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Tetranacci and Tetranacci-Lucas Quaternions

Abstract. The quaternions form a 4-dimensional Cayley-Dickson algebra. In this paper, we intro-
duce the Tetranacci and Tetranacci-Lucas quaternions. Furthermore, we present some properties of these
quaternions and derive relationships between them.

2010 Mathematics Subject Classification. 11B39, 11B83, 17A45, 05A15.

Keywords. Tetranacci numbers, quaternions, Tetranacci quaternions, Tetranacci-Lucas quaternions.

1. Introduction

Tetranacci sequence { M, },>o and Tetranacci-Lucas sequence { R, },>0 are defined by the fourth-order

recurrence relations

(1]-) My =M, 1+ My o+ M, 3+ M, 4, My=0,My=1,M; = 17M3 =2
and
(1.2) R,=R,_1+Ry 2+R, 3+R—y, Ro=4,Ri=1Ry=3R3=7

respectively. M, is the sequence A000078 in [19] and R,, is the sequence A073817 in [19]. This sequence has
been studied by many authors and more detail can be found in the extensive literature dedicated to these
sequences, see for example [10], [15], [16], [18], [25], [26].

The sequences {M,, },>0 and {R, } >0 can be extended to negative subscripts by defining

M_p=—-M_(n_1) = M_(n-2) = M_(n—3) + M_(n—4)
and
R ,=-R (n1)—R_(n2—R_(n-3+ R _(n-a

for n =1,2,3, ... respectively. Therefore, recurrences (1.1) and (1.2) hold for all integer n.
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We can write (1.1) as M,,—1 = My,_o+ M, 3+ M,,_4 + M,,_5. Substracting this from (1.1), we see that

Tetranacci numbers also satisfy the following useful alternative linear recurrence relation for n > 5:

(1.3) M, =2M,_y — M,_s.

Extension of the definition of M,, to negative subscripts can be proved by writing the recurrence relation

(1.3) as

(1.4) M_p =2M_p 5 — M_, .

Similarly, we have

(1.5) R,

2Rn71 - Rnffn

(1.6) R., = 2R_ni5—R_nie.

The following Table 1 presents the first few values of the Tetranacci and Tetranacci-Lucas numbers with

positive and negative subscripts:

Table 1. Tetranacci and Tetranacci-Lucas Numbers with non-negative and negative indices

n 0 1 2 3 4 ) 6 7 8 9 10 11 12 13
M, 0 1 1 2 4 § 15 29 56 108 208 401 773 1490
M_, 0 O 0 1 -1 0 0 2 -3 1 0 4 -8 )
R, 4 1 3 7 15 26 51 99 191 367 708 1365 2631 5071
rR, 4 -1 -1 -1 7 -6 -1 -1 15 —-19 4 -1 31 =53

It is well known that for all integers n, usual Tetranacci and Tetranacci-Lucas numbers can be expressed

using Binet’s formulas

n+2 5n+2

R

n+2 B’IH-? y

B Py o 5 g B )5 A e vy v

(see for example [28] or [10])

or

a—1 -1 -1 §—1
arL1+6 ﬂl—‘r’y ,er1++

1.7 =
(L.7) 5a— 8 56 — 8 5y —8 56 — 8

é-nfl

(see for example [6]) and

R, =a" + 3" +" + "
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respectively, where «, 3, and & are the roots of the cubic equation z* — 23 — 22 — 2 — 1 = 0. Moreover,

11
a = Z 7Y \/(.02 —w -1
11 13
_ - - _ 2 -1
p 17 3Y 73 4 v
11 1\/11 , 13
TT T TV T T Y
1 1 1 /1 13
§ = St o2 2t
TR S VA E R R

where

1/3 1/3
oo | (=65, [63) T (=65 [563
S\ 12 54 108 54 108 '

Note that we have the following identities:

at+B+y+d = 1,
af+ay+ad+py+p6i+v = -1,

afy+aBd+ayd+py6 = 1,
afyé = -—1.

