
Abstract

Predator-prey models describe the interaction between two species,
the prey which serves as a food source to the predator. The migration
of the prey for safety reasons after a predator attack and the predator
in search of food, from a patch to another may not be instantaneous.
In this paper, a Rosenzweig-MacAurther model with a Holling-type II
predator functional response and time delay in the migration of both
species is developed and analysed. We show that depending on the prey
growth and prey migration rates either both species go to extinction
or co-exist. Numerical simulations show that a longer delay in the mi-
gration of the species leads makes the model to stabilize at a slower
rate compared to when the delay is shorter. Relevant agencies should
address factors that slow down migration of species, for example, de-
struction of natural habitats for human settlement and activities, which
may become barriers to migration.

Subject Classification: xxxxxx

1 Introduction

Given at least two species (especially animals), and considering the fact that
all animals must eat to live, then all these species must interact either with
other animals or with plants. Therefore when one species (the prey) acts as
a food source to the other species (the predator), the model describing these
dynamics is referred to as a predator-prey model [4], [9].

A classical predator-prey model is the Lotka-Volterra model which rep-
resents the predator-prey interaction in a homogeneous environment. The
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Lotka-Volterra model assumes that the environment will always be homoge-
neous, but that is not the case since the environment is made up of many
patches which are connected by migration [2], [8], [9], [13]. Migration occurs
when a species moves from one patch to another due to some unfavorable con-
ditions in its initial patch, for example, intraspecific competition, predation,
overpopulation of either species in a patch, environmental factors like drought,
human activities like logging among others, see for instance [3], [11]. Migra-
tion can either be constant or variable. For constant migration, the number
of species moving per unit time is a constant fraction of the population of the
species in a given patch while for variable migration, the number of species
moving per unit time is dependent on the density of the other species in that
patch and other factors.

The classical predator-prey models assume that in the absence of preda-
tion, the prey will grow in the Malthusian way (unboundedly) in the absence
of the predator. This is not realistic because, apart from predation, other fac-
tors such as limited food resources, diseases and poaching may affect the prey
population(as suggested by [3]). This necessitates an inclusion of a variable
that will make the model to be bounded from above (the population not to
explode), this variable is known as the carrying capacity. The carrying capac-
ity is usually determined by the available sustaining resources . The resulting
model is referred to as a Predator-Prey Model with logistic growth [9]. Exam-
ples of Predator-Prey Models with logistic growth are Verhulst Model [4], [9]
and Rosenzweig and MacArthur Model [1], [7], [12].

Abdllaoui et. al [2], Comins and Blatt [5] and Mchich et. al [8] in their
models assume that migration of these species is instantaneous, that is, the
prey migrate immediately after a predator attack and the predator migrate
after lacking their food source. In reality, this may not be the case since
the species can meet different barriers like a swollen river, an infrastructure
through the natural habitat or even decide to wait for their family to migrate
together as it is seen when the wildebeest migrate. These barriers, therefore
dictate the inclusion of a time delay in migration of these species [3], [10], [13].

2 The model

The proposed model uses the framework of the Rosenzweig-MacAurther predator-
prey system with a Holling-type II predator functional response, where these
two patches are coupled via migration, given by,

ṅ1(t) = α(n2(t− τ)− n1(t)) + n1

(
r1(1−

n1

K1

)− A1p1
n1 +B1

)
,

ṗ1(t) = β(p2(t− τ)− p1(t)) +
p1n1

B1 + n1

− d1p1
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ṅ2(t) = α(n1(t− τ)− n2(t)) + n2

(
r2(1−

n2

K2

)− A2p2
n2 +B2

)
,

ṗ2(t) = β(p1(t− τ)− p2(t)) +
p2n2

B2 + n2

− d2p2 (1)

Where ni = ni(t) and pi = pi(t) are the prey and predator densities at time t
in patch i , respectively. The parameter ri denotes the prey intrinsic growth
rate, The prey carrying capacity is denoted by Ki . The constant di is the
natural mortality rate of the predator population. The predation parameter
is denoted Bi and the prey capturing rate is denoted by Ai . The constant
β denotes the predator migration rate, α is the prey migration rate and τ
represents a time delay in the migration of both the prey and predator.

