while solution ω1 is infeasible, do 205
10 drop another item from ω randomly; denote the new solution as ω1 206
11 let Δ ൌ fሺω1ሻ െ fሺωሻ 207
12 while Δ ൒ 0 or Random (0,1) < e୼ ୲⁄ do ω ← ω1 208
13 Else 209
14 drop item i and pick another item randomly, get new solution ω1 210
15 let Δ ൌ fሺω1ሻ െ fሺωሻ 211
16 while Δ ൒ 0 or Random ሺ0,1ሻ ൏ e୼ ୲⁄ do ω ← ω1 212
17 End If 213
18 If incumbent solution ൏ ݂ሺωሻ, Incumbent solution ← fሺωሻ 214
19 m ൌ m ൅ 1; 215
20 Until m ൌ M 216
21 set t ൌ a ∗ t; 217
22 Until t ൏ ݁ 218
 219
A set of parameters needs to be specified that govern the convergence of the algorithm, i.e. initial 220
temperature ݋ݐ, temperature control parameter ߙ, final temperature Ղ, and Markov chain length M, in 221

order to study the finite-time performance of simulated annealing algorithm. Here to should be the 222
maximal difference in cost between any two neighboring solutions [6). 223
 224
3.2 Genetic Algorithm 225
A genetic algorithm (GA) can be described as an “intelligent” probabilistic search algorithm and is 226
based on the evolutionary process of biological organisms in nature. During the course of evolution, 227
natural populations evolve according to the principles of nature selection and “survival of the fittest.” 228
Individuals who are most successful in adapting to their environment will have a better chance of 229
surviving and reproducing, while individuals who are less fit will be eliminated. This means that the 230
genes from highly fit individuals will spread to an increasing number of individuals in each successive 231
generation. The combination of good characteristics from highly adapted parents may produce even 232
more fit offspring. In this way, species evolve to become increasingly better adapted to the 233
environment. 234
 235
A GA simulates these processes by taking an initial population of individuals and applying genetic 236
operators in each reproduction. In optimization terms, each individual in the population is encoded 237
into a string or chromosome that represents a possible solution to a given problem. The fitness of an 238
individual is evaluated with respect to a given objective function. Highly fit individuals or solutions are 239
given opportunities to reproduce by exchanging pieces of their genetic information in a crossover 240
procedure with other highly fit individuals. This produces new “offspring” solutions (i.e. children) who 241
share some characteristics taken from both parents. Mutation is often applied after crossover by 242
altering some genes in the strings. The offspring can either replace the whole population 243
(generational approach) or replace fewer fit individuals (steady-state approach). This evaluation-244
selection-reproduction cycle is repeated until a satisfactory solution is found. 245
 246
 247
 248
 249
The basic steps of a simple GA are shown below 250
Step 1: Generate an initial population 251
 252
Step 2: Evaluate fitness of individuals in the population 253
The objective function value (∑ ௡݆݆ܺ݌

௝ୀଵ) equates to how good a solution is, that is, its fitness. 254
In general, an initial population is randomly generated in some way. 255
 256
Step 3: repeat 257

a. Select individuals from the population to be parents 258
In the GA world for the KP, parents will be chosen by binary tournament selection. In binary 259
tournament selection, two individuals are randomly selected from the population. From 260
these two, the individual with the best fitness is selected to be the first parent 261

b. Recombine (mate) parents to produce children 262
In the GA world for the KP, a single child will be obtained from two parents by uniform 263
crossover. In uniform crossover each bit in the child solution is created by: 264
repeat for each bit in turn 265

choose one of the two parents at random 266
set the child bit equal to the bit in the chosen parent 267

In one-point crossover, a pint between two adjacent bits is randomly selected, “cut” the 268
parents into two segments and create two children by rejoining the segments. 269

c. Mutate the children Evaluate fitness of the children 270
Mutation corresponds to small changes that are stochastically applied to the children 271
Mutation can be applied with a constant probability or with an adaptive probability that 272
changes over the course of the algorithm (perhaps in response to the number of iterations 273
that have passed or in response to population characteristics). 274

d. Replace some or all of the population by the children 275
until 276

 277
Step 4: you decide to stop whereupon report the best solution encountered 278
 279
To perform the simulations, theses are the parameters used for the above methods described. 280
The parameters used for the Simulated Annealing are: 281