Note that the Binet form of a sequence satisfying (1.1) and (1.2) for non-negative integers is valid for all
integers n. This result of Howard and Saidak [12] is even true in the case of higher-order recurrence relations

as the following theorem shows.
THEOREM 1 ([12]). Let {w,} be a sequence such that
{wn} = a1wn—1 + a2wp—2 + ... + arwy_p

for all integers n, with arbitrary initial conditions wq,wy, ..., wx_1. Assume that each a; and the initial

conditions are complex numbers. Write

(1.8) flx) = 2P —aF T —asx® T — L — g1z — ag
= (z—a)"(z—a)®..(z— o)
with dy +ds + ... +dp = k, and aq, as, ..., oy distinct. Then
(a): For all n,
k
(1.9) Wy, = Z N(n,m)(am)"
m=1
where
Tm—1

N(nm) = A7 + AT n 4 o+ A=t = 5™ AT v
u=0



with each Agm) a constant determined by the initial conditions for {w,}. Here, equation (1.9) is
called the Binet form (or Binet formula) for {w,}. We assume that f(0) # 0 so that {w,} can be
extended to negative integers n.

If the zeros of (1.8) are distinct, as they are in our examples, then
Wy, = Al(al)" + Ag(ag)n + ...+ Ak(ak)”.
(b): The Binet form for {wy} is valid for all integers n.

The generating functions for the Tetranacci sequence {M,, }, >0 and Tetranacci-Lucas sequence { Ry, }n>0

are

> oo 2 3
x 4—3x —2x° —x
ZMnxnz 5 3 I and ZRna:” = 5 3 1
¢ l—z—2*—2°—2x ¢ l—z—2*—2°—=x
n= n=

respectively.

In this paper, we define Tetranacci and Tetranacci-Lucas quaternions in the next section and give some
properties of them. Before giving their definition, we present some information on quaternions.

Quaternions were invented by Irish mathematician W. R. Hamilton (1805-1865) as an extension to the
complex numbers. Most mathematicians have heard the story of how Hamilton invented the quaternions.
The 16th of October 1843 was a momentous day in the history of mathematics and in particular a major
turning point in the subject of algebra. On that day William Rowan Hamilton had a brain wave and came
up with the idea of the quaternions. He carved the multiplication formulae with his knife into the stone of

the Brougham Bridge (nowadays known as Broomebridge) in Dublin,
i =52 =k? =ijk = —1.

One reason this story is so well-known is that Hamilton spent the rest of his life obsessed with the quaternions
and their applications to geometry. The story of this discovery has been translated into many different
languages. For this story and for a full biography of Hamilton, we refer the work of Hankins [9].

After the middle of the 20th century, the practical use of quaternions has been discovered in comparison
with other methods and there has been an increasing interest in algebra problems on quaternion field since
many algebra problems on quaternion field were encountered in some applied and pure science such as the
quantum physics, computer science, analysis and differential geometry.

A quaternion is a hyper-complex number and is defined by

g = ao+tar + jas + kas = (ag, a1, a2, a3)

where ag,a1,as and as are real numbers or scalers and 1,4, j, k are the standard orthonormal basis in R*.

The set of all quaternions are denoted by H. Note that we can write

g=ao+p
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where p = ia; + jas + kaz. ag and p are called the scalar part and the vector part of the quaternion gq,
respectively. The ag, a1, as, a3 are called the components of the quaternion gq.
Addition of quaternions is defined as componentwise and the quaternion multiplication is defined as

follows:

(1.10) i =j% = k* =ijk = —1.

Note that from (1.10), we have

(1.11) ij=k=—ji, jk=i=—kj, ki=j=—ik.

So, multiplication on H is not commutative. The identities in (1.10) and (1.11), sometimes are known as

Hamilton’s rules. Quaternions have the following multiplication Table 2:

Table 2. Multiplication Table

114 J k
11114 k
i |1 | =1k —j

—k| =114
kElkl|j —i | —1

The product of two quaternions ¢ = ag + ia; + jas + kas and p = by + ib; + jbs + kb3 is
qgp = (aobo — a1bi — azbz — azbs) +i(aob1 + aibo + azbs — aszb2)
+j(agba — a1bs + agbg + asby) + k(apbs + a1ba — azby + asgby).
The conjugate of the quaternion ¢ is defined by
q" = (ag +ia1 + jas + kaz)* = ap — ia1 — jas — kas.
For two quaternions p, ¢ we have
(@) =q¢ P+a)"=p"+q", (pg)” =¢"p" and (p"q)" = ¢"p.
The norm of a quaternion ¢ is defined by
N(q) = llall == a¢* = af + a? + a3 + a3.

The norm is multiplicative:

N(pq) = N(p)N(q).
Division is uniquely defined (except by zero), thus quaternions form a division algebra. For two quaternions
p,q € H we have

(pg) ' =q 'p".



