- Incorporation of *Spirulina Platensis* in Traditional Egyptian Cookies as a Source of Natural
 Bioactive Molecules and Functional Ingredients:
- 2
- 3

ABSTRACT

Development and Sensory Evaluation of Nutrition Snack for School Children

6 Spirulina platensis is very rich in protein, amino acids, omega 3, 6, 7 and 9 oils, vitamins and 7 minerals and its incorporation into cookies will enrich their nutritional values. The objectives of this study were to evaluate the acceptability of adding *spirulina* to traditional Egyptian cookies as a source of 8 9 natural bioactive molecules and to assess the effect of the amount of added *spirulina* on the sensory 10 evaluation parameters (texture, shred, color, odor and taste) using a panel of 10 members. The results indicated that addition of *spirulina* to the cookies affected the texture, the mouth feel, the easiness with 11 12 which breaking a cookie was made, the fragmentation and the appearance of the break line. The cookies that received no spirulina had smoother texture and moist-smooth mouth feel whereas those received 13 spirulina had more sandy-course texture and heavy-chewy mouth feel. Increasing the spirulina content 14 15 from 5 to 15% made the cookies more firm and harder to beak. Irregular large parts and continuous break lines were observed with the cookies that received no *spirulina* while more granules and smaller parts 16 with irregular line were observed with all the cookies that received *spirulina*. The results showed that 17 18 adding *spirulina* to cookies may help maintain their integrity and reduce breakage during packaging and distributions. The color of the control sample (0% spirulina) was yellow to yellow-orange and that of the 19 samples that received 5 and 10% spirulina was tallow-green to green-yellow-green while that of the 20 sample that received 15% spirulina was green-yellow-green to green-blue-green. All the baked cookies 21 had a noticeable smell and the odor intensity ranged from faint (4.06-4.89) to strong (8.19-8.69). The 22 23 weighted average for the odor intensity was 6.11, 5.53, 6.02 and 6.63 for cookies receiving 0, 5, 10 and 15% spirulina, respectively; all of which are within the odor intensity range of weak odor. Increasing the 24 25 amount of spirulina from 5 to 15% (3 fold) only increased the odor intensity by 19.6 % (from 5.33 to 26 6.63). The nature of the smell of the cookies that received 0 and 5% spirulina was pleasant while that of the cookies that revived 10 and 15% spirulina was musty-seawater and fishy-seawater, respectively. 27 Adding 5% spirulina did not affect the odor but with higher concentrations (10-15%) of spirulina, the 28 addition of a strong aromatic compound to the cookies may be required to musk the smell of spirulina. 29 30 The addition and/or increasing the amount of spirulina affected both the taste and the degree of 31 acceptance. The taste of the cookies that received no *spirulina* was rated sweet-delicious with a high degree of acceptance while the taste of the cookies that received spirulina varied from sweet-sour to 32 33 bitter-fishy with lower degree of acceptance. Adding 5% spirulina did not affect the taste. However, 34 addition of a flavoring agent to cookies receiving higher concentrations of spirulina (10-15%) may be 35 required to musk the taste of spirulina. The results showed that addition of spirulina enhanced the 36 nutritional value of the cookies by increasing the protein content of the cookies and enriching them with 37 vitamins, mineral, omega 3. 6, 7 and 9 fatty acids and amino acids, all of which have significant health 38 benefits to school children. Therefore, a further work should be directed towards improving the smell and 39 the taste.

- 40
- Keywords: Anemia, Obesity, Stunting, Spirulina, Cookies, Nutrition, Amino Acids, Omega 3 and 6 Oils,
 Vitamin, Minerals Sensory Evaluation, Cookies, Texture, Shred, Color, Odor, Taste
- 43 44

INTRODICTION

Egypt has about 12.5 million school children in the age range of 5-18 [1]. A significant number of
these children suffer from malnutrition specially those of low socioeconomic standard which resulted in
several diseases including anemia, obesity and stunting.

Anemia is a condition in which the amount of red blood cells in the body is decreased below normal and it can make the child appear pale in color and feel cranky, tired and weak. Studies have indicated that anemia is a major public health problem among Egyptian school children [2- 4]. Iron deficiency anemia was found to be the most common cause of anemia among Egyptian children affecting 30-43% of children under 6 years of age [5] whereas the prevalence of anemia among children in the age group of 6-12 years was found to be 12% [6-7].

Obesity is an excessive accumulation of fat that adversely affects well-being and health [8]. Obesity is a major public health problem that affects nearly 35 % of adults and 18% of teenagers in Egypt [9- 11], the highest in the world. Obesity is more prevalent in children between 6 and 9 years of age and is more prevalent in girls than in boys [12-14]. Egypt is a country where most citizens receive enough food to silence their hunger but not enough to nourish their bodies, a phenomenon that would negatively affect the country's development. There is an urgent need to spread awareness about obesity, its consequences and find ways of prevention, especially among young children [15].

62 Stunting is the impaired growth and development (low height-for-age) that children experience 63 from poor nutrition and inadequate psychosocial stimulation. Children are defined as stunted if their 64 height-for-age is more than two standard deviations below the WHO Child Growth Standards Median 65 [16]. Stunting remains a very important problem in Egypt, as one-third of children under 5 years of age are affected [16-17]. According to the United Nations Children's Fund (UNICEF), the largest number of 66 stunted children (about 2.7 million) in the Middle East was in Egypt due to the socioeconomic conditions 67 of a country [17]. Stunting in early life of child has adverse functional consequences on the child 68 including: (a) poor cognition and poor school performance, (b) when stunting is accompanied by 69 70 excessive weight gain later in childhood, it results in increased risk of nutrition-related chronic diseases in adult life such as diabetes, hypertension, and obesity and (c) lost productivity and reduced earnings later 71 in life [18-19]. 72

Household food security in Egypt is very fragile and fluctuating food prices can cause severe shocks resulting in malnutrition among the low-income families. Hunger and malnutrition can drive children away from schools. Malnutrition among Egyptian children results in: (a) 11% of children deaths, (b) 33% stunted children (age 6-18 years.) and their ability to comprehend and concentrate during class are impacted, (c) 2% of these children are likely to fail in education and (d) 6 % repetition rate in primary governmental schools [19]. Therefore, the current Government of Egypt invests USD 110 million per year on the National School Feeding Programme which reaches 12.5 million pupils. The goals of this program are: (a) enhancing students' health by providing nutritious meals on a daily basis to increase
 their concentration in class, (b) educating the students and parents about the importance of the healthy
 nutritious meals and (c) motivating students to attend their classes and decrease school dropout rates
 and absences. However, the nutritional composition of theses meals must be enhanced [20].

84 Spirulina is a blue-green alga that has a great potential for use in food and food products because of its high nutritional composition (Table 1). The dark green color of Spirulina comes from the high 85 amount of chlorophyll (plant blood) which is only one molecule different from the hemoglobin (human 86 87 blood). No one fruit, vegetable or meat can provide all the nutrition elements the human body demands as Spirulina. Spirulina contains over 100 nutritional and bioactive compounds, is free of cholesterol, has 88 only 2-4 cal/g, has a high digestibility (95%) and has an alkali pH which can protect the human body from 89 the diseases resulting from acidic foods such as meat, sea food and cereals. The protein content in 90 91 Spirulina is about 65-72% which is higher than that in the soybean and is easier to digest. Spirulina 92 contain all the essential and non-essential amino acids (Table 2) which are 3-4 times those in fish and 93 meat and 29 times those in soybeans. Spirulina contains more than 2000 enzymes that are beneficial for human health [25, 29-30]. The fatty acids (Table 3) contain omega 3 (alpha linolenic and 94 docosahexaenoic) omega 6 (linolenic, gamma linolenic and dihomo-gamma linolenic), omega 7 95 96 (palmitoleic) and omega 9 (oleic and auric) oils [22, 28, 30]. Spirulina is very rich in mineral content 97 (Table 4) including: calcium, phosphorus, iron, sodium, magnesium, potassium, manganese, zinc, boron, copper and molybdenum [23, 28]. The mineral contents in Spirulina are 28 and 58-fold of those in beef 98 liver and spinach, respectively [31,32]. Spirulina contain several vitamins (Table 5) including: beta-99 100 carotene (vitamin A), thiamine (vitamin B1), riboflavin (vitamin B2), niacin (vitamin B3), pyridoxine 101 (vitamin B6), cvanocobalamin (vitamin B12), Da-tocopherol (vitamin E), biotin (vitamin H), folic acid, 102 pantothenate and inositol [21-23,25-26]. The vitamin contents in *spirulina* are higher than those in liver, carrot, spinach and many vegetables [33]. 103

In recent years, novel attractive healthy foods have been prepared from *spirulina* [30,33-35]. Traditional foods such as salad dressings, dips, puddings, gelled desserts, biscuits, cookies, bread, noodles, pasta, smoothies, ice cream and health drinks such as micro-algal sour milk and micro-algal green tea were supplemented with *Spirulina* to add coloring and functional attributes, making the products more sensorial attractive with health benefits due to the high content of carotenoids, polyunsaturated fatty acids, antioxidant and anti-inflammatory compounds [22,30, 34-37].

110 *Spirulina* is a fast-growing microorganism and has high biomass growth and high protein yield 111 (Table 6). For a given area, the harvest yield of *Spirulina* is 10 times that of soybeans, 20 times that of 112 corn and 200 times that of beef cattle [37]. It can be grown to produce protein and bioactive and function 113 compounds.

Table 1. General composition of fresh dried spirulina [21-27].

Content	Value	
Energy (Cal/g)	2.90	
Moisture (%)	4 -5	
Protein (%)	65 -72	
Carbohydrate (%)	15 - 25	
Fibers (%)	3 -7	
Lipids (%)	4 -7	
Minerals (mg/g)	6 -12	

Table 2. Amino acids in fresh dried spirulina [22, 24, 28].

Minerals (mg/g)	6 -12
Table 2 Amino acids in fresh dried spiruli	na [22 24 28]
	W-1
Amino Acids	value (ma (a)
A 1	
Alanine	/./-40.0
Arginine Asportia Asid	/.9-4/.0
Aspartic Acid Cysteine	12.1-72.8
Glutamic Acid	0.9-3.0 A 1 84 A
Glycine	5 3-31 0
Histidine	2 5-15 0
Isoleucine	5 4-32 6
Leucine	8 2-48 9
Lysine	4.4-26.2
Methionine	2.2-13.3
Phenylalanine	4.5-26.1
Praline	4.1-24.7
Serine	4.4-26.5
Threonine	4.7-28.1
Tryptophan	1.4-8.5
Tyrosine	4.0-23.8
Valine	6.2-37.4

	Fatty Acids	Value
	Omega 3	
	Alpha Linolenic	0.04 mg/g
	Docosahexaenoic	0.04 mg/g
	Omega 6	
	Linolenic	33.0 mg/g
	Gamma Linolenic	30.0 mg/g
	Dihomo-gamma Linolenic	1.59 mg/g
	Omega 7	
	Palmitoleic	5.90 mg/g
	Omega 9	
	Oleic	0.50 mg/g
	Erucic	0.07 mg/g
128		
129		
130		
131		
132	Table 4. Minerals in fresh dried s _j	pirulina [23,28].
	Minerals	Value
	Calcium	168.00 mg/g
	Manualium	255

127 Table 3. Fatty acids in fresh dried *spirulina* [22, 28, 30].

	Minerals	Value
	Calcium	168.00 mg/g
	Magnesium	2.55 mg/g
	Iron	0.52 mg/g
	Phosphorous	9.18 mg/g
	Potassium	18.30 mg/g
	Sodium	10.98 mg/g
	Manganese	19.00 μg/g
	Zinc	2.00 μg/g
	Boron	30.00 µg/g
	Copper	3.00 µg/g
	Molybdenum	30.00 µg/g
-	Selenium	5.00 µg/g
133		
134		
135		
136		
130		
137		
138		
139		
140		
140		

Vitamins	Value
Water soluble vitamins	
B-complex vitamins	
Vitamin B1 (Thiamine)	238.00 mg/g
Vitamin B2 (Riboflavin)	99.00 mg/g
Vitamin B3 (Niacin)	3.67 mg/g
Vitamin B5 (Pantothenic Acid)	3.4mg/g
Vitamin B6 (Pyridoxine)	13.20 mg/g
Vitamin B9 (Folate)	94.00 μg/g
Vitamin B12 (Cyanocobalamin)	6.60 μg/g
Vitamin H (Biotin)	1.00 mg/g
Choline	66.00 mg/g
Vitamin C	58.80 mg/g
Fat soluble vitamins	
Vitamin A (as Beta Carotene)	29.00 μg/g
Vitamin E (Da-tocopherol)	5.0 mg/g
Vitamin K	25.20 μg/g
Alpha Carotene	7.50 μg/g
Beta Carotene	1900.00 µg/g
Lutein and Zeaxanthin	126.00 μg/g
Table 6. Biomass and protein yields and environmental gro	owth conditions of <i>Spirulina</i> [31-36].
Table 6. Biomass and protein yields and environmental gro	owth conditions of <i>Spirulina</i> [31-36]. Value
Table 6. Biomass and protein yields and environmental gro Parameter Biomass yield (g/L)	with conditions of <i>Spirulina</i> [31-36]. Value 4.30
Table 6. Biomass and protein yields and environmental gro Parameter Biomass yield (g/L) Protein yield (g/L)	with conditions of <i>Spirulina</i> [31-36]. Value 4.30 2.71
Table 6. Biomass and protein yields and environmental gro Parameter Biomass yield (g/L) Protein yield (g/L) Temperature (C ⁰)	with conditions of <i>Spirulina</i> [31-36]. Value 4.30 2.71 30.00
Table 6. Biomass and protein yields and environmental gro Parameter Biomass yield (g/L) Protein yield (g/L) Temperature (C°) pH	with conditions of <i>Spirulina</i> [31-36]. Value 4.30 2.71 30.00 9.00
Table 6. Biomass and protein yields and environmental gro Parameter Biomass yield (g/L) Protein yield (g/L) Temperature (C°) pH	wth conditions of <i>Spirulina</i> [31-36]. Value 4.30 2.71 30.00 9.00
Table 6. Biomass and protein yields and environmental gro Parameter Biomass yield (g/L) Protein yield (g/L) Temperature (C°) pH	with conditions of <i>Spirulina</i> [31-36]. Value 4.30 2.71 30.00 9.00
Table 6. Biomass and protein yields and environmental gro Parameter Biomass yield (g/L) Protein yield (g/L) Temperature (C°) pH	with conditions of <i>Spirulina</i> [31-36]. Value 4.30 2.71 30.00 9.00

