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ABSTRACT 7 
 8 
 
The Knapsack Problems are among the simplest integer programs which are NP-hard. Problems in 
this class are typically concerned with selecting from a set of given items, each with a specified weight 
and value, a subset of items whose weight sum does not exceed a prescribed capacity and whose 
value is maximum. The classical 0-1 Knapsack Problem arises when there is one knapsack and one 
item of each type. This paper considers the application of classical 0-1 knapsack problem with a 
single constraint to computer memory management. The goal is to achieve higher efficiency with 
memory management in computer systems. 
This study focuses on using simulated annealing and genetic algorithm for the solution of knapsack 
problems. It is shown that Simulated Annealing performs better than the Genetic Algorithm for large 
number of processes.   
 
 9 
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1. INTRODUCTION 15 
 16 
A great variety of practical problems can be represented by a set of entities, each having an 17 
associated value, from which one or more subsets has to be selected in such a way that the sum of 18 
the values of the selected entities is maximized, and some predefined conditions are respected. The 19 
most common condition is obtained by also associating a weight to each entity and establishing that 20 
the sum of the entity sizes in each subset does not exceed some prefixed bound. These problems are 21 
generally called knapsack problems, since they recall the situation of a traveler having to fill up his 22 
knapsack by selecting from among various possible objects those which will give him the maximum 23 
comfort. One such problem is in computer memory management. 24 
 25 
Modern computer memory management is for some causes a crucial element of assembling current 26 
large applications. First, in large applications, space can be a problem and some technology are 27 
efficiently needed to return unused space to the program. Secondly, inexpert implementations can 28 
result in extremely unproductive programs since memory management takes a momentous portion of 29 
total program execution time and finally, memory errors become rampant, such that it is extremely 30 
difficult to find programs when accessing freed memory cells. It is much secured to build more 31 
unfailing memory management into design even though complicated tools exist for revealing a variety 32 
of memory faults. It is for this basis that efficient schemes are needed to manage allocating and 33 
freeing of memory by programs. 34 
 35 
Optimizing current memory management strategies strength is performed by altering the space 36 
allocated to each task. To achieve high levels of multiprogramming while avoiding thrashing such 37 
policies vary the load (i.e., the number of active tasks). Additionally, in a system that runs out of 38 
capacity probably because the system is undersized, several options are available. This option 39 
includes either upgrading the processor (if possible), reduce available functionality, or optimize.  40 
A great deal of realistic problems where some predefined conditions are respected such that the sum 41 
of the values of the selected entities is maximized can be represented by a set of entities, each 42 
having an associated value, from which one or more subsets has to be selected. The most ordinary 43 
situation is obtained by establishing that the sum of the entity sizes in each subset does not exceed 44 
some prefixed bound by associating a weight/size to each entity.  45 



 

 
 