The inverse (reciprocal) of a nonzero quaternion q is given by

*

e L
N(q)

In 1898 A. Hurwitz proved that the only real composition algebras are R, C, H and O (here O stands
for octonion algebras). (A real composition algebra is an algebra A over R, not necessarily associative or
finite-dimensional, equipped with a nonsingular quadratic form @ : A — R such that Q(ab) = Q(a)Q(b) for
all a,b € A. The form @ is given by the norm. For more information on quadratic form, see [13, pp. 44 and
53])

Briefly H, the algebra of quaternions, has the following properties:

e H is a 4 dimensional non-commutative (Carley-Dickson) algebra over the reals.

e H is an associative algebra.

e H is a division algebra, i.e. an algebra which is also a division ring, i.e., each nonzero element of H
is invertible.

e H is a composition algebra.

e H is a flexible algebra, i.e. (pq)p = p(gp) for all p,q € H.

H is an alternative algebra, i.e. they have the property p(pq) = (pp)q and (gp)p = q(pp) for all
p,q € H.

For the basics on the quaternions theory, we refer the work of Ward [27] and Lewis [13].

‘We remark that

e R C, H and O are the only normed division algebras.

e R, C, H and O are the only alternative division algebras.

Last two properties shows what is so great about R, C, H and Q. For this two properties and their

histories, see [1].

2. The Tetranacci and Tetranacci-Lucas Quaternions and their Generating Functions, Binet’s

Formulas and Summations Formulas

In this section, we define Tetranacci and Tetranacci-Lucas quaternions and give generating functions and
Binet formulas for them. First, we give some information about quaternion sequences from the literature.

There are various types of quaternion sequences which have been studied by many researchers. Horadam
[11] introduced nth Fibonacci and nth Lucas quaternions as

3

Qn = Fn + Fn+1el + Fn+2€2 + Fn+3e3 = Z Fn+ses
s=0

and

3

Ry = Ly + Lpyier + Lyy2ez + Lypyzes = Z Ly ses
s=0
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respectively, where F,, and L, are the nth Fibonacci and Lucas numbers respectively. He also defined

generalized Fibonacci quaternion as
3
Pn - Hn + Hn—i—lel + Hn+262 + Hn+3e3 - Z Hn—i—ses
s=0

where H,, is the nth generalized Fibonacci number (which is now called Horadam number) by the recursive
relation Hy = p, Hy = p+q, H, = H,—1 + H,—2 (p and ¢ are arbitrary integers). Halici [7] gave the
generating functions and Binet formulas for the Fibonacci and Lucas quaternions.

Cerda-Morales [4] defined and studied the generalized Tribonacci quaternion sequence that includes the
previously introduced Tribonacci, Padovan, Narayana and third order Jacobsthal quaternion sequences. In

[4], the author defined generalized Tribonacci quaternion as

3

Qv,n =Vn+ Vn—i—lel + Vn+262 + Vn+3e3 = Z Vn—i—ses
s=0

where V,, is the nth generalized Tribonacci number defined by the third-order recurrance relations
Va=rVi1+sV, o+ tVn737

here Vy = a,Vy = b, Vo = ¢ are arbitrary integers and r, s, ¢ are real numbers.

Many other generalizations of Fibonacci quaternions have been given, see for example Catarino [3], Halici
and Karatag [8], and Polath [17], Szynal-Liana and Wloch [21] and Tasci [23] for second order quaternion
sequences and Akkus and Kizilaslan [2], Szynal-Liana and Wloch [22], Tasci [24], Cerda-Morales [5] for third
order quaternion sequences.

We now define Tetranacci and Tetranacci-Lucas quaternions over the quaternion algebra H. The nth
Tetranacci quaternion is
(21) M, = M, + 7:]\47%‘,-1 + jM7L+2 + kMVL+3
and the nth Tetranacci-Lucas quaternion is

(2.2) Ry =Ry +iRni1 + jRyto+ kRnys.