141 Table 5. Vitamins in fresh dried *spirulina* [21-23,25-26].

161 **OBJECTIVES** 162 163 The main aim of this study was to evaluate the acceptability of traditional Egyptian cookies containing *spirulina* as a source of natural bioactive molecules.. The specific objectives were: (a) to 164 determine the cookies characteristics (odor/smell, taste, color, texture and shred) using sensory 165 evaluations, (b) to establish the most acceptable amount of *spirulina* that can be added to the cookies and 166 167 (c) determine the nutritional value of the cookies. 168 169 MATERIALS AND METHODS 170 **Preparation of Cookies** 171 The following ingredients were used: soft butter (100 g), sugar (100 g), wheat flower (280 g), 2 eggs (109 g), baking powder (10 g), salt (1 g), vanilla (1 g) and desired amount of *spirulina* (0, 5, 10 and 172 15% by weight of the wheat flower or 0, 14, 28 and 42 g of spirulina as replacements for wheat flower). 173 174 The butter and sugar were placed in the large bowl of a bowl-lift stand mixer (Model No. 175 4KV25HOXER, Kitchen Aid, Mississauga, Ontario, Canada) and beaten until became fluffy. The eggs 176 and vanilla were added to the butter-sugar mixture. The wheat flower, baking powder, salt and the desired 177 amount of spirulina were first mixed together and then added to the butter-sugar-eggs-vanilla mixture and 178 179 mixed with continuous stirring. Four portions of 601g each were made. No spirulina was added to the 180 first portion (control), 14 g spirulina were added to the second portion (5%), 28 g spirulina were added to the third portion (10%) and 42 g spirulina were added to the fourth portion (15%). 181 182 The oven was heated to 180°C (350°F). From each portion, cookies were made, each was about 5 183 184 cm in diameter and 0.5 cm in height. The cookies were placed on a cooking sheet placed in a baking tray. The baking trays were place in a convention countertop oven (Model No. TO4211SKT, Black & Dekker, 185 186 Rayovac, Argentina) and the cookies were baked for 14 min. Each backed cookie weighed approximately 187 30 g. 188 189 **Sensory Evaluation** 190 Sensory evaluations were carried out on the baked cookies to determine some of the physical 191 properties (texture and shredding/breaking) and to evaluate the acceptability of color, smell and taste of 192 the cookies. The procedure described by Ghaly et al. [38] was followed. A panel of 10 evaluators was 193 formed from among technicians, undergraduate and graduate students and professors in the Agricultural Engineering Department, Faculty of Agriculture, Cairo University. The panel included males and females 194

who varied in age from 18 to 55 years. The sensory evaluation sheets used in this study (Figures S-1-5) inappendix were those developed by Ghaly et al. [38].

197

198 Nutritional Value

The nutritional contents of the cookies were analyzed. The analyses include the determination of energy, protein, amino acidscarbohydrate, fat, vitamins and mineral contents. These analyses were performed according to the procedures described in Official Methods of Analyses of the Association of the Official Chemists [39].

- 203
- 204

RESULTS AND DISCUSSION

205 **Texture**

The results of the texture appearance and mouth feel of the cookies are presented in Table 7. The addition of *spirulina* to the cookies affected both the texture and mouth feel compared to the control (0% spirulina). The cookies that received no *spirulina* (control samples) had smoother texture and moist-smooth mouth feel whereas those received *spirulina* had sandycourses texture and heavy-chewy mouth feel. Increasing the percentage of spirulina made the surface of the cookies more sandy-courses and made the mouth feel more firmer and chewier.

Salehifar et al. [40] reported that the addition of 0.5-1.5% spirulina into traditional Iranan cookies 212 did not alter the texture of the cookies. Lyer et al. [41] found that increasing spirulina content from 2 213 214 to10% did not significantly alter the texture of biscuits. Sharma and Dunkwal [42] reported that the incorporation of 10% spirulina into biscuits did not have any significant effect on the biscuits texture. 215 216 Lemes et al. [43] noted no statistical differences in the textures of pasta samples containing spirulina at concentrations of 0, 5 and 10%. However, Morsy et al. [44] reported that the addition of 2.5-7.5% 217 218 spirulina to several extruded products did not significantly alter the texture of products but concentrations above 7.5 % had a significant effect on the texture of these products. Vijayarani et al. [44] noticed slight 219 220 differences in the texture of extruded products when the *spirulina* content was increased from 5% to 15%. 221 trey. Ghaly et al. [38] reported that the addition of spirulina to chocolate chip oatmeal cookies affected their texture and mouth feel as compared to the original cookies (no spirulina added) but increasing the 222 223 percentage of spirulina from 3 to 9% did not show any significant differences.

- 224
- 225
- 226
- 227

Spirulina	Texture	Panelists	Mouth Feel	Panelists
(%)	Appearance			
0	Smooth	6	Moist and Smooth	10
	Sandy	2		
	Course	2		
5	Smooth	4	Moist and Smooth	6
	Sandy	2	Heavy and Chewy	4
	Course	4		
10	Smooth	3	Heavy and Chewy	7
	Sandy	3	Firm & Chewy	3
	Course	4		
15	Smooth	2	Firm & Chewy	8
	Sandy	3	Rough and Chewy	2
	Course	5		

Table 7. Effect of *spirulina* on the texture and mouth feel of cookies.

230 Texture is appearance, finish or consistency of the surface of a cookie

231 Mouth fell is the feeling of moistness and dryness or chewiness and smoothness of a substance in the mouth.

232

229

233

234

235

236

237

238 Shred/Fragmentation/Beak Line

239 The toughness (the degree of easiness with which breaking cookies is made), fragmentation 240 (appearance of the broken parts) and the appearance of the break line were evaluated for the cookies 241 receiving different amounts of spirulina. The results are presented in Table 8. The addition of spirulina 242 affected the easiness with which breaking a cookie was made, the fragmentation and the appearance of the break line. Increasing the *spirulina* content made the cookies more firm and harder to beak. However, 243 244 the addition of 5% spirulina did not affect the toughness of the cookies. The panel reported a toughness 245 rating of soft-easy to beak for both 0 and 5% spirulina and firm-easy to beak to firm-hard to break for the cookies that received 10 and 15% spirulina, respectively 246

Also, higher content of spirulina affected the fragmentation and the appearance of the break line. However, irregular large parts and continuous beak lines were observed with the cookies that received no *spirulina* while more granules and smaller parts with irregular line were observed with all the cookies that received *spirulina*. Increasing the percentage of *spirulina* made the parts firmer and stickier. The results showed that adding *spirulina* to cookies may help maintain their integrity and reduce breakage duringpackaging and distributions.

Salehifar et al. [40] reported that the addition of 0.5-1.5% *spirulina* into cookies did not alter their brittleness. Morsy et al. [44] reported that the addition of 2.5-7.5 *spirulina* did not significantly alter the brittleness and the firmness of the extruded products but concentrations above 7.5% significantly altered the firmness and the brittleness of these products. Ghaly et al. [38] reported that the addition of 3- 9% spirulina to chocolate chip oatmeal cookies affected the easiness with which the cookies were broken but did not affect their fragmentation nor the appearance of the break line.

259

260 Color

The color of the baked cookies is shown in Figure 1 and the color rating results are presented in Table 9. The sensory panel members described the color of the control sample (0% spirulina) as yellow and yellow-orange and the samples that received the 5 and 10% spirulina as green, tallow-green and green-yellow-green while the sample that received 15% spirulina as green, tallow-green, green-yellowgreen and Green-blue-green. The color shifted from dark green to bluish green with the increase of spirulina content.

The intensity or saturation of the color was rated in scale of 1:10 with 1 considered dull color and 10 considered vivid color. The intensity rating of the color by the sensory panel varied from 6.88 ± 0.89 for the yellow-orange color to 10.00 ± 0.00 for the green-yellow-green color. The results obtained from the sensory panel showed that increasing the amount of *spirulina* in the cookies increased the vividness of their color.

272

274	Table 8.	Effect	of spirul	<i>lina</i> on the	e toughness.	fragmentations	and breaking	ng line of	f cookies.
			-		0,	0		0	

2	7	5
2	/	J

Spirulina	Toughne	ess	Fragm	ent	Breaking	g Line
Content	Description	Panelists	Туре	Panelists	Description	Panelists
(%)						
0	Soft and easy	10	Irregular parts	4	Continuous	6
	to break		Large parts	6	Irregular	4
5	Soft and easy to break	10	Granules	5	Continuous	3
			Large parts	5	Irregular	7
10	Firm and easy to break	8	Granules	4	Continuous	3
			Large parts	4	Irregular	7

		Firm and hard to break	2	Sticky parts	2		
	15	Firm and easy to break	7	Granules	4	Continuous	3
		Firm and hard to break	3	Large parts Sticky parts	3 3	Irregular	7
276 277 278 279 280	Toughnes Fragment Break lin	e is the appearance of the stream of the str	h which here of the bre	breaking of a cook e broken parts of a caking line of a coo	tie is made cookie okie	2	A
281							
282						\sim	
283							
284	- 8						
285		A PARTIE	A				
286		(Hand	the makes			at the	
287			A A			The second	
288							
289		0%	5%	10%	0	15%	
290							
291							
292							
293	Figure 1.	Samples of baked	cookies	with varying amou	ints of <i>spi</i>	rulina.	
294							
295							
296							
297	Table 9. I	Effect of spirulina or	n the colo	or of cookies.			

Spirulina	Saturation	Color	Panelists
(%)	Rating		
0	$7.00{\pm}0.00$	Yellow	2
	6.88±0.89	Yellow-Orange	8
5	$7.00{\pm}0.00$	Green	1
	7.66 ± 0.67	Yellow-Green	2
	8.37±0.38	Green-Yellow-Green	7

10	7.86±0.87 7.33±0.33 7.83±0.87	Green Yellow-Green Green-Yellow-Green	4 3 3
15	9.50±0.21	Green	4
	8.00 ± 0.00	Yellow-Green	1
	10.00 ± 0.0	Green-Yellow-Green	1
	9.10±0.29	Green-Blue-Green	4

298 299	The saturation of the color is the intensity of the color in a scale of 1 (dull): 10 (vivid).
300	
301	
302	
303	
304	
305	Salehifar et al. [40] reported that the addition of 0.5-1.5% spirulina into traditional Iranian
306	cookies did not alter their color compared to that of the original cookies. Morsy et al. [44] reported that
307	the addition of 2.5% spirulina to several extruded products did not change their color, but the addition of
308	5- 12.5% spirulina to these products significantly altered their color. Lemes et al. [43] noted that the
309	addition of 5% spirulina to pasta did not change its color from that of the original pasta, but the addition
310	of 10% altered the color of the pasta. Vijayarani et al. [45] noticed slight change of the color of extruded
311	products when the spirulina content was increased from 5 to 15%. Sharma and Dunkwal [42] found
312	change in the color of biscuits due to the addition of 10% spirulina. Lyer et al. [41] found that increasing
313	the content of spirulina from 2 to 10% in Indian biscuits decreased the color appearance acceptance and
314	concluded that addition of up to 5% of spirulina may be acceptable. Ghaly et al. [38] reported a change
315	of the color of chocolate chip oatmeal cookies when spirulina was added to the cookies and increasing the
316	spirulina content from 3 to 9% increased the vividness of the color. They stated that the color of the
317	cookies was acceptable as reported by the members of the sensory panel.
318	

of

Odor 319

All the baked samples had a noticeable smell. The odor intensity was measured on a scale of 0: 320 321 10 (0= no odor and 10= very strong odor) and the results are shown in Table 10. The results indicated that the odor intensity ranged from faint (4.06-4.89) to strong (8.19-8.69) for the all cookies. However, 322 323 the number of panelists who reported strong odor increased with increasing the spirulina content. The weighted average for the odor intensity was 6.11, 5.53, 6.02 and 6.63 for the cookies receiving 0, 5, 10 324 and 15% spirulina, all of which are rated weak odors. Increasing the amount of spirulina from 5 to 15% 325 (3 fold) only increased the odor intensity by 19.6 % (from 5.33 to 6.63). 326

The nature of the smell (Hedonic Tone) was also rated on a scale of 1:10 with a score of 1-2 327 328 considered as extremely pleasant odor and a score of 10 considered as intolerable odor. The sensory panel 329 rating for the Hedonic Tone was 4.06, 4.63, 5.78 and 6.33 for the cookies that received 0, 5, 10 and 15 % spirulina, respectively. The nature of the smell of the cookies that received 0 and 5% spirulina was 330 pleasant (cookies smell and sweat-yeast smell, respectively) while that of the cookies that revived 10 and 331 15% spirulina was must-seawater and fishy-seawater, respectively. The weighted average for the Hedonic 332 Tone was 2.97, 3.88, 4.69 and 4.74 for the cookies receiving 0, 5, 10 and 15% spirulina, all of which are 333 within the pleasant odor range. Increasing the amount of spirulina from 5 to 15% (3 fold) increased the 334 335 Hedonic Tone by 18.14 % (from 3.88 to 4.74). The results showed that adding 5% spirulina did not affect the odor and the addition of a strong aromatic compound to musk the smell of spirulina may be required 336 with higher concentrations (10-15%) of spirulina. 337

338

339	Table 10.	Effect of s	<i>pirulina</i> on	the odor	of cookies.
-----	-----------	-------------	--------------------	----------	-------------

_	Spirulina	Odor	Panelists	Hedonic	Panellists	Odor
	Content	Intensity		Tone		Description
	(%)					
	0	4.89±0.16 (Faint)	4	2.66±0.32 (Extremely Pleasant)	8	Cookie
		6.57±0.76 (Weak)	5	4.06±0.12 (Pleasant)	2	
		8,69±0.00 Strong)	1			
	5	4.06±0.24 (Faint)	4	2.43±0.11 (Extremely Pleasant)	6	Sweet-Yeast
		6.17±0.56 (Weak)	5	4.05±0.22 (Pleasant)	2	
		8,19±0.00 Strong)	1	8.06±0.18 (Unpleasant)	2	
	10	4.28±0.22 (Faint)	3	2.18±0.15 (Extremely Pleasant)	4	Musty-Seawater
		6.32±0.56 (Weak)	5	4.06±0.19 (Pleasant)	3	5
		8,29±0.32 Strong)	2	8.66±0.14 (Unpleasant)	3	
	15	4.38±0.19 (Faint)	2	2.33±0.09 (Extremely Pleasant)	3	Fishy-Seawater
		6.47±0.56 (Weak)	5	4.41 ± 0.12 (Pleasant)	3	
		8,41±0.32 (Strong)	3	9.06±0.32 (Unpleasant)	4	
340	Odor inte	ensity is the perceived s	trength of ode	or sensation on a scale of 0 (no odor)	:10 (very strop	ng odor)
341 342	Hedonic	Tone is the rating odor	on a scale of	1 (no smell): 10 (intolerable smell.)		
343						
344						
345						
346						
347						

Sharma and Dunkwal [42] found that the addition of 10% *spirulina* into biscuits did not significantly alter the smell of the biscuit as compared with the biscuits without *spirulina*. Lemes et al. [43] noted no difference in the odor of pasta containing 5- 10 % *spirulina*. Vijayarani et al. [44] found no significant differences in the odor of extruded products containing 5- 15% *spirulina*. Ghaly et al. [38] reported no change of the smell of chocolate chip oatmeal cookies when spirulina was added to the cookies at 3% and increasing the spirulina content from 3 to 9% increased the smell of spirulina and stated that a strong aromatic compound may be require to musk the smell of spirulina.