3 Model Analysis

Let Zi(t) :=
(
n1(t), p1(t)

)
, i = 1, 2 , then Equation (1) becomes,

Żi(t) = (Zj(t− τ)− Zi(t))γ + fi(Zi(t)), i 6= j, (2)

where, γ = (α β )T and

fi(Zi(t)) =

(
ni

(
ri(1− ni

K
)− Aipi

ni+Bi

)
pini

Bi+ni
− dipi

)
.

Let Z(t) := (Z1(t), Z2(t)) and f(Z(t), Z(t− τ)) represent the vector field
on the right hand side of Equation (2), thus Equation (2) becomes,

Ż(t) = f(Z(t), Z(t− τ)). (3)

Let C = C([−τ, 0],R4) be a Banach space equipped with the sup norm, ‖φ‖ =
sup|φ(θ)| ≤ r, (0 ≤ r < ∞), for θ ∈ [−τ, 0] and where |φ(θ)| denotes a
Euclidean norm of φ(θ) .
Let the initial condition be given by,

ϕ(t) := Z(t) |[−τ,0], (4)

where ϕ ∈ C . Since f(Z(t), Z(t− τ)) ∈ C(R4 × C,R4) , Equation (3) subject
to Equation (4) has a unique solution. For more on existence and uniqueness
of solutions, see for instance Hale & Lunel [6].

We wish to exploit the symmetries in the coupling terms of the linear part
of Equation (2), that is;

Żi(t) = (Zj(t− τ)− Zi(t))γ, i, j = 1, 2, i 6= j, (5)
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which can be represented by two invariant manifolds. We will study the dy-
namics of these two invariant manifolds. To obtain these invariant manifolds,
an application of the Laplace transform methods in complex variables to the
terms describing migration in Equation (2) is required. For us to get the
Laplace transform, an exponential estimate of the solution of the Equation (5)
should be bounded.

3.1 Exponential Boundedness

We now prove that Equation (5) is exponentially bounded.

Lemma 3.1. The solution of Equation (5) subject to the initial condition in
Equation (4) for t ≥ 0 , satisfies,

| Z(t) |≤ (1 + Aτ)e2At | ϕ |, (6)

where | . | denotes a sup norm in R as well as a matrix norm.

Proof. Let

(
αi 0
0 βi

)
= Ai . Equation (5) can be written as,

Ż(t) =

(
−A1 0

0 −A2

)
Z(t) +

(
0 A1

A2 0

)
Z(t− τ).

The solutions of Equation (7) subject to initial condition in Equation (4) sat-
isfy,

Z(t) = ϕ(0) +

∫ 0

−τ

(
0 A1

A2 0

)
ϕ(s)ds+

∫ t

0

{(
0 A1

A2 0

)
Z(s− τ)

−
(
A1 0
0 A2

)
Z(s)

}
ds.

Therefore,

| Z(t) |≤| ϕ | +A | ϕ | τ + 2A

∫ t

0

| Z(s) | ds

= (1 + Aτ) | ϕ | +2

∫ t

0

A | Z(s) | ds.

Where

(
A1 0
0 A2

)
= A . Since (1 + Aτ)ϕ is nondecreasing, by Grownwall’s

inequality,

| Z(t) |≤ (1 + Aτ)exp(

∫ t

0

2Ads) | ϕ |= (1 + Aτ)exp(2At) | ϕ | .
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Since Equation (5) is exponentially bounded, we will now find the characteristic
equation so that we can be able to show that Laplace Transform of Equation
(5) exists.

3.2 Characteristic Equation of the Coupling Terms

To obtain solutions of Equation (1), we assume a solution of the form

Z(t) = eλtc, (7)

where c ∈ R4 with c a nonzero 4 by 1 column vector. Substituting Equations
(7) into Equation (5), we obtain the characteristic equation

(α + λ)2(β + λ)2 + α2β2e−4λτ − (α + λ)2β2e−2λτ − (β + λ)2α2e−2λτ = 0 (8)

3.3 Invariant Manifold

We now show that solutions of Equation (5) define two semi-flows on two
two-dimensional invariant subspaces of R4 . Taking the Laplace transform of
Equation (5), we get(

−λI2 − I2γ e−λτI2γ
e−λτI2γ −λI2 − I2γ

)(
Z1(λ)
Z2(λ)

)
=

(
Z1(0)
Z2(0)