Cooling factor: 0.98 282
Termination Temperature: 0.2 283
Initial Temperature: 100 284
Neighbor Sampling Size: 350 285

 286
The parameters used for the Genetic Algorithm are: 287

Population Size: 500 288
Recombination Rate:0.7 289
Mutation Rate: 0.005 290
Number of Crossover Points: 3 291

 292
 293
4. ANALYSIS AND RESULTS 294
 295
Category A: The computer system with a total of 10 created processes, all with their system 296
information in figures. The computer memory can accommodate capacity of 50mb but the total 297
memory of the process is 56 with a combined process activity (number of times process is accessed 298
of 123 299
 300

Table 1: Results for Category A 301
GA SA

No. of Processes Used 9 9

Memory Used 46 46

Number of Times Process Is
Accessed

119 119

 302
From Table 1, it could be seen that all three algorithms provide the same output in terms of all the 303
parameters under consideration. This means that both DP, GA and SA 304
 305
Category B: The table below shows a computer system with a total of 50 created processes, all with 306
their system information in figures. The computer memory can accommodate capacity of 100mb. but 307
the total memory of the process is 281 with a combined process activity (number of times process is 308
accessed of 483 309
 310

Table 2: Results for Category B 311
GA SA

No. of Processes Used 25 23

Memory Used 100 100

Number of Times Process Is
Accessed

327 328

 312
From Table 2, GA provided a slight advantage of in terms of the number of process used. Apart from 313
that all three algorithms provided fairly the same result 314
 315
Category C: The table below shows a computer system with a total of 100 created processes, all with 316
their system information in figures. The computer memory can accommodate capacity of 300mb. but 317
the total memory of the process is 574 with a combined process activity (number of times process is 318
accessed of 1011 319
 320

Table 3: Results for Category C 321
GA SA

No. of Processes Used 61 62

Memory Used 300 300

Number of Times Process Is
Accessed

815 803

 322

Table 3 shows that DP provides a better result than the rest. All memory needed was utilized showing 323
efficient use of memory available. 324
 325
Category D: The table below shows a computer system with a total of 500 created processes, all with 326
their system information in figures. The computer memory can accommodate capacity of 1000mb. but 327
the total memory of the process is 2661 with a combined process activity (number of times process is 328
accessed of 5287 329

 330
Table 4: Results for Category D 331

GA SA

No. of Processes Used 258 252

Memory Used 1000 1000

Number of Times Process
Is Accessed

3551 3431

 332
Category E: The table below shows a computer system with a total of 1000 created processes, all 333
with their system information in figures. The computer memory can accommodate capacity of 334
5000mb. but the total memory of the process is 5626 with a combined process activity (number of 335
times process is accessed of 10480). 336
 337

Table 5: Results for Category E 338
GA SA

No. of Processes Used 915 916

Memory Used 5000 5000

Number of Times Process Is
Accessed

10299 10307

 339
GA and Sa provide fairly the same results in Table 4 and 5. 340
 341
The main criteria in evaluating the efficiency of an algorithm is time and space. Even though in terms 342
of results the three algorithms provided similar results, their efficiency will be determined based on the 343
time it took to produce the results and the amount of memory resource it took on the computer. 344

 345
Table 6: Results for based on Time Taken 346

TIME (ms)

No. of Process GA SA

10 436 60

50 323 52

100 385 87

500 1374 300

1000 2338 554

 347
 348

 349
Figure 1: Results for based on Time Taken 350

 351
From Table 6 and Figure 1, It is seen that GA took more time in giving an optimum out than SA for 352
larger number of processes. As the number of processes increases, time taken increases 353
exponentially for GA as compared to SA. 354
Also the GA also used more memory utilization for than SA from Table 7 and Figure 2. The GA 355
outperformed the Sa only when the number of processes 356
 357