 46 
The goal of this paper is to maximize the number of processes in a limited memory space.   47 
 48 
 49 
 50 
2. LITERATURE REVIEW 51 
 52 
Knapsack problems have been studied intensively in the past decade attracting both theorist and 53 
practitioners. The theoretical interest arises mainly from their simple structure which both allows 54 
exploitation of a number of combinational properties and permits more complex optimization problems 55 
to be solved through a series of knapsack type. From a practical point of view, these problems can 56 
model many industrial applications, the most classical applications being capital budgets, cargo 57 
loading and cutting stock. In this section a review of literature on knapsack problems and applications 58 
is presented. 59 
 60 
The knapsack problem (KP) is a traditional combinatorial issue used to show numerous modern 61 
circumstances. ―Since Balas and Zemel a dozen years ago introduced the so-called core problem as 62 
an efficient way of solving the Knapsack Problem, all the most successful algorithms have been 63 
based on this idea. All knapsack Problems belong to the family of NP-hard problems, meaning that it 64 
is very unlikely that polynomial algorithms for these problems can be devised [1]. 65 
 66 
The Knapsack problem has been concentrated on for over a century with prior work dating as far back 67 
as 1897. ―It is not known how the name Knapsack originated though the problem was referred to as 68 
such in early work of mathematician Tobias Dantzig suggesting that the name could have existed in 69 
folklore before mathematical problem has been fully defined [2]. 70 
Given a knapsack of limit, Z, and n dissimilar items, Caceres and Nishibe [3] algorithm resolved the 71 
single Knapsack problem using local computation time with communication rounds. With dynamic 72 
programming, their algorithm solved locally pieces of the Knapsack problem. The algorithm was 73 
implemented in Beowulf and the obtained time showed good speed-up and scalability [4]. 74 
Heuristic algorithms experienced in literature that can generally be named as population heuristics 75 
include; ―genetic algorithms, hybrid genetic algorithms, mimetic algorithms, scatter-search 76 
algorithms and bionomic algorithmsǁ. Among these, Genetic Algorithms have risen as a dominant 77 
latest search paradigm [5]. 78 
 79 
Eager about making use of a easy heuristic scheme (simple flip) for answering the knapsack 80 
problems, Oppong [6] offered a study work on the application of usual zero-1 knapsack trouble with a 81 
single limitation to determination of television ads at significant time such as prime time news, news 82 
adjacencies, breaking news and peak times. 83 
Martello et al [7] presented a new algorithm for the optimal solution of the 0-1 Knapsack problem, 84 
which is particularly effective for large-size problems. The algorithm is based on determination of an 85 
appropriate small subset of items and the solution of the corresponding "core problem": from this they 86 
derived a heuristic solution for the original problem which, with high probability, can be proved to be 87 
optimal. The algorithm incorporated a new method of computation of upper bounds and efficient 88 
implementations of reduction procedures.  89 
 90 
Huttler and Mastrolilli [8] addressed the classical knapsack problem and a variant in which an upper 91 
bound is imposed on the number of items that can be selected. It was shown that appropriate 92 
combinations of rounding techniques yield novel and more powerful ways of rounding. Moreover, they 93 
presented a linear-storage polynomial time approximation scheme (PTAS) and a fully polynomial time 94 
approximation scheme (FPTAS) that compute an approximate solution, of any fixed accuracy, in 95 
linear time. These linear complexity bounds give a substantial improvement of the best previously 96 
known polynomial bounds. 97 
 98 
Hanafi and Freville [9] described a new approach to tabu search (TS) based on strategic oscillation 99 
and surrogate constraint information that provides a balance between intensification and 100 
diversification strategies. New rules needed to control the oscillation process are given for the 0 /1 101 
multidimensional knapsack (0/1 MKP). Based on a portfolio of test problems from the literature, our 102 
method obtains solutions whose quality is at least as good as the best solutions obtained by previous 103 
methods, especially with large scale instances. These encouraging results confirm the efficiency of 104 
the tunneling concept coupled with surrogate information when resource constraints are present. 105 



 

 
 