It can be easily shown that

(2.3) J/W\n = M\n—l + M\n—Q + ]\Zl—s + ]/\4\”—4
and

(2.4) R,=R, 1+R, o+R, 3+Ry 4
Note that

o~

M_, = 7M—(n—1) - M—(TL—Q) - M—(n—S) + M—(n—4)

and

~ ~

R, = —R_(n_1)y— B_(n—2) — E—(n—3) + E—(n—4)'



The conjugate of M\n and ﬁn are defined by
M, = My, — iMy 1 — jMyy s — kM, s

and

=

R,=R, - iRn—i—l - jRn+2 - kRn+3

respectively.
Now, we will state Binet’s formula for the Tetranacci and Tetranacci-Lucas quaternions and in the rest

of the paper we fix the following notations.

a = l4+ia+jo®+ka,
B = 1+iB+jB + kB>,
7 = 14+iv+iy 4+ ky5
5 = 1+i6+ 56>+ ks>

THEOREM 2. (Binet’s Formulas) For any integer n, the nth Tetranacci quaternion is

- B aan+2 BIBH+2
(25) Mo = B8 G-a)F B0
N §7n+2 N 35n+2
(y—a)(y=B)(v—=6) (—a)(d—PB)0—")
(26) _ a—1 Ao ! + p-1 Bﬁnfl + v—1 a’yn—l + 6—1 génfl

5o — 8 53— 8 5y — 8 56 — 8

and the nth Tetranacci-Lucas quaternion is
(2.7) R, = aa™ + BA" + 3™ + 6™
Proof. Using Binet’s formula of the Tetranacci-Lucas numbers, we have

ﬁn = Rn + 7:-an—‘,-l + jRn+2 + kRn—i—S
_ (an +ﬁn +,yn +6n) +,L-(an+1 +Bn+1 +7n+1 _|_6n+1)
+j(an+2 +ﬂn+2 +7n+2 +6n+2) —|—k(04n+3 +5n+3 +,7n+3 +6n+3)

= Q"+ BB" + 37" + 06",
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Note that using Binet’s formula (1.7) of the Tetranacci numbers we have

M, = M, +iM,i1+ jMyro+ kM, 43
— (e L e T
+Z'(5?;7—180‘” - 5%:186n - 5777—18% * 556:186n)
—&—j(%a”“ n fﬂ%lgﬁnﬂ n 577%18 ntl %5n+1)
(g g™+ 5%_—186 T T s
- 5O:y:18 ™ 5[35:18557L_1 * 577;—18%”71 * %gén_l'

This proves (2.6). Similarly, we can obtain (2.5).

REMARK 3. According to Theorem 1, Binet’s Formulas of the Tetranacci and Tetranacci-Lucas quater-

nions are true for all integers n.

Next, we present generating functions.

THEOREM 4. The generating functions for the Tetranacci and Tetranacci-Lucas quaternions are

=~ (i +7+2k) + (145 +2k)x + (5 + 2k)2® + (§ + k)3

2. M, z" =
(2:8) 7; v l—z—a2—a3—at
and
(2.9)

iﬁ o = (A+i+3j+7k)+ (=3+2i+45 +8k)x + (=2 + 3i + 5j + 4k)x? + (=1 + 4i + j + 3k)a?®

— R 1l—z—22—a3—24
respectively.

Proof. Let

g(z) = Z M, z"
n=0

be generating function of the Tetranacci quaternions. Then, using the definition of the Tetranacci quater-

nions, and substracting zg(z), 22g(x), 22g(z) and z*g(x) from g(x), we obtain (note the shift in the index



n in the third line)

(1—2—2%—2%—2t)g(x)
o0 o0 o0 o o0

= E M,z" —x E M,z™ — 22 E M,z" — 23 E M,z" — z* E M, x"
n=0 n=0 n=0 n=0 n=0
o0 oo o0 o0 o0

_ A5 n A7 n+l I n+2 75 .n+3 5 n+4

= E Myx™ — E My x — E M,x — E Myx — E Mz
n=0 n=0 n=0 n=0 n=0

%) %) 00 o) 00
n n n n n
= E Myx™ — E My, 12" — E M, _ox" — E M, _3x" — E M, _4x
n=0 n=1 n=2 n=3 n=4

= (]/\4\0 + M\lx + ]/\4\21‘2 + ]/\4\3.7,‘3) — (]/\4\033 + M\1£2 + M\QJ??)) — (]/\4\0.732 + M\l.%‘g) — ]/\4\0.1‘3

+ Z(M\n - J/M\n—l - J/\In—2 - Mn—l} - Mn—4)xn

n=4

= ]/\4\0—|—(M\1 —Mg)CC—F(]/\ZQ —J/\jl —]/\Zo)x2+(]/\ig —]/\/TQ—M\l —Mg)ig.