357

358 Taste

The sensation of flavor perceived in the mouth and throat on contact with pieces of cookies was 359 360 evaluated by the sensory panel. The degree of acceptance of the taste was also rated on a scale of 1 361 (nasty): 10 (delicious). The results are presented in Table 11. The addition and/or increasing the amount 362 of *spirulina* affected both the taste and the degree of acceptance. The taste of the cookies that received no 363 spirulina was rated sweet/delicious with a degree of acceptance between 8.33 and 10.00 (sweet and 364 delicious). The taste of the cookies that received spirulina varied from sweet to sour or sour-fishy or bitter-fishy and the degree of acceptance also varied from 8.06 (Sweet) to 4.16 (unpleasant) for the 365 cookies receiving 5% spirulina to from 8.09 (Sweet) to 2.38 (bad) for the cookies receiving 15% 366 spirulina. The results showed that adding 5% spirulina did not affect the taste but addition of a flavoring 367 368 agent to the cookies to musk the taste of *spirulina* may be required with higher concentrations of *spirulina* (10-15%). 369

Lyer et al. [41] reported that increasing *spirulina* content in Parathas bread and biscuits from 2 to 370 10%) changed the taste but remained acceptable. Sharma and Dunkwal [42] found that the addition of 371 372 10% spirulina into biscuits did not result in any significant change in the taste. Lemes et al. [43] noted 373 differences in the taste of pasta containing 5% spirulina compared to the pasta containing no spirulina. Morsy et al. [44] reported that the addition of 2.5% spirulina did not significantly alter the taste of the 374 375 extruded products, but higher concentrations of 5-12.5% resulted in an undesirable taste. Ghaly et al. [38] 376 reported the addition of 3% spirulina to chocolate chip oatmeal cookies did not change their taste but increasing the spirulina content in the cookies from 6 to 9% may require a strong aromatic compound to 377 378 musk the smell of spirulina.

379

380 Nutritional Content

The nutritional values of 30 g cookies containing different amounts of *spirulina* are shown in Table 12. The addition of *spirulina* has enhanced the nutritional value of the cookies by increasing the protein and adding vitamins, mineral, omega 3. 6, 7 and 9 fatty acids and amino acids. *Spirulina* is much better

385

Spirulina (%)	Taste	Degree of Acceptance	Panellists
	Sweet	8.33±0.35 (Pleasant)	6
	Delicious	10.00±0.00 Delicious	4
5	Sweet	8.06±0.34 (pleasant)	6
	Sour	6.66±0.14 (Tasteless)	2
	Bitter	4.16±0.38 (Unpleasant)	2
10	Sweet	8.11±0.26 (Pleasant)	5
	Sour and Fishy	4±0.34 (Unpleasant)	2
	Bitter and Fishy	2±0.44 (Bad)	3
15	Sweet	8.09±0.18 (Pleasant)	4
	Sour and Fishy	4±0.54 (Unpleasant)	3
	Bitter and Fishy	2±0.38 (Bad)	3

Table 11. Effect of *Spirulina* on the taste of the cookies.

387 Taste is the sensation of flavor perceived in the mouth and throat on contact with a substance.

388 The degree of acceptance is the rating of taste on a scale of 1 (nasty): 10 (delicious)

389

Table 12. Nutritional facts for cookies with different spirulina contents.