)
. (9)

where γ =

(
α 0
0 β

)
. Equation (9) is symmetric in nature. On simplifying

equation (9), adding the set of equations involving Z2(0) to Z1(0) in equation
(9), we obtain

(−I2λ− I2γ + I2γe
−λτ )(Z1(λ) + Z2(λ)) = Z1(0) + Z2(0), (10)

On simplifying equation (9) by subtracting the set of equations involving
Z2(0) from Z1(0) in equation (9), we obtain

(−I2λ− I2γ − I2γe−λτ )(Z1(λ)− Z2(λ)) = Z1(0)− Z2(0), (11)

The Matrix (−I2λ− I2γ + I2γe
−λτ )

−1
is non-singular when λ is such that

(−I2λ − γ + γe−λτ ) 6= 0 and (−λ− γ − γe−λτ )−1
I2 is non-singular when λ

is such that (−λ − γ − γe−λτ ) 6= 0, thus the inverse Laplace transform for
Equation (10) and Equation (11) is

(Z1(λ) + Z2(λ)) = L−1{(−λ− γ + γe−λτ )I2)
−1}(Z1(0) + Z2(0)),

(Z1(λ)− Z2(λ)) = L−1{(−λ− γ − γe−λτ )I2)−1}(Z1(0)− Z2(0)), (12)
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We have two manifolds; the symmetric manifold denoted by Θ-manifold where
Z1(t) = Z2(t) and the asymmetric manifold denoted by Π-manifold where
Z1(t) = −Z2(t) .

Let us now define two linear subspaces of R4

Θ = {(Z1(t), Z2(t)), Zi(t) ∈ R2 : Z1(t)− Z2(t) = 0},
Π = {(Z1(t), Z2(t)), Zi(t) ∈ R2 : Z1(t) + Z2(t) = 0}. (13)

To simplify the study of Equation (1) on these manifolds, we introduce a
change of coordinates defined by,

u1 :=
1

2
(n1 + n2), v1 :=

1

2
(p1 + p2),

u2 :=
1

2
(n1 − n2), v2 :=

1

2
(p1 − p2). (14)

With the assumption that the predator and prey species are of the same
type regardless of the patch, we take r1 = r2 := r , A1 = A2 := A , B1 =
B2 := B , d1 = d2 := d , α1 = α2 := α , K1 = K2 := K and β1 = β2 := β .
Using the transformation in Equation (14) in Equation (1), we obtain,

u̇1 = α(u1(t− τ)− u1) +
r

K

(
Ku1 − u21 − u22

)
− A

(Bu1v1 + u21v1 − u2(−u2v1 +Bv2)

(u1 +B)2 − u22

)
,

v̇1 = β(v1(t− τ)− v1) +
Bu2v2 + (u1(B + u1)− u22)v1

(B + u1)2 − u22
− dv1,

u̇2 = −α(u2(t− τ) + u2) +
r

K

(
Ku2 − 2u1u2

)
− A

(Bu2v1 + u1(B + u1)v2 − u22v2
(u1 +B)2 − u22

)
,

v̇2 = −β(v2(t− τ) + v2) +
Bu2v1 + (u1(B + u1)− u22)v2

(B + u1)2 − u22
− dv2.

(15)

where ui = ui(t) and vi = vi(t), i = 1, 2 . The linear subspace in Equation
(13) becomes

Π = {(u1, v1, 0, 0) ∈ R4 : (u1, v1) ∈ R2},
Θ = {(0, 0, u2, v2) ∈ R4 : (u2, v2) ∈ R2}.

On both Π and Θ the system reduces to two dimensional systems of the form

U̇1 =

(
α 0
0 β

)
U1(t− τ) +

(
−α + r − ru1

K
v1

u1+B

0 − β − d

)
U1 (16)

and

U̇2 =

(
−α 0
0 − β

)
U2(t− τ) +

(
−α + r u2

B2−u22
0 − β − d

)
U2 (17)

respectively. Ui = (ui, vi)
T

Next we examine the stability of solutions on the two manifolds, this will help
us predict long-term behaviors of solutions of Model (1).
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3.4 Asymmetric Manifold

On solving the system in equation (16), we let U1(t) = eλtC1 , then we obtain
the following characteristic equation,

(αe−λτ − α + r − λ)(βe−λτ − β − d− λ) = 0 (18)

We will use the following theorem to show the nature of solutions for
Equation(16)