Rinnooy et al. [10] proposed a class of generalized greedy algorithms is for the solution of the multi-106 
knapsack problem. Items are selected according to decreasing ratios of their profit and a weighted 107 
sum of their requirement coefficients. The solution obtained depended on the choice of the weights. A 108 
geometrical representation of the method was given and the relation to the dual of the linear 109 
programming relaxation of multi-knapsack is exploited. They investigated the complexity of computing 110 
a set of weights that gives the maximum greedy solution value. Finally, the heuristics were subjected 111 
to both a worst-case and a probabilistic performance analysis. 112 
 113 
Balachandar and Kannan [11] presented a heuristic to solve the 0/1 multi-constrained knapsack 114 
problem (0/1 MKP) which is NP-hard. In this heuristic the dominance property of the constraints is 115 
exploited to reduce the search space to find near optimal solutions of 0/1 MKP. This heuristic was 116 
tested for 10 benchmark problems of sizes up to 105 and for seven classical problems of sizes up to 117 
500, taken from the literature and the results were compared with optimum solutions. Space and 118 
computational complexity of solving 0/1 MKP using this approach were also presented. The 119 
encouraging results especially for relatively large size test problems indicate that this heuristic can 120 
successfully be used for finding good solutions for highly constrained NP-hard problems. 121 
Elhedhli [12] considered a class of nonlinear knapsack problems with applications in service systems 122 
design and facility location problems with congestion. They provided two linearizations and their 123 
respective solution approaches. The first is solved directly using a commercial solver. The second is a 124 
piecewise linearization that is solved by a cutting plane method. 125 
 126 
Devyaterikova et al. [13] presented discrete production planning problem which may be formulated as 127 
the multidimensional knapsack problem is considered, while resource quantities of the problem are 128 
supposed to be given as intervals. An approach for solving this problem based on using its relaxation 129 
set is suggested. Some L-class enumeration algorithms for the problem are described. Results of 130 
computational experiments were presented. 131 
Chen et al. [14] presented pipeline architectures for the dynamic programming algorithms for the 132 
knapsack problems. They enabled them to achieve an optimal speedup using processor arrays, 133 
queues, and memory modules. The processor arrays can be regarded as pipelines where the 134 
dynamic programming algorithms are implemented through pipelining. 135 
 136 
 137 
3. METHODOLOGY 138 
 139 
Because of their wide range of applicability, knapsack problems have known a large number of 140 
variations such as: single and multiple-constrained knapsacks, knapsacks with disjunctive constraints, 141 
multidimensional knapsacks, multiple choice knapsacks, single and multiple objective knapsacks, 142 
integer, linear, non-linear knapsacks, deterministic and stochastic knapsacks, knapsacks with convex 143 
/ concave objective functions, etc. 144 
 145 
This is a 0-1 knapsack problem, pure integer programming with single constraint which forms a very 146 
important class of integer programming. 147 
The 0-1 Knapsack Problem (KP) can be mathematically formulated through the following integer 148 
linear programming. 149 
 150 

Maximize෍ P୨x୨ 
୬

୨ୀଵ
     [1] 151 

 152 

Subject  to  ൌ෍ ൫w୨x୨൯
୬

୨ୀଵ
 ൑  c                      [2] 153 

  x୨ ൌ 0 or 1, j ൌ 1, … , n 154 
 155 
Where, ௝ܲ refers to the value, or worth of item j, ݔ௝ refers to the item j, ݓ௝ refers to the relative-weight 156 
of item j, with respect to the knapsack and C refers to the capacity, or weight-constraint of the 157 
knapsack. There exist j = 1…n items, and there is only one knapsack. 158 
 159 
The use of two major meta-heuristics approaches, Genetic algorithm and Simulated annealing which 160 
have been used to solve large scale problems [15] will be considered in this paper. 161 
  162 



 

 
 