Annount per serving 0 3 6 9 Calories (Cal) 145.000 147.100 149.200 151.300 Carbohydrae (g) 19.400 19.540 19.680 19.820 Fat (g) 4.990 5.053 5.088 5.137 Omega 5 (mg) 45.213 90.425 155.639 Protein (g) 21.000 42.000 65.800 Arginne (mg) 21.000 42.000 65.800 Arginne (mg) 21.000 42.000 63.000 Arginne (mg) 13.100 60.200 90.300 Glycine (mg) 13.300 26.600 39.900 Isolauria (Ard (mg) 31.600 72.000 50.000 Lysine (mg) 12.000 24.000 38.600 Lysine (mg) 12.000 24.000 31.600 Phenylalamic (mg) 12.000 24.000 31.600 Lysine (mg) 12.000 24.000 31.500 Premylamic (mg) 12.000 24.000 31.500	A manuf man and in a		Spirulina (%)		
Caboris (Cal) 145 000 147 100 149 200 151 300 Cabolydnar (g) 19 400 19 540 19 680 19 820 Omega 3 (mg) 6 550 13 100 19 650 Omega 6 (mg) 4 5213 90 426 135 639 Protin (g) 2 1700 43 400 68 100 Arginine (mg) 2 1000 42 000 68 200 Cysteine (mg) 2 100 42 000 68 200 Cysteine (mg) 2 100 42 000 63 00 Glutamics Acid (mg) 13 000 26 800 39 200 Histidine (mg) 13 300 26 800 39 200 Histidine (mg) 13 000 26 800 39 200 Histidine (mg) 13 000 26 800 39 200 Lewcine (mg) 13 000 26 800 39 200 Lewcine (mg) 13 000 26 800 35 000 Prailan (mg) 10 200 23 000 35 00 Praile (mg) 10 500 7 000 10 800 Stooo 7	Amount per serving	0	3	6	9
Carbohydrafe (g) 19.400 19.540 19.820 Fat (g) 4.990 5.051 5.018 Omega 3 (mg) 6.550 13.100 19.650 Omega (mg) 4.5213 90.426 135.639 Protein (g) 21.000 42.000 65.000 Asparite Acid (mg) 21.000 42.000 63.000 Asparite Acid (mg) 21.000 42.000 63.000 Gittamic Acid (mg) 13.300 26.600 39.900 Histidine (mg) 15.400 30.800 46.200 Leucine (mg) 25.000 50.000 57.000 Leucine (mg) 12.000 24.000 33.600 Methionine (mg) 10.500 21.000 13.500 Prailine (mg) 10.500 21.000 31.500 Prailine (mg) 11.900 23.800 35.700 Throonine (mg) 12.6000 22.000 31.500 Vironine (mg) 19.00 23.800 35.700 Throonine (mg) 12.600 25.200 <td>Calories (Cal)</td> <td>145.000</td> <td>147.100</td> <td>149.200</td> <td>151`.300</td>	Calories (Cal)	145.000	147.100	149.200	151`.300
Fat (g) 4990 5.039 5.088 5.137 Omega f (mg) 6.550 13.100 19.650 Omega f (mg) 5.440 5.930 6.420 6.910 Anaine (mg) 21.700 43.400 66.100 Arginine (mg) 29.400 58.800 88.200 Cysteine (mg) 2.100 43.000 63.000 Glowine (mg) 30.100 60.200 99.000 Glowine (mg) 13.000 26.600 39.900 Listine (mg) 14.000 28.000 42.000 Leatine (mg) 11.200 22.400 58.80 Lysine (mg) 11.200 22.400 31.000 Mathomic (mg) 7.000 14.000 28.000 35.000 Praine (mg) 11.200 22.400 31.000 10.000 Lysine (mg) 11.200 23.000 35.000 17.000 14.4000 28.000 35.00 Praine (mg) 11.900 23.800 35.700 11.900 23.800 35.700 Threonine (mg) 12.600 25.300 37.800 35	Carbohydrate (g)	19.400	19.540	19.680	19.820
Omega 3 (mg) 6.550 13.100 19.650 Omega 6 (mg) 45.213 90.425 135.639 Protein (g) 5.440 5.930 6.420 6.910 Atanine (mg) 21.700 43.400 68.100 Arginia (mg) 21.000 42.000 63.000 Cysteine (mg) 21.000 42.000 63.000 Cysteine (mg) 13.00 26.600 99.300 Glutamic Acid (mg) 13.100 22.000 50.000 42.000 Glutamic Acid (mg) 14.000 22.000 50.000 57.000 Leucine (mg) 11.200 22.400 33.600 74.200 Versine (mg) 10.500 21.000 31.600 72.00 10.800 Phenylatamic (mg) 10.500 21.000 31.500 72.00 10.800 35.700 Trystopkan (mg) 12.600 52.200 37.800 15.700 14.000 24.600 52.00 37.800 Valina (mg) 10.500 7.000 14.000 2	Fat (g)	4.990	5.039	5.088	5.137
Omega 6 (mg) 45.213 90.426 135.639 Alanine (mg) 5.440 5.930 6.420 6.910 Alanine (mg) 21.000 42.000 63.000 Arguine (mg) 29.400 58.800 88.200 Cysteine (mg) 21.00 42.000 63.000 Glutamic Acid (mg) 31.300 26.600 39.900 Glutamic Acid (mg) 13.300 26.600 39.000 Istidine (mg) 15.400 30.800 42.000 Isolactine (mg) 11.200 22.400 33.600 Leuvine (mg) 7.000 14.000 21.000 33.600 Prinine (mg) 10.500 7.000 13.000 25.00 37.800 Prinine (mg) 11.900 23.800 35.700 10.500 15.200 Vaime (mg) 16.600 33.200 49.800 16.800 25.200 Vaime (mg) 16.100 32.200 48.300 17.900 13.800 26.790 13.800 26.790 13.800 26.90<	Omega 3 (mg)		6.550	13.100	19.650
Protein (g) 5.440 5.930 6.420 6.910 Atanine (mg) 21.700 43.400 68.100 Aspartic Acid (mg) 21.000 43.800 68.200 Cysteine (mg) 21.000 42.000 63.000 Cysteine (mg) 13.300 26.600 99.900 Glutamic Acid (mg) 13.300 28.600 42.000 Leactme (mg) 13.400 28.000 42.000 Leactme (mg) 12.000 22.400 33.600 Leactme (mg) 22.600 57.000 33.600 Phenylatanics (mg) 10.500 21.000 31.600 Phenylatanics (mg) 10.500 21.000 31.500 Phenylatanics (mg) 10.500 22.000 35.700 Tryptophan (mg) 12.600 25.200 37.800 Varania	Omega 6 (mg)		45.213	90.426	135.639
Alamine (mg) 21.700 43.400 66.100 Arginine (mg) 29.400 43.800 63.000 Cysteine (mg) 21.000 42.000 63.000 Glutamic Acid (mg) 30.100 60.200 99.300 Histidine (mg) 13.300 26.600 39.900 Isolatence (mg) 13.400 30.800 42.000 Isolatence (mg) 13.400 30.800 42.000 Isolatence (mg) 11.200 22.400 33.600 Leucine (mg) 11.200 22.400 33.600 Preside (mg) 10.500 10.000 21.000 31.500 Serine (mg) 11.900 23.800 35.700 10.800 Prinine (mg) 12.600 22.200 37.800 17.900 14.000 25.200 Vitamin 26.600 33.200 46.900 69.900 16.600 33.200 49.9800 Vitamin 20.300 40.600 69.900 16.600 33.200 49.9800 17.9700 14.000	Protein (g)	5.440	5.930	6.420	6.910
Arginine (mg) 21.000 42.000 63.000 Aspartic Acid (mg) 21.00 42.00 63.000 Cysteine (mg) 21.00 42.00 63.00 Glutamic Acid (mg) 30.100 60.200 90.300 Isideucine (mg) 13.300 26.600 39.900 Histidine (mg) 14.000 28.000 42.000 Leucine (mg) 15.400 30.800 46.200 Leucine (mg) 10.20 24.000 33.600 Phenylalanite (mg) 7.000 14.000 21.000 Serine (mg) 10.500 7.200 10.800 Serine (mg) 12.600 25.200 37.800 Tryptophan (mg) 32.600 7.000 10.500 Tyrosine (mg) 12.600 25.200 37.800 Vitanin 2 2 48.300 16.600 25.200 Vitanin 2 2 48.300 16.600 23.200 49.800 B1 (mg) 65.800 131.600 197.400	Alanine (mg)		21.700	43.400	68.100
Aspartic Acid (mg) 29:400 \$8.800 \$82.200 Cysteine (mg) 21:00 4.200 6.300 Glutamic Acid (mg) 30.100 60:200 90:300 Histidine (mg) 13:300 26:600 39:900 Isolacume (mg) 15:400 30:800 42:000 Isolacume (mg) 12:000 \$50:000 \$70:000 Lysine (mg) 11:200 22:400 33:600 Methionine (mg) 7:000 14:000 21:000 \$10:000 Praine (mg) 7:000 14:000 21:000 \$10:000 Scrine (mg) 11:900 23:800 35:700 Threonine (mg) 16:000 22:200 37:800 Tryptophan (mg) 16:600 33:200 48:300 Vitamin	Arginine (mg)		21.000	42.000	63.000
Cysteine (mg) 2.100 4.200 6.300 Glutamic Acid (mg) 30.100 60.200 99.300 Histidine (mg) 13.300 26.600 39.900 Isolaucine (mg) 15.400 30.800 46.200 Leucine (mg) 25.000 50.000 57.000 Lysine (mg) 11.200 22.400 33.600 Methionine (mg) 7.000 14.0000 21.000 Phenylalaine (mg) 7.000 14.000 21.000 Serine (mg) 10.500 21.000 31.500 Tryptophan (mg) 12.600 25.200 37.800 Tryptophan (mg) 3.500 7.000 10.500 Tyrotophan (mg) 3.500 7.000 10.500 Tyrotophan (mg) 2.660 33.200 49.900 Vitamin	Aspartic Acid (mg)		29.400	58.800	88.200
Glutamic Acid (mg) 30.100 60.200 90.300 Glycine (mg) 13.300 26.600 39.900 Isoleucine (mg) 15.400 30.800 46.200 Leucine (mg) 25.000 50.000 57.000 Lysine (mg) 11.200 22.400 33.600 Methionine (mg) 36.00 7.200 10.800 Praine (mg) 10.000 21.000 31.500 Serier (mg) 11.900 23.800 35.700 Throonine (mg) 12.600 25.200 37.800 Throonine (mg) 12.000 25.200 37.800 Typtophan (mg) 3.600 7.000 10.500 Yaime (mg) 36.00 25.00 37.800 Valine (mg) 2.00 48.300 25.200 Valine (mg) 3.500 7.000 10.500 Valine (mg) 2.00 48.300 27.200 Valine (mg) 2.569 5.138 7.707 B5 (mg) 2.569 5.138 7.707 B6 (mg) 9.240 18.480 2.720 B1	Cysteine (mg)		2.100	4.200	6.300
Glycine (mg) 13.300 26.600 39.900 Histidine (mg) 15.400 30.800 46.200 Leucine (mg) 15.400 30.800 57.000 Lysine (mg) 11.200 22.400 33.600 Methionine (mg) 7.000 14.000 21.000 31.600 Phenylaalmine (mg) 7.000 14.000 22.000 31.600 Serine (mg) 11.900 23.800 35.700 11.900 23.800 35.700 Thronnine (mg) 12.600 25.200 37.800 17.900 14.000 20.000 10.500 Tyrosine (mg) 16.100 32.200 48.300 Vitamin 20.300 40.600 60.900 B1 (mg) 16.600 33.82.00 20.7900 13.800 20.7900 13.800 27.720 B2 (mg) 66.600 33.800 20.7900 13.860 27.720 13.860 B2 (mg) 65.800 131.600 197.400 2.100 13.860 2.720 13.860 C (mg) 4.620 9.240 13.860 7.7120 13.860	Glutamic Acid (mg)		30.100	60.200	90.300
Histine (mg) 14.000 28.000 42.000 Isoleucine (mg) 15.000 50.000 57.000 Lysine (mg) 11.200 22.400 33.600 Methionine (mg) 3.600 7.200 10.800 Phenylalanine (mg) 7.000 14.000 21.000 Praine (mg) 10.000 21.000 31.500 Serine (mg) 11.900 22.800 35.700 Threonine (mg) 12.600 25.200 37.800 Threonine (mg) 3.500 7.000 10.500 Tyrosine (mg) 8.400 16.800 25.200 Valine (mg) 0.61.00 32.200 48.300 Vitamin	Glycine (mg)		13.300	26.600	39.900
Isoleucine (mg) 15 400 30 800 46 200 Leucine (mg) 25 000 50 000 57 000 Leucine (mg) 11 200 22 400 33 600 Methionine (mg) 3 600 7.200 10 800 Phenylainine (mg) 10 500 21 000 31 500 Scrine (mg) 11 900 23 800 35 700 Tryptophan (mg) 12 600 25 200 37 800 Tryptophan (mg) 3 500 7 000 10 500 Viranin 8 400 16 800 25 200 Vitamin 0 0 600 69 300 48 300 B1 (mg) 20 300 40 600 69 900 B3 (mg) 2380 4 760 7.140 B6 (mg) 2380 4 760 7.140 B6 (mg) 35 00 7000 10 300 B1 (mg) 16.100 22 300 33 400 B1 (mg) 2380 4 760 7.140 B1 (mg) 5269 5.138 7.707 B1 (mg) 35 00 7.000 10.500 Horg) 4 62	Histidine (mg)		14.000	28.000	42.000
Leucine (mg) 1200 50.000 50.000 57.000 Lysine (mg) 1200 22.400 33.600 Phenylalanine (mg) 36.00 7.200 10.800 Praline (mg) 7.000 14.000 21.000 Serine (mg) 11.900 23.800 35.700 Threonine (mg) 22.000 25.200 37.800 Tryptophan (mg) 35.00 7.000 10.500 Lysine (mg) 35.00 7.000 10.500 Valine (mg) 8.400 16.800 22.200 48.300 Viamin 4.(mg) 166.600 333.200 499.800 B1 (mg) 20.300 40.600 60.900 B1 (mg) 20.300 40.600 60.900 B1 (mg) 20.569 5.138 7.707 B5 (mg) 2.380 4.760 7.140 B6 (mg) 2.400 138.600 207.900 B3 (mg) 2.569 5.138 7.707 B5 (mg) 4.160 82.320 123.800 B1 (ng) 9.240 18.480 27.720 B9 (µg) 65.800 131.600 197.400 B1 (µg) 2.559 5.138 7.707 B5 (mg) 2.380 4.760 7.140 B6 (mg) 9.240 13.860 207.900 B1 (mg) 2.380 4.760 7.140 B6 (mg) 9.240 13.860 207.900 B1 (mg) 2.380 4.760 7.140 B1 (µg) 65.800 131.600 197.400 B1 (µg) 7.255 1.38 7.707 B5 (mg) 7.707 1.400 2.310 B1 (µg) 65.800 131.600 197.400 B1 (µg) 7.720 46.20 9.240 13.860 C (mg) 13.500 7.000 10.500 B1 (mg) 7.540 3.528 0.1978 B1 (mg) 7.640 3.528 0.1978 B1 (mg) 7.640 3.528 0.1978 B1 (mg) 7.640 3.528 0.1978 B1 (mg) 7.640 3.520 9.240 13.860 C (mg) 1.330 2.660 3.990 Lutein and Zeaxanthin (µg) 1.764 3.528 0.1978 Minerals Minerals Magnesium (mg) 117.63 165.049 172.735 183.430 Sodium (mg) 157.363 165.049 172.735 183.430 Sodium (mg) 157.363 165.049 172.735 183.430 Sodium (mg) 127.30 54.600 81.900 Copper (µg) 127.300 54.600 81.900 Copper (µg) 127.300 54.600 81.900 Copper (µg) 127.300 54.600 81.900 Copper (µg) 12.000 4.200 6.300 Market (µg) 1	Isoleucine (mg)		15.400	30.800	46.200
Lysine (mg)11.20022.40033.600Methionine (mg)36007.20010.800Phenylalanine (mg)7.00014.00021.000Praine (mg)11.90023.80035.700Serine (mg)11.90023.80035.700Threonine (mg)12.60025.20037.800Tryptophan (mg) 3.500 7.00010.500Tyrosine (mg)8.40016.80025.200Value (mg)20.30040.60060.900Stame (mg)20.30040.60060.900B1 (mg)2.5695.1387.707B5 (mg)2.3804.7607.140B6 (mg)9.24018.860207.900B1 (mg)6.5.800131.600197.400B2 (mg)6.5.800131.600197.400B12 (µg)6.5.800131.600197.400B12 (µg)5.2501.5380.10500H (mg)0.7001.4002.100Lutein and Lexanthin (µg)1.3302.6603.390Lutein and Lexanthin (µg)1.7640352.800.198Magnese (µg)17.640235.200352.800Phosphorous (mg)157.363165.049172.735Phosphorous (mg)157.363165.049172.735Phosphorous (mg)157.363165.049172.735Phosphorous (mg)157.363165.049172.735Phosphorous (mg)157.363165.049172.735Phosphorous (mg)157.363165.049	Leucine (mg)		25.000	50.000	57.000
Methionine (mg) 3.600 7.200 10.800 Phenylalania (mg) 7.000 14.000 21.000 Praine (mg) 10.500 21.000 31.500 Serie (mg) 12.000 25.200 37.800 Thryophan (mg) 3.500 7.000 10.500 25.200 Valine (mg) 16.100 32.200 48.300 Vitamin	Lysine (mg)		11.200	22.400	33.600
Phenylalanine (mg)7.00014.00021.000Praline (mg)10.50021.00031.500Serine (mg)12.60023.80035.700Tryptophan (mg)3.5007.00010.500Tryptophan (mg)8.40016.80025.200Vitanie (mg)16.10032.20048.300Vitanin20.30040.60060.900B1 (mg)166.600333.200499.800B2 (mg)66.300138.600207.900B3 (mg)2.3804.7607.140B6 (mg)2.3804.7607.140B6 (mg)9.24018.48027.720B9 (µg)65.800131.600197.400B1 (mg)3.5007.00010.500B4 (mg)5.25013.86020.7900B5 (mg)2.5805.1387.707B5 (mg)2.580131.600197.400B1 (mg)65.800131.600197.400B1 (mg)8.3007.6001.500B1 (mg)17.64035.22012.380C (mg)1.3302.6603.990L (mg)1.3302.6603.990C (mg)1.750235.200138.600C (mg)1.7553.5705355I (mg)1.7561.750138.601C (mg)1.7561.6440.7281.092Phosphorous (mg)157.6316.54917.2735180.421Maganese (µg)157.6316.54917.2735180.421<	Methionine (mg)		3.600	7.200	10.800
Praline (mg) 10.500 21.000 31.500 Serine (mg) 11.900 23.800 35.700 Threonine (mg) 12.600 25.200 37.800 Trytopina (mg) 3.500 7.000 10.500 Valine (mg) 16.100 32.200 48.300 Valine (mg) 16.100 32.200 48.300 Vitamin - - - A (µg) 20.300 40.600 60.900 B2 (mg) 2.569 5.138 7.707 B5 (mg) 2.380 4.760 7.140 B6 (mg) 2.380 13.600 197.400 B12 (µg) 65.800 131.600 197.400 B12 (µg) 4.620 9.240 13.860 C (mg) 41.160 82.320 123.480 E (mg) 3.500 7.000 10.500 H (mg) 0.700 1.400 2.100 K (µg) 0.2550 10.500 15.750 B4 (mg) 0.664 0	Phenylalanine (mg)		7.000	14.000	21.000
Serine (mg) 11.900 23.800 35.700 Threonine (mg) 12.600 25.200 37.800 Tryptophan (mg) 3.500 7.000 10.500 Tyrosine (mg) 8.400 16.800 25.200 Valine (mg) 16.100 32.200 48.300 Vitamin 20.300 40.600 60.900 B1 (mg) 20.300 40.600 60.900 B2 (mg) 20.300 40.600 60.900 B3 (mg) 2.569 5.138 7.707 B5 (mg) 2.380 4.760 7.140 B6 (mg) 9.240 18.480 27.720 B9 (µg) 65.800 131.600 197.400 B1 (mg) 3.500 7.000 10.500 C (mg) 41.60 82.320 123.480 E (mg) 17.640 35.280 0.198 Mpha Carotene (µg) 5.250 10.500 15.750 Beta Carotene (mg) 1.785 3.570 5355 Iterian ad Ceaxant	Praline (mg)		10.500	21.000	31.500
Threonine (mg) 12.600 25.200 37.800 Tryptophan (mg) 3.500 7.000 10.500 Value (mg) 16.100 32.200 48.300 Vitamin 20.300 40.600 69.900 B1 (mg) 16.600 333.200 499.800 B2 (mg) 25.69 5.138 7.707 B5 (mg) 2.569 5.138 7.707 B5 (mg) 2.569 5.138 7.707 B6 (mg) 9.240 18.480 27.720 B9 (µg) 65.800 131.600 197.400 B12 (µg) 4.620 9.240 13.860 C (mg) 41.160 82.320 123.480 E (mg) 3.500 7.000 10.500 H (mg) 17.640 35.280 0.198 Alpha Carotene (µg) 1.330 2.660 3.990 Lutein and Zeaxanthin (µg) 88.200 176.400 264.600 Choline (mg) 0.027 0.054 0.018 Minerals 117.600 235.200 352.800 Maganesium (mg) <td< td=""><td>Serine (mg)</td><td></td><td>11.900</td><td>23.800</td><td>35.700</td></td<>	Serine (mg)		11.900	23.800	35.700
Tryptophan (mg) 3.500 7.000 10.500 Tyrosine (mg) 8.400 16.800 25.200 Valine (mg) 16.100 32.200 48.300 A (µg) 20.300 40.600 60.900 B1 (mg) 166.600 333.200 499.800 B2 (mg) 69.300 138.600 207.900 B3 (mg) 2.380 4.760 7.140 B6 (mg) 9.240 18.480 27.720 B9 (µg) 65.800 131.600 197.400 B12 (µg) 4.620 9.240 13.860 C (mg) 3.500 7.000 10.500 H (mg) 0.700 1.400 2.100 K (µg) 0.700 1.400 2.100 L (µg) 0.350 7.550 10.500 15.750 Beta Carotene (µg) 5.250 0.053 </td <td>Threonine (mg)</td> <td></td> <td>12.600</td> <td>25.200</td> <td>37.800</td>	Threonine (mg)		12.600	25.200	37.800
Tyrosine (mg) 8.400 16.800 25.200 Valine (mg) 16.100 32.200 48.300 Vitamin 20.300 40.600 60.900 A (µg) 20.300 40.600 60.900 B1 (mg) 166.600 333.200 499.800 B2 (mg) 69.300 138.600 207.900 B3 (mg) 2.569 5.138 7.707 B5 (mg) 9.240 18.480 27.720 B9 (µg) 65.800 131.600 197.400 B12 (µg) 44.620 9.240 13.860 C (mg) 41.160 82.320 123.480 E (mg) 0.700 1.400 2.100 K (µg) 0.700 1.400 2.100 K (µg) 17.640 35.280 0.198 Alpha Carotene (µg) 88.200 176.400 264.600 Beta Carotene (mg) 1.330 2.660 3.990 Lutein and Zeaxanthin (µg) 0.027 0.054 0.081 Minerals Carotene (mg) 1.785 3.570 5355 Iron	Tryptophan (mg)		3.500	7.000	10.500