Note that we used the recurrence relation M\n = M\n,l —|—J/\4\n,2 —|—]\//.7n,3 +J\/Zn,4. Rearranging above equation,
we get

o 7\4\0—{-(]/\4\1—]/\Zo)SC—F(M\Q—]/\4\1—]/\4\0)$2+(]/\4\3—M\2—]/\4\1—]/\Zo)xg
B l—z—a2 23—zt '

g(z)

or

_ ]\/470-#(1\71—J\//.To):c+(]\//.72—]\//.71—1\//.70)x2+1\//.7,1x3
B 1—z—a%—a3—at '

g9(z)

since ]/\/[\3 = ]/\4\2 + ]/\4\1 + Z/W\o + ]/\4\,1. Now using

M_y = j+k,

My = i+j+2k,

My = 1+i+2j+4k,
M, = 1+ 2i+4j+8k,
My = 2+ 4i+8j+ 15k,

we obtain

(i47+2k)+ (1+j+2k)x+ (j + 2k)2? + (j + k)23
1l—z—22—2%— 2t '

g(x) =

Similarly, we can obtain (2.9).
In the following theorem, we present another forms of Binet’s formulas for the Tetranacci and Tetranacci-

Lucas quaternions using generating functions.
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THEOREM 5. For any integer n, the nth Tetranacci quaternion s

]/\4\ _ M_l + Ol(]/\ig — J/\Zl - ]/\/70) + 042(]/\21 - ]/\4\0) + Oésj/\/Tooén
" (a—=B)(a=7)(a—4)

M+ 5(]/\4\2 — M, — 1/\4\0) + 52(1\71 - ]/W\o) + %M,
B=7)(B—a)(B—9)

M_; + ’Y(M\z — M, — M\o) + ’Yz(ﬂl — J\//jo) + ’Y?’M\o,yn
(v —a)(y = B)(y —9)

M_1 +6(My — My — My) + 6*(M; — M) + 6° M,
(6—a)(0—=B)(0—")

Bn

671

and the nth Tetranacci-Lucas quaternion is

1/%_1 + OZ(EQ — ﬁl - ﬁo) + 012(]/%1 — ﬁo) + OLBEO n E_l + 5(1/%2 — ﬁl - Eo) + ﬁ2(§1 — Eo) + ,BSEO

fin = (@B (a—7)(a—9) o G- (-a)B-9) 4
+R\_1 + ’}/(EQ — ﬁl — ﬁo) + ’}/Q(R\1 — Eo) + ’}/Bﬁo n ﬁ_l + (5(1/%2 — 1/%1 — ﬁo) + 62(§1 — R\o) + (53;\50 5"
(v —a)(7 - B)(v—0) 7 G—a)E-B)(—7)

Proof. We can use generating functions. Since the roots of the equation 1 — z — 22 — 2% — 2% = 0 are

1

,5 and

2=

11
B

l—z—2?—2°—2' = (1 - ax)(1 - Bz)(1 — yz)(1 — 6z),
we can write the generating function of ]\//Tn as

]/\4\0 + (M\l — J/\Zo)x + (]/\4\2 — Z/\Zl — ]/\4\0).'1,‘2 + J/\Z,1$3
l—z—22—2%— 24
]/w\o + (M\l — ]/M\())II} + (]/M\g — M\l — ]/\I\O)QTQ + J/M\_11‘3
(1 —az)(1 = pz)(1 - yz)(1 - i)
A B C D

T (—ow) (1-fa) (=-na)  (—on)

g(z) =

We need to find A, B,C and D, so the following system of equations should be solved:

A+B+C+D = My
A(=p-v=08)+B(-a-=v-6)+C(-a—-B—-0)+D(-a—-B—v) = M — M
A(By+ o+ )+ Blay+ad +76) + C(af+ad + 56) + D(af +ay+ Bvy) = M, — My — M,

—AByd — Bayd — Caffd —apyD = M_;.



Then, we find that

M,l + Of(]/\ig - 7\4\1 - ]/\4\0) + 042(1/\4\1 - ]/\4\0) + 053]/\4\0

4= (@-B)a—)(a—0)

» _ M+ B — B — M) + 8(3, — Mo) + 5Ty
(B=7)(B—a)(B—9)

co— Z/W\—1 +’7(1/\4\2—M\1—M\0)+’72(M\1_M\O)+73M\0
(v —a)(y = B)(y =)

b M_y + 6(My — My — My) + 6*(M; — My) + 6> M,

(0 —a)(0 =)0 =)

. J/M\_1+Oé(]/w\gfﬂl7]\70)4’0&2(]/\4\17‘7/\4—\0)4*043]\70 > n.n
s CEpITEITE 20t
M_y + B(My — My — M) + B(My — Mo) + B°Mo = 0
CERCEICED 20
M\—l +7(]/\4\2 - M\l - Z/\ZO) +72(M\1 — 7\4\0) +73M\0 - n_n
(v~ - B)(7—9) ,;0” !