Theorem 3.1. For all β and s , equation (16) has

(i) a sink at the origin for α > r ,

(ii) a saddle at the origin for α < r ,

(iii) a periodic solution for α = r

Proof. Using the first factor of equation (18), we have

(αe−λτ − α + r − λ) = 0 (19)

Let
z = (λ+ α− r)τ (20)

Then equation (19) becomes

z = ατe−ze(−r+α)τ (21)

The following lemma will be used to simplify equation (21)

Lemma 3.2. The equation z = be−z has simple pure imaginary roots,
z = i(π/2 + 2mπ) , for b = −(π/2 + 2mπ)
z = 0 , for b = 0
z = i(π/2 + (2m+ 1)π) , for b = (π/2 + (2m+ 1)π)
where m = 0, 1, 2, ... and there are no other purely imaginary roots.

Using Lemma (3.2) where b = ατe−(r−α)τ > 0 , we get z = i(π/2+(2m+1)π
for ατe−(r−α)τ = (π/2 + (2m+ 1)π) . Equation (20) becomes

λ =
i(π/2 + (2m+ 1)π)

τ
− α + r (22)

Equation (22) has

(i) roots with positive real parts for α < r

(ii) roots with negative real parts for α > r
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(iii) purely imaginary roots for α = r .

For the second factor of equation (18),

(βe−λτ − β − d− λ) = 0. (23)

Let
z = (λ+ β + d)τ (24)

From Lemma (3.2), equation (24) becomes

λ =
i(π/2 + (2m+ 1)π

τ
− β − d (25)

Equation (24) has roots with negative real parts for all positive β and k
The results for equation (18) therefore becomes

(i) a saddle at the origin for α < r , meaning that, when the prey migration
rate is less than the prey growth rate, then the prey population becomes
extinct, due to the fact that the prey do not migrate in large quantities
after a predator attack leaving a big fraction of the prey density vul-
nerable to other predator attacks and thus diminishing the prey density
to extinction after some time. This will lead to the extinction of the
predator population after some time due to their lack of food.

(ii) a sink at the origin for α > r , implying that, when the prey migration
rate is greater than the prey growth rate, the two species will coexist.
This is as a result of the prey migrating in large densities after a predator
attack thus reducing the danger the prey density faces.

(iii) a center for α = r , that means that, when the prey migration rate is the
same as the prey growth rate and the predator migration rate is equal to
the predator carrying capacity, then a periodic solution for these species
occurs. The prey and predator densities will be dependent on the other
species, the prey population is governed by the availability of sustainable
resources and the predator density in a given patch while the predator
species is dependent on the availability of their food source.

3.5 Numerical analysis for Asymmetric manifold

The following parameter values, adapted from Apima [3], are used in simu-
lating the graphs of equation (16), K = 250 , A = 0.3 , B = 3, d = 0.4 ,
β = 2.792403 , u1 = 240 and v1 = 80 . Simulations for the asymmetric mani-
fold gives,
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Figure 1: α < r , α = 0.1 , r = 0.6 ,
τ = 0.1 .
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Figure 2: α < r , α = 0.1 , r = 0.6 ,
τ = 2 .

When the prey migration rate is less than the intrinsic growth rate (α < r ),
the prey density becomes extinct after some time as shown in Figure 1 and
Figure 2. This leads to the predator density also becoming extinct since it
does not have any source of food. A longer delay makes the predator and
prey species become extinct at a slower rate compared to when the delay is
short. This is due to the fact that the prey species migrates at a slower rate,
meaning few prey migrate, and those migrating face barriers which affect their
migration and thus they remain the given patch for some more time and this
in turn provides food for the predator density.
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Figure 3: α > r , α = 1.5 , r = 0.6 ,
τ = 0.1 .
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Figure 4: α > r , α = 1.5 , r = 0.6 ,
τ = 2 .

In Figure 3 and Figure 4, the prey migration rate is greater than the intrin-
sic growth rate (α > r ). The predator and prey densities coexist. These
populations oscillates, where both densities are dependant on the available
sustaining resources. A longer delay slows down the decrease or increase of a
given species.
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Figure 5: α = r , α = r = 0.6 , τ =
0.1 .
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Figure 6: α = r , α = r = 0.6 , τ =
10 .