Value (mg) 16,100 32,200 48,300 Vitamin 20,300 40,600 60,900 B1 (mg) 166,600 333,200 499,800 B2 (mg) 69,300 138,600 207,900 B3 (mg) 2,569 5,138 7,707 B5 (mg) 2,380 4,760 7,140 B6 (mg) 9,240 18,480 27,720 B9 (µg) 65,800 131,600 197,400 B12 (µg) 46,620 9,240 13,860 C (mg) 41,160 82,320 123,480 E (mg) 3,500 7,000 10,500 H (mg) 0,700 1,400 2,100 K (µg) 17,640 35,280 0,198 Alpha Carotene (µg) 88,200 176,400 264,600 Chick cid (µg) 0,004 0,007 0,018 Minerals 117,600 235,200 352,800 Chick cid (µg) 0,364 0,728 1,092 Phosphorous (mg) <	Tyrosine (mg)		8.400	16.800	25.200
Vitamin 20.300 40.600 60.900 B1 (mg) 166.600 333.200 499.800 B2 (mg) 69.300 138.600 207.900 B3 (mg) 2.569 5.138 7.707 B5 (mg) 2.380 4.760 7.140 B6 (mg) 9.240 18.480 27.720 B9 (µg) 65.800 131.600 197.400 B12 (µg) 4.620 9.240 13.860 C (mg) 41.160 82.320 123.480 E (mg) 3.500 7.000 10.500 H (mg) 0.700 1.400 2.100 K (µg) 17.640 35.280 0.198 Alpha Carotene (µg) 1.330 2.660 3.990 Lutein and Zeaxanthin (µg) 0.027 0.054 0.081 Folic Acid (µg) 0.004 0.007 0.0108 Minerals 17.85 3.570 5355 10.920 Calcium (mg) 1.785 3.570 5355 10.92 Potosporous (mg) 1.785 3.570 5355 10.92	Valine (mg)		16.100	32.200	48.300
A (µg) 20.300 40.600 60.900 B1 (mg) 166.600 333.200 499.800 B2 (mg) 69.300 138.600 207.900 B3 (mg) 2.569 5.138 7.707 B5 (mg) 2.380 4.760 7.140 B6 (mg) 9.240 18.480 27.720 B9 (µg) 65.800 131.600 197.400 B12 (µg) 41.160 82.320 123.480 E (mg) 3.500 7.000 10.500 H (mg) 0.700 1.400 2.100 K (µg) 17.640 35.280 0.198 Alpha Carotene (µg) 5.250 10.500 15.750 Beta Carotene (mg) 1.330 2.660 3.990 Lutein and Zeaxanthin (µg) 0.027 0.054 0.081 Pantothenic Acid (µg) 0.364 0.728 1.092 Phosphorous (mg) 1.785 3.570 3535 Iron (mg) 1.785 3.570 3545 Potassium (mg) 1.783 165.049 17.735 180.421 <td< td=""><td>Vitamin</td><td></td><td></td><td></td><td></td></td<>	Vitamin				
B1 (mg) 166.600 333.200 499.800 B2 (mg) 69.300 138.600 207.900 B3 (mg) 2.569 5.138 7.707 B5 (mg) 2.380 4.760 7.140 B6 (mg) 9.240 18.480 27.720 B9 (µg) 65.800 131.600 197.400 B12 (µg) 4.620 9.240 13.860 C (mg) 41.160 82.320 123.480 E (mg) 3.500 7.000 10.500 H (mg) 0.700 1.400 2.100 K (µg) 5.250 10.500 15.750 Beta Carotene (µg) 5.250 10.500 15.750 Beta Carotene (mg) 1.330 2.660 3.990 Lutein and Zeaxanthin (µg) 0.027 0.054 0.081 Pantothenic Acid (µg) 0.004 0.007 0.018 Maneasium (mg) 1.785 3.570 5355 Iron (mg) 6426 12.852 19.278 Phosphorous (mg) 157.363	Α (μg)		20.300	40.600	60.900
B2 (mg) 69.300 138.600 207.900 B3 (mg) 2.569 5.138 7.707 B5 (mg) 2.380 4.760 7.140 B6 (mg) 9.240 18.480 27.720 B9 (µg) 65.800 131.600 197.400 B12 (µg) 46.20 9.240 13.860 C (mg) 41.160 82.320 123.480 E (mg) 3.500 7.000 10.500 H (mg) 0.700 1.400 2.100 Alpha Carotene (µg) 5.250 10.500 15.750 Beta Carotene (mg) 1.330 2.660 3.990 Lutein and Zeaxanthin (µg) 46.200 92.400 138.600 Folic Acid (µg) 0.027 0.054 0.081 Pantothenic Acid (µg) 0.027 0.054 0.081 Manerals 117.600 235.200 352.800 Magnesium (mg) 1.785 3.570 5355 Iron (mg) 1.785 3.570 5355 Phosphorous (mg) 157.363 165.049 172.735 180.421 <	B1 (mg)		166.600	333.200	499.800
B3 (mg) 2.569 5.138 7.707 B5 (mg) 2.380 4.760 7.140 B6 (mg) 9.240 18.480 27.720 B9 (µg) 65.800 131.600 197.400 B12 (µg) 4.620 9.240 13.860 C (mg) 41.160 82.320 123.480 E (mg) 3.500 7.000 10.500 H (mg) 0.700 1.400 2.100 K (µg) 17.640 35.280 0.198 Alpha Carotene (µg) 5.250 10.500 15.750 Beta Carotene (mg) 1.330 2.660 3.990 Lutein and Zeaxanthin (µg) 88.200 176.400 264.600 Choline (mg) 46.200 92.400 138.600 Folic Acid (µg) 0.027 0.054 0.081 Pantothenic Acid (µg) 0.364 0.728 1.092 Magnesium (mg) 17.60 235.200 352.800 Magnesium (mg) 157.363 165.049 172.735 180.421 Magnaese (µg) 157.363 165.049 172.735 180.421 Manganese (µg) 13.300 26.600 39.900 Zinc (µg) 13.300 26.600 39.900 Boron (µg) 27.300 54.600 81.900 Copper (µg) 27.300 54.600 81.900 Copper (µg) 21.000 42.000 6.300 Machadamar (ref) 21.000 42.000 6.300	B2 (mg)		69.300	138.600	207.900
B5 (mg)2.380 4.760 7.140 B6 (mg)9.24018.48027.720B9 (µg) 65.800 131.600197.400B12 (µg) 4.620 9.24013.860C (mg) 4.160 82.320123.480E (mg) 3.500 7.00010.500H (mg) 0.700 1.4002.100K (µg)17.64035.2800.198Alpha Carotene (µg) 5.250 10.50015.750Beta Carotene (mg)1.3302.6603.990Lutein and Zeaxanthin (µg) 88.200 176.400264.600Choline (mg) 46.200 92.400138.600Folic Acid (µg) 0.027 0.054 0.081 Pantothenic Acid (µg) 0.004 0.007 0.0108 Minerals 1.785 3.570 5355 Iron (mg) 1.2810 25.620 38.430 Sodium (mg) 12.810 25.620 38.430 Sodium (mg) 157.363 165.049 172.735 180.421 Manganese (µg) 1.330 2.660 39.900 Zinc (µg) 1.330 26.600 39.900 Boron (µg) 1.330 26.600 39.900 Diron (µg) 1.330 26.600 39.900 Diron (µg) 1.2810 25.620 38.430 Sodium (mg) 1.2810 25.620 38.430 Sodium (mg) 1.2810 25.620 38.430 Sodium (mg) 1.2810 25.620 38.430 So	B3 (mg)		2.569	5.138	7.707
B6 (mg)9.24018.480 $27/.720$ B9 (µg)65.800131.600197.400B12 (µg)4.6209.24013.860C (mg)41.16082.320123.480E (mg)3.5007.00010.500H (mg)0.7001.4002.100K (µg)17.64035.2800.198Alpha Carotene (µg)5.25010.50015.750Beta Carotene (mg)1.3302.6603.990Lutein and Zeaxanthin (µg)88.200176.400264.600Choline (mg)0.0270.0540.081Pantothenic Acid (µg)0.0040.0070.0108Minerals117.600235.200352.800Magnesium (mg)1.7853.5705355Potassium (mg)6.42612.85219.278Photsphorous (mg)6.42612.85219.278Potassium (mg)157.363165.049172.735180.421Manganese (µg)1.33026.60039.900Jino (µg)27.30054.60081.900Copper (µg)2.1004.2006.300Muchargen (µg)21.00042.00063.000	B5 (mg)		2.380	4.760	7.140
B9 (µg) $65,800$ $131,600$ $197,400$ B12 (µg) $4,620$ $9,240$ $13,860$ C (mg) 4.160 $82,320$ $123,480$ E (mg) $3,500$ $7,000$ $10,500$ H (mg) $0,700$ 1.400 2.100 K (µg) $17,640$ $35,280$ 0.198 Alpha Carotene (µg) $5,250$ $10,500$ $15,750$ Beta Carotene (mg) 1.330 2.660 3.990 Lutein and Zeaxanthin (µg) $88,200$ $176,400$ $264,600$ Choline (mg) 0.027 0.054 0.081 Pantothenic Acid (µg) 0.004 0.007 0.0108 Minerals $117,600$ $235,200$ $352,800$ Calcium (mg) 1.785 3.570 5355 Prosphorous (mg) 6.426 12.852 19.278 Potassium (mg) 157.363 165.049 172.735 180.421 Manganese (µg) 1.3300 26.600 39.900 Boron (µg) 27.300 54.600 81.900 Copper (µg) 2.100 4.200 6.300 Value Alexander (µg) 21.000 42.000 6.300	B6 (mg)		9.240	18.480	27.720
B12 (µg)4.6209.24013.800C (mg)41.160 82.320 123.480E (mg) 3.500 7.000 10.500H (mg) 0.700 1.400 2.100 K (µg) 17.640 35.280 0.198 Alpha Carotene (µg) 5.250 10.500 15.750 Beta Carotene (mg) 1.330 2.660 3.990 Lutein and Zeaxanthin (µg) 46.200 92.400 138.600 Folic Acid (µg) 0.027 0.054 0.081 Pantothenic Acid (µg) 0.004 0.007 0.0108 Minerals 117.600 235.200 352.800 Calcium (mg) 1.785 3.570 5355 Iron (mg) 6.426 12.852 19.278 Potassium (mg) 157.363 165.049 172.735 180.421 Manganese (µg) 1.330 26.600 39.900 Zinc (µg) 13.300 26.600 39.900 Boron (µg) 27.300 54.600 81.900 Copper (µg) 21.00 4.200 6.300 Mankinese 21.00 4.200 6.300	B9 (µg)		65.800	131.600	197.400
C (mg) 41.160 82.320 123.480 E (mg) 3.500 7.000 10.500 H (mg) 0.700 1.400 2.100 K (µg) 17.640 35.280 0.198 Alpha Carotene (µg) 5.250 10.500 15.750 Beta Carotene (mg) 1.330 2.660 3.990 Lutein and Zeaxanthin (µg) 88.200 176.400 224.00 Choline (mg) 46.200 92.400 138.600 Folic Acid (µg) 0.027 0.054 0.081 Pantothenic Acid (µg) 0.004 0.007 0.0108 Minerals 117.600 235.200 352.800 Magnesium (mg) 1.785 3.570 5355 Iron (mg) 0.364 0.728 1.092 Phosphorous (mg) 6.426 12.810 25.620 38.430 Sodium (mg) 157.363 165.049 172.735 180.421 Manganese (µg) 1.400 2.800 4.200 4.200 Zinc (µg) 13.300 26.600 39.900 Boron (µg) 27.300 54.600 81.900 Copper (µg) 2.100 4.200 6.300 Markharum (m) 21.000 42.00 63.00	B12 (μg)		4.620	9.240	13.860
E (mg) 3.300 7.000 10.500 H (mg) 0.700 1.400 2.100 K (µg) 17.640 35.280 0.198 Alpha Carotene (µg) 5.250 10.500 15.750 Beta Carotene (mg) 1.330 2.660 3.990 Lutein and Zeaxanthin (µg) 88.200 176.400 264.600 Choline (mg) 46.200 92.400 138.600 Folic Acid (µg) 0.027 0.054 0.081 Pantothenic Acid (µg) 0.004 0.007 0.0108 Minerals 117.600 235.200 352.800 Magnesium (mg) 1.785 3.570 5355 Iron (mg) 6.426 12.852 19.278 Phosphorous (mg) 157.363 165.049 172.735 180.421 Manganese (µg) 1.300 26.600 39.900 Boron (µg) 27.300 54.600 81.900 Copper (µg) 21.000 42.000 6.300	C(mg)		41.160	82.320	123.480
H (mg) 0.700 1.400 2.100 K (µg)17.64035.2800.198Alpha Carotene (µg)5.25010.50015.750Beta Carotene (mg)1.3302.6603.990Lutein and Zeaxanthin (µg)88.200176.400264.600Choline (mg)46.20092.400138.600Folic Acid (µg)0.0270.0540.081Pantothenic Acid (µg)0.0040.0070.0108Minerals117.600235.200352.800Magnesium (mg)1.7853.5705355Iron (mg)0.3640.7281.092Phosphorous (mg)6.42612.85219.278Potassium (mg)157.363165.049172.735180.421Manganese (µg)1.30026.60039.900Zinc (µg)13.30026.60039.900Boron (µg)27.30054.60081.900Copper (µg)21.00042.0006.300Maduharum (µg)21.00042.0006.300	E (mg)		3.500	7.000	10.500
K (µg) $17,640$ $55,280$ 0.198 Alpha Carotene (µg) $5,250$ $10,500$ $15,750$ Beta Carotene (mg) $1,330$ $2,660$ $3,990$ Lutein and Zeaxanthin (µg) $88,200$ $176,400$ $264,600$ Choline (mg) $46,200$ $92,400$ $138,600$ Folic Acid (µg) 0.027 0.054 0.081 Pantothenic Acid (µg) 0.004 0.007 0.0108 Minerals $117,600$ $235,200$ $352,800$ Magnesium (mg) $1,785$ 3.570 5355 Iron (mg) 0.364 0.728 1.092 Phosphorous (mg) 6.426 12.852 19.278 Potassium (mg) $157,363$ 165.049 172.735 180.421 Manganese (µg) 1.400 2.800 4.200 Zinc (µg) $27,300$ $54,600$ 81.900 Copper (µg) 2.100 4.200 6.300	H (mg)		0.700	1.400	2.100
Arina Carotene (hg) 3.250 10.300 13.790 Beta Carotene (mg) 1.330 2.660 3.990 Lutein and Zeaxanthin (µg) 88.200 176.400 264.600 Choline (mg) 46.200 92.400 138.600 Folic Acid (µg) 0.027 0.054 0.081 Pantothenic Acid (µg) 0.004 0.007 0.0108 Minerals 117.600 235.200 352.800 Magnesium (mg) 1.785 3.570 5355 Iron (mg) 0.364 0.728 1.092 Phosphorous (mg) 6.426 12.852 19.278 Potassium (mg) 157.363 165.049 172.735 180.421 Manganese (µg) 1.300 26.600 39.900 Boron (µg) 27.300 54.600 81.900 Copper (µg) 2.100 4.200 6.300	\mathbf{K} (µg)		17.040	35.280	0.198
Beta Catolete (fig) 1.330 2.000 3.990 Lutein and Zeaxanthin (µg) 88.200 176.400 264.600 Choline (mg) 46.200 92.400 138.600 Folic Acid (µg) 0.027 0.054 0.081 Pantothenic Acid (µg) 0.004 0.007 0.0108 Minerals 2.1785 3.570 5355 Calcium (mg) 1.785 3.570 5355 Iron (mg) 0.364 0.728 1.092 Phosphorous (mg) 6.426 12.852 19.278 Potassium (mg) 157.363 165.049 172.735 180.421 Manganese (µg) 1.400 2.800 4.200 Zinc (µg) 13.300 26.600 39.900 Boron (µg) 27.300 54.600 81.900 Copper (µg) 2.100 4.200 6.300	Alpha Carotene (µg)		5.250	10.500	15./50
Litterin and Zeaxantinin (hg) 88.200 176.400 264.000 Choline (mg) 46.200 92.400 138.600 Folic Acid (µg) 0.027 0.054 0.081 Pantothenic Acid (µg) 0.004 0.007 0.0108 Minerals 117.600 235.200 352.800 Calcium (mg) 1.785 3.570 5355 Iron (mg) 0.364 0.728 1.092 Phosphorous (mg) 6.426 12.852 19.278 Potassium (mg) 157.363 165.049 172.735 180.421 Manganese (µg) 1.400 2.800 4.200 Zinc (µg) 13.300 26.600 39.900 Boron (µg) 2.100 4.200 6.300 Mark damum (ng) 2.100 4.200 6.300	Lutain and Zaquanthin (u.g)		1.550	2.000	3.990
Colonie (ing) 46.200 92.400 135.000 Folic Acid (µg) 0.027 0.054 0.081 Pantothenic Acid (µg) 0.004 0.007 0.0108 Minerals 117.600 235.200 352.800 Calcium (mg) 1.785 3.570 5355 Iron (mg) 0.364 0.728 1.092 Phosphorous (mg) 6.426 12.852 19.278 Potassium (mg) 157.363 165.049 172.735 180.421 Manganese (µg) 1.400 2.800 4.200 Zinc (µg) 27.300 54.600 81.900 Copper (µg) 2.100 4.200 6.300 Malcharum (µg) 2.100 4.200 6.300	Chaling (mg)		88.200 46.200	170.400	204.000
Point Acta (μg) 0.027 0.034 0.061 Pantothenic Acid (μg) 0.004 0.007 0.0108 Minerals 117.600 235.200 352.800 Calcium (mg) 1.785 3.570 5355 Iron (mg) 0.364 0.728 1.092 Phosphorous (mg) 6.426 12.852 19.278 Potassium (mg) 157.363 165.049 172.735 180.421 Manganese (μg) 1.400 2.800 4.200 Zinc (μg) 13.300 26.600 39.900 Boron (μg) 2.100 4.200 6.300 Macharum (ug) 2.100 4.200 6.300	Choline (mg)		46.200	92.400	138.000
Pantonenic Acta (µg) 0.004 0.007 0.0108 Minerals117.600235.200352.800Magnesium (mg)1.7853.5705355Iron (mg)0.3640.7281.092Phosphorous (mg)6.42612.85219.278Potassium (mg)157.363165.049172.735180.421Manganese (µg)1.4002.8004.200Zinc (µg)27.30054.60081.900Boron (µg)2.1004.2006.300Makharum (µg)2.1004.2006.300	Polic Acid (μg)		0.027	0.034	0.081
Minerals117.600235.200352.800Magnesium (mg) 1.785 3.570 5355 Iron (mg) 0.364 0.728 1.092 Phosphorous (mg) 6.426 12.852 19.278 Potassium (mg) 157.363 165.049 172.735 180.421 Manganese (µg) 1.400 2.800 4.200 Zinc (µg) 27.300 54.600 81.900 Copper (µg) 2.100 4.200 6.300 Machdarum (µg) 2.100 42.000 6.300	Minorals		0.004	0.007	0.0108
Calculu (ng) $117,000$ $253,200$ $532,800$ Magnesium (ng) 1.785 3.570 5355 Iron (ng) 0.364 0.728 1.092 Phosphorous (ng) 6.426 12.852 19.278 Potassium (ng) 12.810 25.620 38.430 Sodium (ng) 157.363 165.049 172.735 180.421 Manganese (µg) 1.400 2.800 4.200 Zinc (µg) 27.300 54.600 81.900 Copper (µg) 2.100 4.200 6.300	Calaium (ma)		117 600	225 200	252 800
Magnesium (ng) 1.783 5.570 5353 Iron (mg) 0.364 0.728 1.092 Phosphorous (mg) 6.426 12.852 19.278 Potassium (mg) 12.810 25.620 38.430 Sodium (mg) 157.363 165.049 172.735 180.421 Manganese (µg) 1.400 2.800 4.200 Zinc (µg) 13.300 26.600 39.900 Boron (µg) 27.300 54.600 81.900 Copper (µg) 2.100 4.200 6.300	Magnasium (mg)		117.000	255.200	532.800
$\begin{array}{c ccccc} 100 \ (ng) & 0.304 & 0.728 & 11.092 \\ \hline Phosphorous (mg) & 6.426 & 12.852 & 19.278 \\ Potassium (mg) & 12.810 & 25.620 & 38.430 \\ Sodium (mg) & 157.363 & 165.049 & 172.735 & 180.421 \\ \hline Manganese (\mu g) & 1.400 & 2.800 & 4.200 \\ Zinc (\mu g) & 13.300 & 26.600 & 39.900 \\ Boron (\mu g) & 27.300 & 54.600 & 81.900 \\ Copper (\mu g) & 2.100 & 4.200 & 6.300 \\ \hline Multi denum (\mu g) & 21.000 & 42.000 & 6.300 \\ \hline \end{array}$	Iron (mg)		0.264	0.729	1 002
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Phosphorous (mg)		6.426	12.852	10.92
10/assum (ng) 12.510 25.020 55.450 Sodium (ng) 157.363 165.049 172.735 180.421 Manganese (µg) 1.400 2.800 4.200 Zinc (µg) 13.300 26.600 39.900 Boron (µg) 27.300 54.600 81.900 Copper (µg) 2.100 4.200 6.300	Potassium (mg)		12 810	25.620	38 / 30
Solutin (ing)137.505105.049172.755180.421Manganese (µg)1.4002.8004.200Zinc (µg)13.30026.60039.900Boron (µg)27.30054.60081.900Copper (µg)2.1004.2006.300Makhdanum (µg)21.00042.0006.300	Sodium (mg)	157 363	165 0/0	172 735	180 / 21
Numerica (μg)1.4002.6004.200Zinc (μg)13.30026.60039.900Boron (μg)27.30054.60081.900Copper (μg)2.1004.2006.300Malek dowum (μg)21.00042.0006.300	Manganese (ug)	157.505	1 400	2 800	100.421
Zinc (µg) 13,500 20,000 35,500 Boron (µg) 27,300 54,600 81,900 Copper (µg) 2,100 4,200 6,300 Makedanum (µg) 21,000 42,000 6,300	Zinc (ug)		13 300	2.000 26.600	30 000
Doton (μ_{2})27,50054,00081,900Copper (μ_{2})2.1004.2006.300Malek dowum (μ_{2})21,00042,0006.300	Boron (µg)		27 300	54 600	27.700 81 000
Copper (ug) 2.100 4.200 0.300 Malukanum (ug) 21 000 42 000 (2 000)	Copper (ug)		27.500	4 200	6 200
71 IIIII /17 IIIII /17 IIIII /17 IIIII	Molybdenum (µg)		2.100	4.200	63 000
$\frac{1000}{21000} \frac{1000}{21000} \frac{12000}{21000} \frac{12000}{2000} \frac{10000}{2000} \frac{1000}{2000} \frac{10000}{2000} \frac{10000}{2000} \frac{10000}{2000} \frac{10000}{2000} \frac{10000}{2000} \frac{10000}{2000} \frac{1000}{2000} \frac{1000}{2000} \frac{1000}{2000} \frac{1000}{2000} \frac{10000}{2000} \frac{10000}$	Selenium (µg)		21.000	7 000	10 500