3.1 Simulated Annealing 163 
Simulated annealing (SA) is a local search algorithm capable of escaping from local optima. Its case 164 
of implementation, convergence properties and its capability of escaping from local optima has made 165 
it a popular algorithm over the past decades. Simulated annealing is so named because of its analogy 166 
to the process of physical annealing with solids in which a crystalline solid is heated and then allowed 167 
to cool very slowly until it achieves stable state. i.e. its minimum lattice energy state and thus is free of 168 
crystal effects. Simulated annealing mimics this type of thermodynamic behavior in searching for 169 
global optima for discrete optimization problems (DOP). 170 
 171 
At each iteration of simulated annealing, algorithm applied to a DOP, the objective function values for 172 
two solutions (the current solution and a newly generated neighboring solution) are compared. Better 173 
solutions are always accepted, while a fraction of inferior solutions is accepted in the hope of 174 
escaping local optima in search of global optima. The probability of accepting non-improving solutions 175 
depends on a temperature parameter, which is non-increasing with each iteration of the algorithm. 176 
The key algorithm feature of simulated annealing is that provides a means to escape local optima by 177 
allowing worse moves (i.e. moves to a solution that corresponds to a worse objective value function). 178 
As the temperature is decreased to zero, worse moves occur less frequently and the solution 179 
distribution associated with the inhomogeneous Markov chain that models the behavior of the 180 
algorithm converges to a distribution in which all the probability is concentrated on the set of globally 181 
optimal solutions which means that the algorithm is asymptotically convergent. 182 
 183 
To formally describe simulated annealing algorithm for KP, some definitions are needed. Let Ω be the 184 
solution space: define η(ω) to be the neighborhood function for w ∈ Ω. Simulated annealing starts with 185 
an initial solution ω ∈ Ω. A neighborhood solution ω 1 ∈ η(ω) is then generated randomly in most 186 
cases. Simulated annealing is based on the Metropolis acceptance criterion, which models how a 187 
thermodynamic system moves from its current solution ω ∈ Ω to a candidate solution ߱݅  ∈  ሺ߱ሻ in 188ߟ 
which the energy content is being minimized. The candidate solution ω 1 is accepted as the current 189 
solution based on the acceptance probability. 190 
In this survey, finite-time implementations of simulated annealing algorithm are considered, which can 191 
no longer guarantee to find an optimal solution, but may result in faster executions without losing too 192 
much on the solution quality. Simulated annealing algorithm with static cooling schedule [16] for KP is 193 
outlined in pseudo-code. 194 
 195 
1 Select an initial solution ω =(ϰ1,….., ϰn)∈ Ω; an initial temperature t = t0;  196 
2 control parameter value α; final temperature e; a repetition schedule, M that defines the number of 197 

iterations executed at each temperature; 198 
3 Incumbent solution  ←  fሺωሻ; 199 
4 Repeat; 200 
5 Set repetition counter m  ൌ  0; 201 
6 Repeat; 202 
7 Select an integer i from the set  ሼ1,2, … . , nሽ randomly: 203 
8 If x୧ ൌ  0, pick up item i,   i. e.  set  x୧  ൌ  1, obtain new solution  ω1 then 204 
9 while solution ω1 is infeasible, do 205 
10 drop another item from ω randomly; denote the new solution  as ω1 206 
11 let Δ ൌ fሺω1ሻ െ fሺωሻ 207 
12 while Δ  ൒  0 or Random (0,1) < e୼ ୲⁄  do  ω ← ω1 208 
13 Else 209 
14 drop item i and pick another item randomly, get new solution ω1 210 
15 let Δ  ൌ fሺω1ሻ െ  fሺωሻ 211 
16 while Δ  ൒ 0 or Random ሺ0,1ሻ  ൏ e୼ ୲⁄   do ω  ←  ω1 212 
17 End If 213 
18 If incumbent solution  ൏  ݂ሺωሻ,   Incumbent solution  ←  fሺωሻ 214 
19 m  ൌ  m  ൅  1; 215 
20 Until m  ൌ  M 216 
21 set t  ൌ  a  ∗  t; 217 
22 Until t  ൏  ݁ 218 
 219 
A set of parameters needs to be specified that govern the convergence of the algorithm, i.e. initial 220 
temperature ݋ݐ, temperature control parameter ߙ, final temperature Ղ, and Markov chain length M, in 221 



 

 
 