oo

+M\71 + 6(1/\4\2 - ]/\4\1 - MO) + 62<J/\4\1 - M\O) + 63]/\4\0 Z(Sn.’)&‘n
(6 —a)(d—=p)—)

n=0

n=0
S M\,1+a(ﬁ27ﬁ17]T/I\0)+a2(1T/I\17]/\/[\0)+a3]T/[\0 a + M\flJrﬁ(]/\/[\Q*ﬂl*M\o)+ﬁ2(ﬁ1*ﬁo)+ﬁ3ﬁoﬂn
— Z - _(a=p)la=v)(a=d) N N BB N 2"
+Mfl+v(M2—M1—Mo)+72(Ml—Mo)+w3Mo noy M71+5(M2—M1—M0)+52(1V[1—M0)+53M057& ’
n=0 (v=a)(v=B8)(v=9) 7 (0—a)(6—S)(0—7)

Thus, from this, we obtain Binet’s formula of Tetranacci quaternion. Similarly, we can obtain Binet’s formula

of the Tetranacci-Lucas quaternion.
If we compare Theorem 2 and Theorem 5 and use the definition of M\n, En, we have the following Remark
5.

showing relations between ]\74, ]\70, ]\71, ]\72; J?Ll7 }AEO, ﬁl, ﬁg and &@ﬁ,

REMARK 6. We have the following identities:
(a):

]/\411 + Oé(ﬂg — ]/\4\1 - M\()) + az(]\//fl — H()) + CVSM\O

: = a

«
M_y + B(My — My — My) + B*(My — Mo) + B°My
B’ =7
M_y ++(My — My — Mp) ++*(My — My) +7* My PN
~2 = 7
M_y + 8(My — My — M) + 6*(My — My) + 8°My 5

62
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(b):
R, +a(1§2—]§1—1§0)+a2(1§1—§0)+a3§0 _ 4
(a—=B)(a=7)(a=19)
+§71+5(§2—§1—§0)+52(§1—}A{o)‘i‘ﬁgﬁo _ 3
(B=7)(B—a)(B-9)
R_1 +~(Rs — Ry — Ro) +7*(Ri — Ro) + v*Ry N
(=) - B - 9) -
R_y +0(Ry — Ry — Ry) + 6%(R1 — Ry) + °Ry 5

(6—a)(0—=p5)(0—7)
Now, we present the formulas which give the summation of the first n Tetranacci and Tetranacci-Lucas

numbers.

LEMMA 7. For every integer n > 0, we have

(2.10) > M, = S (Myyo +2My + M,y — 1)
p=0

and

(2.11) ZR (Rus2+ 2R, + Ry1 +2).

Proof. (2.10) and (2.11) are given in Soykan [20, Corollaries 2.7 and 2.8].
Note that (2.10) and (2.11) can be easily proved by mathematical induction as well.
Next, we present the formulas which give the summation of the first n Tetranacci and Tetranacci-Lucas

quaternions.

THEOREM 8. The summation formula for Tetranacci and Tetranacci-Lucas quaternions are

— 1 —~ — —
(2.12) > M, = 3 (Moo + 2My 4 My = (14 + 45 + T))
p=0
and
2.13 (Rpyo + 2R, + Ry + (2 — 10i — 135 — 22k
p
p=0

Proof. Using (2.1) and (2.10), we obtain

M1+ Z 2 Ry M,
p=0 p=0 p=0 p=0

(Mo + oo 4+ M)+ i(My + ... + Myi1)

I
N
=
L
M

+j(Ma+ ... + Mpyo) + k(Ms + ... + My3).



and so
3 M, = (Mo +2M, + M,y —1)
i (Myag + 2My iy + M, — 1 — 3Mp)
+i(Mpya+2Myyo + My — 1 —3(My + My))
+k(Myys +2Myy3 + Mpio — 1 = 3(Mo + My + My))

= ]/\J\n+2+2j/w\n +J/\4\n—1 +c
where
c = —1+4i(=1-3Mpy)+j(—1—3(My+ M)+ k(=1 —3(My + My + My))
= —1—0¢—45 -7k

Hence

no_ 1 o~ g .
p=0

This proves (2.12). Similarly, we can obtain (2.13).

Note that above Theorem can be proved by induction as well.