Cookie Weight = 30 gCookie Size = 5 cm diameter x 0,5 cm height

source of protein (65%) than milk (4.3%), eggs (13.3%), pulses (24%) and soybean (43.2%). The beta carotene in *spirulina* (1900 μ g/g) is much higher than that in carrots (18.9 μ g/g), spinach (55.8 μ g/g) and mango (27.4 μ g/g). The iron content in *spirulina* (0.522 mg/g) is also higher than spinach (0.109 mg/g) and soybean (0.115 mg/g). Table 13-17 show the health benefits of amino acids, water soluble and fatsoluble fatty acids, minerals and vitamins found in *spirulina*.

Because of its high contents of highly valuable bioactive compounds, *spirulina* has been used to 402 403 stimulate the immune system by enhancing the production of antibodies and cytokines and, thus, improving the resistance to infections in humans. Spirulina preparations have proved to be effective 404 against HIV, herpes virus, cytomegalovirus and influenza virus as well as preservation of the resident 405 406 intestinal micro flora (especially lactic acid bacilli and bifid bacteria) and decreasing of Candida albicans 407 level. Many of the phytonutrients in spirulina function as antioxidants and anti-inflammatory nutrients 408 (Table 18) working together in synergistic fashion to provide cardiovascular benefits. Because of this unique combination of antioxidant and anti-inflammatory nutrients, Spirulina has several health benefits 409 410 including: cardiovascular support and prevention of cardiovascular diseases, heart, kidney and liver disease, obesity, neurodegenerative disease, arthritis, allergies, prevention of breast, cervical, colon and 411 esophageal cancers, cholesterol control and improved regulation of blood sugar [21-25,28-30,34,46,61-63]. 412

- 413
- 414
- 415

CONCULOSION

The incorporation of *spirulina* into cookies will enrich their nutritional values by increasing the protein content and adding vitamins, minerals, omega 3 and omega 6 oils and amino acids. *Spirulina* is a good source of protein, beta carotene and iron. The protein content in *spirulina* (65%) is much higher than that in milk (4.3%), eggs (13.3%), pulses (24%) and soybean (43.2%). The beta carotene in *spiruina* (1900 μ g/g) is much higher than that in carrots (18.9 μ g/g), spinach (55.8 μ g/g) and mango (27.4 μ g/g). The iron content in *spirulina* (0.522 mg/g) is also higher than spinach (0.109 mg/g) and soy bean (0.115 mg/g). However, adding spirulina to cookies affected their smell, color, appearance, texture and taste.

The addition of *spirulina* to the cookies affected both the texture and mouth feel compared to the control (0% spirulina). The cookies that received no *spirulina* had smoother texture and moist-smooth mouth feel whereas those received *spirulina* had sandy-courses texture and heavy-chewy mouth feel. Increasing the percentage of spirulina made the surface of the cookies more sandy-courses and made the mouth feel firmer and chewier.