order to study the finite-time performance of simulated annealing algorithm. Here to should be the 222 
maximal difference in cost between any two neighboring solutions [6). 223 
 224 
3.2 Genetic Algorithm 225 
A genetic algorithm (GA) can be described as an “intelligent” probabilistic search algorithm and is 226 
based on the evolutionary process of biological organisms in nature. During the course of evolution, 227 
natural populations evolve according to the principles of nature selection and “survival of the fittest.” 228 
Individuals who are most successful in adapting to their environment will have a better chance of 229 
surviving and reproducing, while individuals who are less fit will be eliminated. This means that the 230 
genes from highly fit individuals will spread to an increasing number of individuals in each successive 231 
generation. The combination of good characteristics from highly adapted parents may produce even 232 
more fit offspring. In this way, species evolve to become increasingly better adapted to the 233 
environment. 234 
 235 
A GA simulates these processes by taking an initial population of individuals and applying genetic 236 
operators in each reproduction. In optimization terms, each individual in the population is encoded 237 
into a string or chromosome that represents a possible solution to a given problem. The fitness of an 238 
individual is evaluated with respect to a given objective function. Highly fit individuals or solutions are 239 
given opportunities to reproduce by exchanging pieces of their genetic information in a crossover 240 
procedure with other highly fit individuals. This produces new “offspring” solutions (i.e. children) who 241 
share some characteristics taken from both parents. Mutation is often applied after crossover by 242 
altering some genes in the strings. The offspring can either replace the whole population 243 
(generational approach) or replace fewer fit individuals (steady-state approach). This evaluation-244 
selection-reproduction cycle is repeated until a satisfactory solution is found.  245 
 246 
 247 
 248 
 249 
The basic steps of a simple GA are shown below 250 
Step 1: Generate an initial population 251 
 252 
Step 2: Evaluate fitness of individuals in the population 253 
The objective function value (∑ ௡݆݆ܺ݌

௝ୀଵ ) equates to how good a solution is, that is, its fitness.  254 
In general, an initial population is randomly generated in some way.  255 
 256 
Step 3: repeat 257 

a. Select individuals from the population to be parents 258 
In the GA world for the KP, parents will be chosen by binary tournament selection. In binary 259 
tournament selection, two individuals are randomly selected from the population. From 260 
these two, the individual with the best fitness is selected to be the first parent 261 

b. Recombine (mate) parents to produce children 262 
In the GA world for the KP, a single child will be obtained from two parents by uniform 263 
crossover. In uniform crossover each bit in the child solution is created by: 264 
repeat for each bit in turn 265 

choose one of the two parents at random 266 
set the child bit equal to the bit in the chosen parent 267 

In one-point crossover, a pint between two adjacent bits is randomly selected, “cut” the 268 
parents into two segments and create two children by rejoining the segments.  269 

c. Mutate the children Evaluate fitness of the children 270 
Mutation corresponds to small changes that are stochastically applied to the children 271 
Mutation can be applied with a constant probability or with an adaptive probability that 272 
changes over the course of the algorithm (perhaps in response to the number of iterations 273 
that have passed or in response to population characteristics). 274 

d. Replace some or all of the population by the children 275 
until 276 

 277 
Step 4:  you decide to stop whereupon report the best solution encountered 278 
 279 
To perform the simulations, theses are the parameters used for the above methods described. 280 
The parameters used for the Simulated Annealing are: 281 



 

 
 

Cooling factor: 0.98 282 
Termination Temperature: 0.2 283 
Initial Temperature: 100 284 
Neighbor Sampling Size: 350 285 

 286 
The parameters used for the Genetic Algorithm are: 287 

Population Size: 500 288 
Recombination Rate:0.7 289 
Mutation Rate: 0.005 290 
Number of Crossover Points: 3 291 

 292 
 293 
4. ANALYSIS AND RESULTS 294 
 295 
Category A: The computer system with a total of 10 created processes, all with their system 296 
information in figures. The computer memory can accommodate capacity of 50mb but the total 297 
memory of the process is 56 with a combined process activity (number of times process is accessed 298 
of  123 299 
 300 

Table 1: Results for Category A 301 
GA SA 

No. of Processes Used 9 9 

Memory Used 46 46 

Number of Times Process Is 
Accessed 

119 119 

 302 
From Table 1, it could be seen that all three algorithms provide the same output in terms of all the 303 
parameters under consideration. This means that both DP, GA and SA  304 
 305 
Category B: The table below shows a computer system with a total of 50 created processes, all with 306 
their system information in figures. The computer memory can accommodate capacity of 100mb. but 307 
the total memory of the process is 281 with a combined process activity (number of times process is 308 
accessed of  483 309 
 310 