Table 7: Results for based on Memory Taken 358
MEMORY (byte)

No. of Process GA SA

10 28880312 42511800

50 92815928 45555312

100 100774992 73927720

500 210273904 117057112

1000 233449048 210256440

 359
 360

 361
Figure 2: Results for based on Memory Taken 362

 363
 364

0

500

1000

1500

2000

2500

10 50 100 5001000
Ti
m
e(
m
s)

No of Processes

TIME TAKEN

GA

SA

0

50000000

100000000

150000000

200000000

250000000

10 50 100 500 1000

M
e
m
o
ry
(b
yt
e
s)

No. of Processes

MEMORY TAKEN

GA SA

 365
5. CONCLUSION AND RECOMMENDATIONS 366
 367
This paper showed that memory optimization as well as knapsack problem can be successfully solved 368
using heuristic algorithms 369
In this paper, meta-heuristic algorithms i.e. simulated annealing and genetic algorithm were testes 370
compared for their efficiency in optimizing memory. 371
Experiments with simulated annealing showed that increase in number of processes gives better 372
result than the Genetic Algorithm. From the analysis, it can be seen that for smaller number of 373
processes the GA and SA performance are identical but as the number of processes increases, SA 374
performs better than GA. 375
Therefore, it is concluded that, the most efficient algorithm in knapsack optimizing among the two for 376
large number of processes is Simulated Annealing. 377
 378
 379
 380

 381
REFERENCES 382

 383
[1] Pisinger, D. (1994). Core problems in knapsack algorithms. Operations Research 47, 570-575. 384

 385
[2] Kellerer, H., Pferschy, U., Pisinger, D. (2004). Knapsack Problems. Springer, Berlin Heidelberg. 386

 387
[3] Cáceres E. N., and Nishibe, C. (2005). 0-1 Knapsack Problem: BSP/CGM Algorithm and 388

Implementation. IASTED PDCS: 331-335. 389
 390

[4] Robert M, & Thompson, K (1978). Password Security: A Case History. Bell Laboratories, K8. 391
 392

[5] Chu P.C and Beasley J. E. (1998), A genetic algorithm for multidimensional knapsack problem. 393
Journal Heuristics. 4:63-68. 394
 395

[6] Oppong, O. E. (2009). Optimal resource Allocation Using Knapsack Problems: A case Study of 396
Television Advertisements at GTV. Master’s degree paper, KNUST. 397
 398

[7] Martello S., Pisinger D., Toth P., (2000). New trends in exact algorithms for the 0–1 knapsack 399
problem 400
 401

[8] Mastrolilli M., Huttler M., (2006). Hybrid rounding techniques for knapsack problems. 402
www.sciencedirect.com 403
 404

[9] Hanafi S., Freville A., (1998). An efficient tabu search approach for the 0–1 multidimensional 405
knapsack problem. www.sciencedirect.com 406
 407

[10] Rinnooy K, A.H. G. L., Stougie, C. Vercellis (1993). A class of generalized greedy algorithms for 408
the multi-knapsack problem. www.sciencedirect.com 409
 410

[11] Balachandar R., Kannan K., (2008). A new polynomial time algorithm for 0–1 multiple knapsack 411
problem based on dominant principles. www.sciencedirect.com 412
 413

[12] Elhedhli S., (2005). Exact solution of a class of nonlinear knapsack problems. 414
 415

[13] Devyaterikova, M.V., A.A. Kolokolov, A.P. Kolosov (2009). L-class enumeration algorithms for a 416
discrete production planning problem with interval resource quantities 417
 418

[14] Chen G., Maw-Sheng Chern, Jin-Hwang Jang (1990). Pipeline architectures for dynamic 419
programming algorithms. www.sciencedirect.com 420
 421

[15] Asamoah D., Baidoo E., Oppong S., Optimizing Memory using Knapsack Algorithm", 422
International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.5, May 423
2017, Pages 34-42. 424

 425
[16] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. (1983). Optimization by simulated annealing. 426

 427
 428