428

429

432 Tab 433 Table 13. Health benefits of amino acids in *spirulina* [46-49].

Amino Acid	Health Benefits
Alanine	Is a critical player in the body's <i>protein biosynthesis</i> and has certain regulatory functionality, the liver absorbs alanine from the blood and converts it into pyruvate to enables a faster and more effective supply of energy to the body. I it supports the immune system and prevents kidney stones which are produced by the body as insoluble toxic compounds, stimulates the production of glucagon when blood sugar is too low and supports the generation of glucose from other amino acids, protects the prostate gland from an irregular enlargement which cause severe pain during urination, reacts with glucose which leads to an increased production and excretion of insulin, increases physical fitness when combined with exercise and protects from cardiovascular illnesses.
Arginine	Reduces blood pressure and improves blood flow, reduces risk of heart disease and type 2 diabetes, helps increase insulin levels and decrease blood glucose levels in diabetes, stimulates the immune system to act on and destroy pathogens, reduces anxiety, increases stamina, improves wound healing, maintains memory during aging, increases fertility and fights Aging.
Aspartic acid	Improves muscle strength, increases lean body mass and boosts energy levels, increases natural testosterone production which is needed for building muscles, increases endurance and improves performance, regulates hormone production, boosts growth hormones and positively affects insulin-like growth factors, enhances the level of nitric oxide which helps increase muscular pumps and vascularity and plays a major role in enhancing memory enhancers and preventing depressants.
Cysteine	Neutralizes free radicals that can damage cells and tissues, prevents kidney and liver damage, prevents side effects of drugs and environmental toxins, improves psychiatric disorders and decreases withdrawal symptoms, prevents relapse in cocaine addicts, relieves symptoms of respiratory conditions and reduces inflammation in bronchial tubes and lung tissues, improves cystic fibrosis, asthma, pulmonary fibrosis and nasal and sinus congestion, boosts brain health and slows the loss of cognitive ability in people with Alzheimer's, improves fertility in men and women, stabilizes blood sugar, reduces heart disease and improves immune function.
Glutamic acid	Improves gastrointestinal health such as irritable bowel syndrome, ulcerative colitis, diverticulosis, diverticulitis, leaky gut, joint pain, autoimmune response, Hashimoto's disease, arthritis and skin issues like psoriasis, boosts brain health, improves diarrhea by balancing mucus production, promotes muscle growth and decreases muscle wasting, cleanses the body from high levels of ammonia, burns fat, helps suppress insulin levels and stabilizes blood glucose.
Histidine	Protects heart, reduces blood pressure, reduces oxidative stress, reduces inflammation, decreases insulin resistance, p revents obesity, protects skin from UV radiation, improves brain function, prevents blood clots, suppresses seizures, protects eyes from inflammation and prevents oxidative stress.
Isoleucine	Is antiaging and anti-inflammation and is important for synthesis of hemoglobin and other proteins. It increases muscle mass, prevents essential amino acid deficiency in individuals on protein-restricted diets, treats hot flushes in postmenopausal women, improves vision disturbance, dermatitis and diarrhea, detoxifies nitrogen wastes, heals wound, treats erectile dysfunction, diabetes, hair losses, inflammation, osteoarthritis, rectal diseases, insomnia, weight loss and cancer, improves blood circulation, reduces cholesterol, boosts the immune system and muscle growth and improves fertility.
Lucien	Helps in weight loss, protects against liver and colorectal cancer, manages blood glucose levels and prevents complications of diabetes, keeps blood pressure and cholesterol within target ranges, prevents heart disease and stroke, helps maintain strong bones and teeth, improves mood and memory, improves gut health and helps getting a good night's sleep.
Lysine	Is important for normal growth and muscle turnover. It protects against and treats cold sores by blocking arginine, reduces anxiety by blocking stress response receptors, improves calcium, iron, and zinc absorption and retention, reduces blood pressure, promotes wound healing by helping create collagen, helps produce enzymes, antibodies and hormones, supports the immune system, treats herpes virus, treats poor concentration, irritability, nausea and red eyes problems, treats hair losses and supports hair growth, treats anorexia, prevents bone loss, promotes healthy

growth of skin, prevents plaque buildup in arteries and treats shingles.

434 435 436

Table 13. Continued (Health benefits of amino acids in *spirulina*).

Amina Aaid	Haalth Danafita
Mathianina	Describes on important role volcting to the growth of new blood vessels, heals wounds, treats drug
Methonnie	withdrawal schizenbrania radiation conner paisoning asthma allergies alashelism and
	depression supports the proper function of the immune system reduces risk of colorectal cancer
	lowers tremors in Parkinson's patients builds hone strength and helps treat the effects of liver
	disease
Phenylalanine	Is direct precursor of tyrosine in the human body and is used as a marker for Parkinson's
1 11011 J 10101110	Disease. It treats depression and pain, treats vitiligo which is a skin condition where the skin
	loses its colorist, increases natural opioids in the body by inhibiting the enzyme
	carboxypeptidase which degrades endogenous opioids in the body, alleviates alcohol withdrawal
	symptoms, enhances the effectiveness of acupuncture anesthesia and improves ADHD symptoms
	in the short term.
Praline	Is vital for nerve conduction and brain function, improves digestion, helps with weight loss,
	reduces the risk of certain cancer, provides anti-Inflammatory and anti-aging benefits, prevents
	skin problems, stimulates hair growth and prevents hair loss, reduces the risk of coronary heart
	disease and minimizes the risk of stroke, reduces the risk of breast cancer, promotes colon
	health and facilitates regular bowel movements, improves bone and teeth health, reduces blood
	pressure, strengthens the immune system, plays an important role in maintaining good skin, aids
	in the elimination of toxins and waste from the body and prevents the occurrence of wrinkles and
Corino	pigmentation
Serine	is a precursor to other amino actus like givene and cysteine and is important in cert communication within the brain. It assists in production of immunoclobuling and antibodies for a
	healthy immune system helps in the absorption of creatine that helps huild and maintain the
	muscles treats brain diseases such as any otrophic lateral sclerosis (ALS) chronic fatigue
	syndrome and Alzheimer disease plays a role in forming of all four bases of DNA and RNA
	(adenine, guanine, cytosine, thymine, and uracil, assists in production of antibodies
	(immunoglobulins), plays a central role in information processing, assists in stimulating the
	nervous system, produces serotonin which ultimately affects mood, digestion and sleep, increases
	levels of creatine which promotes muscle mass in the body, reduces symptoms of the brain
	disease (HSAN1) that causes loss of sensation in the legs and feet, treats seizures, increases
	blood flow to the brain, improves Huntington's disease, slows the appearance of wrinkles and
	decreased the presence of pre-existing wrinkles, combats depression and schizophrenia and helps
	relieve anxiety.
Threonine	Treats various nervous system disorders including spinal spasticity, multiple sclerosis, familial
	spastic paraparesis and amyotrophic lateral sclerosis, treats different types of depression, makes
	up elastin, collagen and enamel protein, promotes the proper fat metabolism in the liver, aids the
	digestive and intestinal tracts to function more smoothly and helps in metabolism in the upper
	reaches of the small intestine (ileum), produces the mucus gel layer that covers the digestive tract
	which is a barrier to digestive enzymes that can damage the intestines, produces antibodies to
	Gebrigs Disease)
Tryptonhan	Is a precursor to the brain neurotransmitter serotonin (low serotonin production in the brain leads
Tryptophan	to depression anxiety mood disorders insomnia noor cognition). It improve sleep quality and
	lifts mood reduces depression and anxiety helps with recovery from addictions r educes
	headaches and migraines, maintain a healthy weight, contributes to the therapy of autism.
	cardiovascular disease, cognitive function, chronic kidney disease, depression, inflammatory
	bowel disease, multiple sclerosis, sleep, social function and microbial infections. facilitates the
	diagnosis of certain conditions such as human cataracts, colon neoplasms, renal cell carcinoma
	and prognosis of diabetic nephropathy, brings on natural calming effects, induces sleep, fights
	anxiety, helps burn more body fat, stimulates the release of growth hormones and reduces food
	cravings for carbohydrates and works in the brain and central nervous system to boost feelings of

		well-being, connection and safety
437 438 439 440 441	Table 13 Contin	ued (Health benefits of amino acids in <i>spiruling</i>)
442	Tuble 15. Contin	acci (realiti benefitis of animo acies in spirauna).
	Amino Acid	Health Benefits
	Tyrosine	Is a precursor for three important neurotransmitters (dopamine regulates reward and pleasure centers and memory and motor skills, norepinephrine and adrenaline which are responsible for the fight-or-flight response to stressful situations as they prepare the body to "fight" or "flee" from a perceived attack or harm, thyroid hormones which are produced by the thyroid gland and primarily responsible for regulating metabolism, melanin which is the pigment that gives skin, hair and eyes their color, improves mood and addresses mental health disorders like depression, bipolar or obsessive-compulsive disorder. It improves brain function, mood and stress response, helps with regulating mood swings caused by premenstrual syndrome (PMS) or premenstrual dysphoric disorder (PMDD), increases good cholesterol levels and reduces bad cholesterol levels, maintains optimal health of the digestive system, skin, hair and eyes, treats sleep-related conditions like insomnia, sleep apnea and bruxism (teeth grinding), helps relieve facial pain, assists in quitting smoking, aids with attention deficit-hyperactivity disorder (ADHD) and Tourette's syndrome, aids with brain maturation of the infant and plays key roles in the neurobehavioral regulations of food intake, satiation and sleep-wake rhythm.
442	Valine	Is needed for proper mental functioning and is vital for the muscle metabolism and the growth of muscle tissues as it assists in maintaining the proper amount of nitrogen in the body, plays an important role in building muscle and helps to decrease muscle soreness, helps in stress management, boosts immune system and healthy growth, improves mental focus during exercise which is thought to result from the fatigue, prevents muscle wasting by supplying the muscles with extra glucose for energy production during intense physical activity, helps with liver and gallbladder diseases as well as damage to these organs caused by alcoholism and drug abuse, treats or even reverses hepatic encephalopathy or alcohol-related brain damage, helps remove potentially toxic excess nitrogen from the liver by transporting nitrogen to other tissues throughout the body as required, promotes normal growth, repairs tissues, regulates blood sugar and provide the body with energy and helps stimulate the central nervous system.
445 444		
445		
446		
447 778		
449		
450		
451		
452		
453 454		
455		
456		
457		
450 459		
460		
461		
462		

- 463
- 464

466

467 468

469 Table 14. Health benefits of fatty acids in *spirulina* [25-26,50-52].

- 470 Health Benefits Fatty Acid Is an extremely important nutrient for muscles and body growth and is responsible for Alpha Linolenic the production of red blood cells. It improves cognitive function, treats anemia, circulates oxygen, prevents chronic diseases, boosts immune system, treats fatigue and helps reverse insomnia. Important for bone formation, maintenance of bone health and prevention of Docosahexaenoic osteoporosis. It prevents diabetes, maintains heart health, prevents migraine headaches, relieves anxiety and helps with premenstrual syndrome. Builds and maintains strong bones, helps alleviate back pain, keeps bones in their Linolenic proper shape, helps muscles function properly, protects against cancer and diabetes, prevents arthritis and osteoporosis, helps in maintaining optimal body weight in both males and females, helps the nervous system maintain a proper pressure in arteries, suppresses the growth of polyps which has the potential to lead to cancer, protects against premenstrual depression, prevents kidney stones, controls alkaline pH level, regulates blood pressure and protects teeth by keeping the jaw bone strong and sturdy throughout your life... Gamma Linolenic Improves brain function, reduces osteoarthritis symptoms, prevents and treats yeast infections, helps metabolize insulin, helps with kidney stones, supports metabolic processes, protects against oxidative stress and prevents vitamin D deficiency. Dihomo-gamma Linolenic Enables the body to form red blood cells, helps maintain healthy bones, blood vessels, nerves and immune function, contributes to iron absorption, prevents cardiovascular disease and osteoporosis, lowers cholesterol and high blood pressure, maintains proper level of white blood cells or neutrophils which fight off infection, maintains proper level of bone mineral density and avoids risk of osteoporosis, plays an important role in maintaining collagen, helps prevent or delay arthritis and helps reduce the production of free radicals. Promotes good bone health and is good for thyroid health, regulates blood sugar Palmitoleic level, kick-starts metabolism, protects against diseases, relieves inflammation, combats PMS Syndrome., prevents epileptic seizures, boosts vitamin absorption, supports digestion, improvs cognitive function and serves as a co-enzyme to assist metabolic activities in the human body. Oleic Is a good antimicrobial agent and trading allergy. It prevents cardiovascular diseases, ischemic stroke and osteoporosis, maintains good bone density and prevents cancer. Prevents cardiovascular diseases and prostate cancer, maintains normal blood Erucic pressure, prevents and treats dermatitis and photosensitivity, lung swelling and airway narrowing, allergies, asthma and common cold. 471 472 473 474

475

480 Table 15. Health benefits of minerals in *spirulina* [21,28,53-55].

Mineral	Health Benefits
Boron	Improves brain function, reduces osteoarthritis symptoms, prevents and treats yeast
	infections, helps metabolize insulin, helps with kidney stones, supports metabolic
	processes, protects against oxidative stress and prevents vitamin D deficiency.
Calcium	Is beneficial to postmenopausal women with an increased risk of low bone density
	and is responsible for building the bone structure, strong teeth and fetal development,
	strengthens the jawbones that keep the teeth in position, ensures teeth are strong and
	less exposed to damage from bacteria and tartar, promotes calcium bone levels in
	children and adolescents, promotes the maintenance of bone mass in adults,
	decreases the risk of bone fracture in elderly adults, slows the rate of bone loss, keeps
	muscles strong, maintains the circulatory system, manages the digestive process,
	encourages bone growth., treats sarcoidosis, treats kidney failure and lactose
	intolerance.
Copper	Helps maintain healthy bones, blood vessels, nerves and immune function,
	contributes to iron absorption, prevents cardiovascular disease and osteoporosis,
	lowers cholesterol and high blood pressure, maintains proper level of white blood
	cells or neutrophils which fight off infection, maintains proper level of bone mineral
	density and avoids risk of osteoporosis, plays an important role in maintaining
	collagen, helps prevent or delay arthritis and helps reduce the production of free
	radicals.
Iron	Is an extremely important nutrient for muscles and body growth and is responsible
	for the production of red blood cells, treats anemia, circulates oxygen, prevents
	chronic diseases, improves cognitive function, boosts immune system, treats fatigue
	and helps reverse insomnia.
Magnesium	Is important for bone formation, maintenance of bone health and prevention of
	osteoporosis. It prevents diabetes, maintains heart health, prevents migraine
	headaches, relieves anxiety and helps with premenstrual syndrome.
Manganese	Is good for thyroid health and is crucial for promoting good bone health, regulates
	blood sugar level, kick-starts metabolism, protects against diseases, relieves
	inflammation, combats PMS Syndrome., prevents epileptic seizures, boosts vitamin
	absorption, supports digestion, improve cognitive function and serves as a co-enzyme
	to assist metabolic activities in the human body.
Molybdenum	Is a good antimicrobial and trading allergy. It prevents cardiovascular diseases,
	ischemic stroke and osteoporosis, maintains good bone density and prevents cancer.
Phosphorus	Is important for preventing cardiovascular diseases and prostate cancer, maintains
	normal blood pressure, prevents and treats dermatitis and photosensitivity, lung
	swelling and airway narrowing, allergies, asthma and common cold.
Potassium	Is good for improving cognitive function and is a gastro protective. It prevents and
	treats Cohn's disease, heart disease, prostate and colon cancer, leukemia, respiratory
	disease, oxidative stress, helps in cancer cell prevention and glucose metabolism,
	modulates antiaging, lowers cholesterol and treats obesity.
Zinc	Protects against breast and colon cancer, leukemia, neural degradation, heart disease,
	liver fibrosis, obesity, diabetes, antiaging and skin sun damage

Table 16. Health benefits of water-soluble vitamins in spirulina [21,23,28,53-60].