Table 2: Results for Category B 311 
GA SA 

No. of Processes Used 25 23 

Memory Used 100 100 

Number of Times Process Is 
Accessed 

327 328 

 312 
From Table 2, GA provided a slight advantage of in terms of the number of process used. Apart from 313 
that all three algorithms provided fairly the same result 314 
 315 
Category C: The table below shows a computer system with a total of 100 created processes, all with 316 
their system information in figures. The computer memory can accommodate capacity of 300mb. but 317 
the total memory of the process is 574 with a combined process activity (number of times process is 318 
accessed of 1011 319 
 320 

Table 3: Results for Category C 321 
GA SA 

No. of Processes Used 61 62 

Memory Used 300 300 

Number of Times Process Is 
Accessed 

815 803 

 322 



 

 
 

Table 3 shows that DP provides a better result than the rest. All memory needed was utilized showing 323 
efficient use of memory available. 324 
 325 
Category D: The table below shows a computer system with a total of 500 created processes, all with 326 
their system information in figures. The computer memory can accommodate capacity of 1000mb. but 327 
the total memory of the process is 2661 with a combined process activity (number of times process is 328 
accessed of  5287 329 

 330 
Table 4: Results for Category D 331 

GA SA 

No. of Processes Used 258 252 

Memory Used 1000 1000 

Number of Times Process 
Is Accessed 

3551 3431 

 332 
Category E: The table below shows a computer system with a total of 1000 created processes, all 333 
with their system information in figures. The computer memory can accommodate capacity of 334 
5000mb. but the total memory of the process is 5626 with a combined process activity (number of 335 
times process is accessed of 10480). 336 
 337 

Table 5: Results for Category E 338 
GA SA 

No. of Processes Used 915 916 

Memory Used 5000 5000 

Number of Times Process Is 
Accessed 

10299 10307 

 339 
GA and Sa provide fairly the same results in Table 4 and 5. 340 
 341 
The main criteria in evaluating the efficiency of an algorithm is time and space. Even though in terms 342 
of results the three algorithms provided similar results, their efficiency will be determined based on the 343 
time it took to produce the results and the amount of memory resource it took on the computer. 344 

 345 
Table 6: Results for based on Time Taken 346 

TIME (ms) 

No. of Process GA SA 

10 436 60 

50 323 52 

100 385 87 

500 1374 300 

1000 2338 554 

 347 
 348 



 

 

 349 
Figure 1: Results for based on Time Taken 350 

 351 
From Table 6 and Figure 1, It is seen that GA took more time in giving an optimum out than SA for 352 
larger number of processes. As the number of processes increases, time taken increases 353 
exponentially for GA as compared to SA.  354 
Also the GA also used more memory utilization for than SA from Table 7 and Figure 2. The GA 355 
outperformed the Sa only when the number of processes  356 
 357 

Table 7: Results for based on Memory Taken 358 
MEMORY (byte) 

No. of Process GA SA 

10 28880312 42511800 

50 92815928 45555312 

100 100774992 73927720 

500 210273904 117057112 

1000 233449048 210256440 

 359 
 360 

 361 
Figure 2: Results for based on Memory Taken 362 

 363 
 364 
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 365 
5. CONCLUSION AND RECOMMENDATIONS 366 
 367 
This paper showed that memory optimization as well as knapsack problem can be successfully solved 368 
using heuristic algorithms 369 
In this paper, meta-heuristic algorithms i.e. simulated annealing and genetic algorithm were testes 370 
compared for their efficiency in optimizing memory. 371 
Experiments with simulated annealing showed that increase in number of processes gives better 372 
result than the Genetic Algorithm. From the analysis, it can be seen that for smaller number of 373 
processes the GA and SA performance are identical but as the number of processes increases, SA 374 
performs better than GA. 375 
Therefore, it is concluded that, the most efficient algorithm in knapsack optimizing among the two for 376 
large number of processes is Simulated Annealing.  377 
 378 
 379 
 380 

 381 
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