In Figure 5 and Figure 6, the prey migration rate is equal to the intrinsic
growth rate (α = r ). The predator and prey densities will oscillate. The prey
density will depend on the availability of food and its safety from predation
while the predator density will depend on the availability of the food source.
A longer delay slows down the change in population of a given species.

3.6 Symmetric Manifold

Similarly, on solving the system in equation (17), let U2(t) = eλtC2 , then the
following characteristic equation is obtained,

(−αe−λτ − α + r − λ)(−βe−λτ − β − d− λ) = 0 (26)

The following theorem is used to show the behaviour of solutions for equation
(17),

Theorem 3.2. For all values of β and s , equation (17) has

(i) a sink at the origin for α > r ,

(ii) a saddle at the origin for α < r ,

(iii) a periodic solution α = r

Proof. Using the first factor of equation (26), we have

(−αe−λτ − α + r − λ) = 0 (27)

Let
z = (λ+ α− r)τ (28)
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Then equation (27) becomes

z = −ατe−ze(−r+α)τ (29)

Using Lemma (3.2) where b = −ατe(−r+α)τ > 0 , we get z = i(π/2 + 2mπ)
for −ατe(−r+α)τ = −(π/2 + 2mπ) . Equation (28) becomes

λ =
i(π/2 + 2mπ)

τ
− α + r (30)

Equation (30) has

(i) roots with positive real parts for α < r

(ii) roots with negative real parts for α > r

(iii) purely imaginary roots for α = r .

For the second factor of equation (26),

(−βe−λτ − β − d− λ) = 0. (31)

Let

z = (λ+ β + d)τ (32)

From Lemma (3.2), equation (32) becomes

λ =
i(π/2 + 2mπ)

τ
− β − d (33)

Equation (33) has roots with negative real parts for all positive β and k The
results for equation (26) therefore becomes

(i) a saddle at the origin for α < r , meaning that, when the prey migration
rate is less than the prey growth rate, then model becomes unstable.
Therefore, the prey population becomes extinct which makes the preda-
tor population to be wiped out after some time due to their lack of food.

(ii) a sink at the origin for α > r , implying that, when the prey migration
rate is greater than the prey growth rate, then the model is stable and
therefore the two species will coexist.

(iii) a center for either α = r , meaning that, when the prey migration rate
is the same as the prey growth rate, a periodic solution occurs.
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Figure 7: α < r , α = 0.1 , r = 0.6 ,
τ = 0.1 .
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Figure 8: α < r , α = 0.1 , r = 0.6 ,
τ = 1.5 .

3.7 Numerical analysis for Symmetric manifold

The following parameter values, adapted from Apima [3], are used in simulating
the results of equation (17), β = 2.792403 , B = 3, d = 0.4 , u2 = 240 and
v2 = 80 . Simulations for the Symmetric manifold gives,
When the prey migration rate is less than the intrinsic growth rate (α <
r ), the predator density becomes extinct leading to the prey density growng
exponentially. This is an unstable case. A longer delay makes the population
increase as seen in Figure 8 compared to Figure 7.
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Figure 9: α > r , α = 1.5 , r = 0.6 ,
τ = 0.1 .
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Figure 10: α > r , α = 1.5 , r = 0.6 ,
τ = 1.5 .

When prey migration rate is greater than the intrinsic growth rate (α > r ), the
two densities stabilize at zero as seen in Figure 9. Implying that the prey and
predator densities in the two patches are equal (using equation (14)). With a
longer delay, the populations oscillate as seen in Figure 10, when the population
is positive, then the population in patch one is greater than the population in
patch two and when the population is negative, then the population in patch
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one is less than the population in patch two.
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Figure 11: α = r , α = 0.6 , r = 0.6 ,
τ = 0.1 .
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Figure 12: α = r , α = 0.6 , r = 0.6 ,
τ = 1.5 .

In Figure 11 and Figure 12, the prey migration rate is equal to the intrinsic
growth rate (α = r ). The two densities stabilize at zero after some time.
A longer delay introduces oscillations and the time taken for the model to
stabilize in this case increases.

4 Conclusion

These results show that migration plays a crucial role in the existence of the
predator and prey species. The results also show that when we have a longer
delay in migration for the species, the model stabilize at a slower rate compared
to when the delay is short. The relevant agencies should address factors that
affect the rate of migration of the predator and prey species, for example,
minimizing human settlement and activities in the natural habitats of these
species which are barriers to migration.
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