THEOREM 9. For n > 0, we have the following formulas:

(a): Y Mopyy = %(21/\4\2%2 + Moy — Moy + (1 — 2i — 2 — 5k))
p=0

(b): Z Z/\ng = %(2]/\4\2n+1 —|— Z/\Zgn,1 — ]/\4\2”,2 — (2 — Z —|— 2] —|— 2]{?))
p=0

Proof. The proof follows from the following identities:

n
1
(2.14) Z Mopi1 = §(2M2n+2 + My, — Map—1 + 1)
p=0
and
- 1
(2.15) > Moy = o (2Mon g1 + Moy — Mon—z = 2).
p=0

(2.14) and (2.15) are given in Soykan [20, Corollary 2.7].
Note that (2.14) and (2.15) can be easily proved by mathematical induction as well. Of course, the above

theorem itself can be proved by induction.

THEOREM 10. Forn > 0, we have the following formulas:

(a): > §2p+1 = %(2§2n+2 + Ry, — Rop 1 — (8 +2i + 115 + 11k))
p=0

(b): > §2p = %(2§2n+1 + Rop_1 — Ron_a + (10 — 8i — 25 — 11k)).
p=0
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Proof. The proof follows from the following identities:

n
1
(2.16) Z Ropy1 = 5 (2Rop42 + Rop — Rop—1 — 8)
p=0 3
and
" 1
(2.17) > Ry = 5 (2Ran i1 + Ron1 — Ran2 +10).
p=0

(2.16) and (2.17) are given in Soykan [20, Corollary 2.8].
Note that (2.16) and (2.17) can be easily proved by mathematical induction as well. Of course, the above

theorem itself can be proved by induction.

3. Matrices and Determinants related with Tetranacci and Tetranacci-Lucas Quaternions

Define the 5 x 5 determinants D,, and E,,, for all integers n, by

M, R, Rny1 Rnpp2 Rpgs R, M, Myy1 Myia Mpys
Moy Ro Rs Ry R;5 Ry Mo M My M
D,=| Mi R Ry Rs Ry |,E.=| Ri M, My Ms My
My Ry Ry Ro Rs Ry My My Mo Ms
M_1 Ry Ry Ry Ry Ry M,y My My M,

THEOREM 11. The following statements are true.
(a): D, =0 and E, =0 for all integers n.
(b): 563M,, = 86R, 13 — 61R,0 — T1 R, — 8TR,.
(c): Rp =6M,41 — M, — M.

Proof. (a) is a special case of a result in [14]. Expanding D, along the top row gives 563M,, =
86R,+3 — 61R,42 — T1R, 11 — 87R,, and now (b) follows. Expanding E, along the top row gives R, =
6M,,+1 — M, — M, 13 and now (c) follows.

Consider the sequence {U, } which is defined by the fourth-order recurrence relation
U, = 71—1+Un—2+Un—3+Un—4a Up =Us =0, Uy =Us=1.

The numbers U,, can be expressed using Binet’s formula
o + e + ~ + ~ .
(@=B)la=(a=08) B-a)(B-=7)B-06 G-a)y—=BH -0 ((—-a)d—p5)0—-7)

We define the square matrix B of order 4 as:

Un =

o o ==
oS = O
- o o =
o o o =



such that det B = —1.

Induction proof may be used to establish

Unve Upsi +Un+Unt Uni1+Un  Unpr

Ui Un4Up 14+ Ups  Up+Usy U,
Ui Up1+Ups+Upg Un1+Uns U,y

Unt Un-o+Un-s+Ups Ung+Unsz Uns

Matrix formulation of M, and R, can be given as

n

Mpis 111 1 M
M,, 1 0 00 M-
(3.2) 2l = ?
Myiq 01 00 M,
M, 0 010 My
and
Ross 1111 R;
R, 1 0 0 O R
(3.3) 2l = ?
R 0100 R
R, 0 0 1 0 Ry

Induction proofs may be used to establish the matrix formulations M,, and R,,.

Now we define the matrices By; and By as

]/\4\5 7\4\4 + ]/\4\3 + M\Q ]/\4\4 + M\;g ]/\4\4 }/%5 §4 + §3 + EQ }/%4 + ﬁg §4
My Ms+ Mo+ DM, M+ My M Ry Rs+Ry+ R, Rs+Ro Rs
BM = o - o o o o o and BR = R R A R R o R
Mz  My+ M+ My Mo+ M M, Ry Ry+Ri+Ry Ro+Ri R
]/W\2 M\1+J/\4\0+1/\4\—1 ]/\4\1 +M\o ]/W\1 1:32 §1+§0+1§—1 }Afl +§0 1§1

These matrices By and Bgr can be called Tetranacci quaternion matrix and Tetranacci-Lucas quaternion

matrix, respectively.

THEOREM 12. Forn > 0, the followings are valid:

(a):

n

1111 ]\/Zn+5 ]/W\n+4 + Mnm + ]\/Zn+2 M\n+4 + Z/\Zn+3 M\n+4
10 00 Z/\in—i-4 Mn-&-S + j/\i’n—i& + Z/\Zn-‘rl M\n—i-l’» + 7\4\”_}'_2 ]/\in+3
(34) By = e Y A o - PR o ,
01 00 Myys Mpyo+ My +M, Mujo+ My Mago
00 10 Muys  Mpp1+ Mo+ Mooy Muygr + My Mo
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(b):
11 11 §n+5 §n+4 + §n+3 + §n+2 §n+4 + §n+3 §n+4
1000 §n+4 §n+3 + §n+2 + §n+1 §n+3 + §n+2 §n+3
(3.5) Br =l - ~ ~ ~ ~ ~ ~
01 00 Rn+3 Rn+2 + Rn+1 + Rn Rn+2 + Rn+1 Rn+2
0010 Ruio Ryy1+Ry+Ry1 Ry +R, Rop

Proof. We prove (a) by mathematical induction on n. If n = 0, then the result is clear. Now, we assume

it is true for n = k, that is

]\//.7k+5 J\/I\k+4 + ]\7}%3 + J\//fk+2 J\/I\k+4 + ]/\/[\k+3 J\//.7k+4
M\k+4 J/\/f\k+3 + M\k+2 + J/\/f\kﬂ 1\/4\19+3 + J/\éf\k+2 ]/W\kJrS
]/W\k-+3 J/W\k+2 + M\k-&-l + ]/W\k J/W\k+2 + ]/\Zk--i-l ]/W\k-',-Q
J/\Ik+2 ]\//-Tk+1 + M\k + ]/w\k—l M\kﬂ + M\k ]\//-Tk+1

By B* =

If we use (2.3), then we have J/\4\k+4 = ]/W\k+3 + ]/W\kJrg + ]/W\k-i-l + ]/W\k. Then, by induction hypothesis, we obtain

ByBf' = (ByB*)B
Myys Mygya+ Mgy + Myro Mgypa+ Myrz Mgy 11 11
B Mygys Myys+ Mgyo + Mgy Mygyg+ Mgro Myys 1000
Mty  Mypo+ Myi1+ My Mo+ Myi1 Myio 010 0
Myyo  Mpg1 + My + My M1+ M, M 0 010

Miss + Myya+ My + Myyo Myys+ Mg+ Miys Myys+ Myia Miys
Mk+4 + Mgz + My + Myia Mk+4 + M\k+3 + Mk-{—Z J/\/Tk+4 + Myys Mgy
]\//jms + ]\//-Tk+2 + -Z/w\k+1 + Mk Mkw + M\Hz + ]\//-Tkﬂ J/W\k+3 + ]\//-Tk+2 My y3
Myyo + Myi1 + My, + M,y Mo+ M1 + My, My + Mgy Mo

J/W\k-&-ﬁ ]/W\k+5 + Mk+4 + ]\/Ik+3 ]/\Ik+5 + Mk+4 M\k+5
JT/[\k+5 J/\/[\k+4 + J\/I\k+3 + J/\ZlﬁLQ J\//.7k+4 + M\k+3 M\k+4
M\k+4 J\?Hg + 1\/4\“2 + J/M\kJrl ]/Vf\k+3 + Z\/Zmz M\k+3
M\Hs ]\/4\1«+2 + J/\/f\k+1 + M\k ]/W\k+2 + M\k+1 M\Hz

Thus, (3.4) holds for all non-negative integers n.

(3.5) can be similarly proved .

COROLLARY 13. For n > 0, the followings hold:
(a): ]\/Zn+3 = J/\Z3Un+2 + (1\72 + M + J/\ZO)Un+1 + (J\//Tl + ]/\ZQ)Un + MU,
(b): §n+3 = E;},Un_;,_z + (EQ + fh + EO)Un-i-l + (fh + ﬁQ)Un + ﬁQUn_l

Proof. The proof of (a) can be seen by the coefficient of the matrix By and (3.1). The proof of (b) can
be seen by the coefficient of the matrix Bg and (3.1).
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