Vitamin	Health Benefits
Thiamine (B1)	Boosts energy production, safeguards the nerves system, slows the body aging process, stimulates digestion and enhances memory, helps to prevent Alzheimer's disease, improves appetite, boosts body immunity, treats alcoholism and improves mood
Riboflavin (B2)	Helps body growth and overall good health, helps the body break down carbohydrates, proteins and fats to produce energy, allows oxygen to be used by the body.
Niacin (B3)	Reduces risk of heart diseases, improves mental health, treats diabetes, alleviates symptoms of arthritis, lowers levels of triglycerides, improvs skin function and treats impotency, lowers bad cholesterol and regulates digestion.
Pantothenic acid (B5)	Stimulates hormone production, relieves stress, keeps the heart healthy, reduces fatigue and provides stamina to the body, assists in skin and hair care, helps the body generate more hemoglobin, heals wounds and prevents rheumatoid arthritis
Pyridoxine (B6)	Supports healthy skin, detoxifies the liver, enhances the health of blood vessels, improves cognitive function, assists in relieving mood swings, curies anemia, supports eye health, assist in relieving the symptoms of rheumatoid arthritis, prevents diabetes, assist in relieving carpal tunnel syndrome, treats pregnancy related nausea and treats hair loss.
Folate (B9)	Prevents birth defects, premature aging and heart attacks, improvs the working of the human heart by removing homocysteine which is one of the major causes of heart attacks at early ages, controls the cholesterol level in the heart and ensures that the cardiovascular system is saved from various disorders, curs mental disorder, helps the body produce more red blood cells, combats depression, acts as a coenzyme, supports muscle build-up, combats free radicals, prevents cancer and aids fertility.
Cobalamin (B12)	Supports the normal function of nerve cells, assists in red blood cell formation and DNA synthesis, benefits the body by boosting energy, improves memory, helps prevent heart disease, improves heart health by decreasing homocysteine, prevents major birth defects, supports bone health and prevents osteoporosis, reduces risk of macular degeneration, improves mood and symptoms of depression, prevents the loss of neurons and supports healthy hair, skin and nails
Ascorbic acid (C)	Reduces the risk of chronic diseases, helps battle high blood pressure, fights heart disease risk factors, reduces blood uric acid levels, prevents gout attacks, prevents iron deficiencies by improving iron absorption and boosts immunity by helping white blood cells function better
Biotin (H)	Helps maintain p roper metabolic function, controls the level of sugar in the bloodstream, enhances the condition of skin, maintains strong and beautiful nails and healthy hair, treats multiple sclerosis and diabetics, relieves muscle cramps, balances cholesterol levels and assists in obesity, antiaging and ulcer healing
Choline	Prevents breast and colon cancer, leukemia, neural degradation, heart disease, liver fibrosis, obesity, diabetes and skin sun damage.

490

491

492

Table 17. Health benefits of fat-soluble vitamins in Spirulina [21,23,28,53-60].

Health Benefits Vitamin A Maintains healthy vision, protects eyes from night blindness and age-related decline, ensures normal function of immune system and organs, aids the proper growth and development of babies in the womb, lowers risk of Hodgkin's lymphoma, cervical, lung and bladder cancers, supports a healthy immune system, reduces the risk of acne, supports bone health and reduces the risk of fractures. Е Balances cholesterol, ffights free radicals, prevents disease development, repairs damaged skin, protects against skin cancer from ultraviolet rays, treats scars, acne and wrinkles, helps scalp from becoming dry and flakey, makes hair look healthier and fresher, balances hormones, maintains a healthy weight, keeps a regular menstrual cycle and reduces the cramping, anxiety and cravings, reduces menstrual blood loss, decreases the risk of age-related macular degeneration, protects against Alzheimer's disease, lowers cancer risk and improve growth and development of infants and children. Prevents the calcification of the arteries, maintains the integrity of the bone structure, Κ promotes absorption and utilization of calcium, slows down the bone density loss, regulates menstrual cycle and bleeding, reduces inflammation related to cancer, helps stabilize patients suffering from liver cancer, helps brain function fully, improvs cognitive function, prevents tooth decay, prevents arthritis and osteoporosis, heals wounds and keeps digestion and cardiovascular systems up and running. Removes destructive free radicals from the body before they cause the tissue damage Alpha carotene that can lead to chronic diseases like heart disease and cancer, prevents cancer by stimulating cell-to-cell communication and promotes a strong component of a longevity and healthy mined. Assist in maintaining longevity or healthy mined, helps immune systems, protects Beta carotene against free radicals, lowers the risk of developing cancer and heart diseases, prevents the deterioration of cognition and compensates for some of the damage to the lungs caused by oxygen free radicals. Prevents eye diseases including age-related macular degeneration (AMD), cataracts Lutein and retinitis, prevents colon cancer, breast cancer, type 2 diabetes and heart disease, reduces inflammation, preserves skin health and filters high-energy wavelengths of visible light which slows down the rate of oxidative stress. Zeaxanthin Filters harmful high-energy blue wavelengths of light resulting in the protection and healthy cells in the eyes, improves the contrast in the eyes and maintaining stimulates a faster recovery process from light damage, increases macular pigment density resulting in significant improvements in visual processing speed, supports aging eyes, maintains healthy skin growth, improves cognitive functioning and supports brain health in older adults,

496

495

Table 18. Health benefits of *spirulina* antioxidant/anti-inflammatory compounds [21-25,28-30,34,46,61-63].

Group	Compound	Health Benefits
	Cyanidins	Help in treating and preventing liver disease, various types of cancer, diabetes and
		arthritis, assists in cholesterol modulation and cartilage protection
Anthocyanins	Pelargonidins	Help in treating and preventing colon and liver cancer, neurodegenerative disorder,
		parkinsonism, meal induced postprandial inflammation, hepatitis B and gastrointestinal
	D '1'	digestion
	Procyanidins	Help in treating and preventing cardiovascular disease, coronary heart disease, assists
		in stabilization of collagen in joints, blood vessels and muscles inflammation, provides
	Cataching	Dravents and assists in treating obesity cardiovascular disease, various types of cancer
	Cateciniis	myocardial infection assist in cholesteral modulation atherosclerosis and antiplatelet
		aggregation
	Gallo-catechins	Prevents skin cancer and treats HIV, helps bone metabolism, protect against
		neurodegenerative disease, UV-B damage, diabetes, melanoma, acts as antimicrobial
Flavonols		and antimetastatic
	Epicatechins	Prevents cardiovascular diseases, periodontal diseases, various types of cancer,
		hepatitis C and blastocyst. It modulates testosterone secretion, improves insulin
		resistance and glucose tolerance.
	Kaempferol	Prevents cardiovascular diseases, ischemic stroke, cancer and osteoporosis. Helps
		maintain good bone density, acts as an antimicrobial and assists with allergy.
	Quercetin	Prevents cardiovascular diseases and prostate cancer. It modulates blood pressure,
		treats dermatitis, lung swelling and airway narrowing, assists and improves allergies
	Ellagio agid	Dravente Cabr's disease heart disease prostate and colon concer laukemia
	Ellagic aciu	respiratory disease and oxidative stress Improves glucose metabolism antiaging
		modulates cholesterol prevent and treats obesity is a gastroprotective and assists in
		ulcer healing
	Gallic acid	Prevents and treats breast and colon cancer, leukemia, neural degradation, heart
Hydroxy-		disease, liver fibrosis and obesity. Treats diabetes and skin sun damage and modulates
benzoic acids		aging.
	Vanillic acid	Protects against ulcerative colitis, oxidative brain damage, colorectal cancer and HIV.
		Assists with immune system regulation, malaria and ant sickling, and is ai effective
		antimicrobial.
	Salicylic acid	Protects and treats colorectal cancer and blood thinning, reduces pain, hep with skin
	Cimmonuia aaid	cleansing, removal of warts and corns, curs ache, calluses and dandruff.
	Cinnamic acid	protects against lung adenocarcinoma and breast cancer, improves diabetes, assist with abasity gastrointecting hormone secretion and myschooterium tyberculogis improves
		mod and cognition assists with allergy and antimalarial activity is an effective
		antifilingal
	Coumaric acid	Prevents heart disease liver disease stomach cancer and renal toxicity Improves
Hydroxy-		diabetes, assists with immune system regulation and cholesterol modulation.
cinnamic acids	Caffeic acid	Prevents liver cancer, HIV, AIDS, neurodegenerative disease, chlamydia pneumonia
		infection. Assists with hypertension, male fertility and immune system regulation.
	Ferulic acid	Prevents kidney disease, bone degenerative disease, breast and liver cancer, colon and
		prostate cancer, tongue and lung cancer. Protects skin from photo damage, prevents
		and treats diabetes, slows aging, assists with cholesterol modulation and menopausal

		symptoms		
	Ellagitannins	Prevents heart disease, prostate cancer, inhibits cancer growth, reduces gastric		
Tonning		inflammation, lowers blood sugar, assists with obesity and modulates aging.		
Tannins	Gallo-tannins	Prevents colorectal cancer, eye disease, diabetes, assists with abdominal pain, diarrhea,		
		antimicrobial activities		
Stillanas	Resveratrol	Prevents cardiovascular disease, Alzheimer, inhibits cancer growth, helps with obesity		
Suidenes		and diabetes, lowers high blood pressure and lowers cholesterol.		

510 The addition of spirulina affected the easiness with which breaking a cookie was made, the 511 fragmentation and the appearance of the break line. Increasing the *spirulina* content made the cookies 512 more firm and harder to beak. However, the addition of 5% spirulina did not affect the toughness of the cookies. The panel reported a toughness rating of soft-easy to beak for the cookies that received 0 and 5% 513 spirulina and firm-easy to beak to firm-hard to break for the cookies that received 10 and 15% spirulina, 514 respectively. Also, higher content of spirulina affected the fragmentation and the appearance of the break 515 516 line. Irregular large parts and continuous lines were observed with the cookies that received no *spirulina* 517 while more granules and smaller parts with irregular line were observed with all the cookies that received spirulina. Increasing the percentage of spirulina made the parts firmer and stickier. The results showed 518 519 that adding *spirulina* to cookies may help maintain their integrity and reduce breakage during packaging 520 and distributions.

The sensory panel members described the color of the control sample (0% spirulina) as yellow and yellow-orange and the samples that received the 5 and 10% spirulina green as yellow-green and green-yellow-green while the sample that received 15% spirulina as green, yellow-green, green-yellowgreen and Green-blue-green. The color shifted from dark green to bluish green with the increase of spirulina content. The intensity rating of the color by the sensory panel varied from 6.88 ± 0.89 for the yellow-orange color to 10.00 ± 0.00 for the green-yellow-green color. Increasing the amount of *spirulina* increased the vividness of the color

528 All the baked samples had a noticeable smell. The odor intensity ranged from faint (4.06-4.89) to 529 strong (8.19-8.69). The weighted average for the odor intensity was 6.11, 5.53, 6.02 and 6.63 for the 530 cookies receiving 0, 5, 10 and 15% spirulina, all of which are within the weak odor range. Increasing the 531 amount of spirulina from 5 to 15% (3 fold) only increased the odor intensity by 19.6 % (from 5.33 to 6.63). The sensory panel rating for the Hedonic Tone was 4.06, 4.63, 5.78 and 6.33 for the cookies that 532 received 0, 5, 10 and 15 % spirulina, respectively. The nature of the smell of the cookies that received 0 533 534 and 5% spirulina was pleasant while that of the cookies that revived 10 and 15% spirulina was mustseawater and fishy-seawater, respectively. The weighted average for the Hedonic Tone was 2.97, 3.88, 535 4.69 and 4.74 for the cookies receiving 0, 5, 10 and 15% spirulina, all of which are within the pleasant 536 odor range. Increasing the amount of spirulina from 5 to 15% (3 fold) increased the Hedonic Tone by 537 18.14 % (from 3.88 to 4.74). The results showed that adding 5% spirulina did not affect the odor and the 538 539 addition of a strong aromatic compound to the cookies to musk the smell of *spirulina* may be required 540 with higher concentrations (10-15%) of spirulina.

The addition and/or increasing the amount of *spirulina* affected both the taste and the degree of acceptance. The taste of the cookies that received no *spirulina* was rated sweet/delicious with a degree of acceptance between 8.33 and 10 while the taste of the cookies that received *spirulina* varied from sweet-

544	sour to	bitter-fishy and the degree of acceptance also varied from 8.06 (Sweet) to 4.16 (unpleasant)a for
545	the coc	kies receiving 5% spirulina to from 8.09 (Sweet) to 2.38 (bad) for the cookies receiving 15%
546	spirulin	a. The results showed that adding 5% spirulina did not affect the taste and the addition of a
547	flavorir	ng agent to musk the taste of spirulina may be required with higher concentrations of spirulina
548	(10-159	%).
549		
550		REFERENCES
551	1.	CAPMAS. 2019. Number of students enrolled in schools under the Ministry of education. Central
552	2	Agency for Public Mobilization and Statistics, Ministry of Education, Egypt.
555 554	2.	Governorate). Egyptian Journal of Hospital Medicine, 28(2):395-305.
555	3.	El Sayed, N. A., A. Gad and A. Nofal. 1999. Assessment of the prevalence and potential
556	4	determinants of nutritional anemia in Upper Egypt. Food Nutrition Bulletin, 20(2):417-421.
557	4.	Elaffy, M. S., M. Hamdy and S. Abdel Maksoud. 2012. Pattern of milk feeding and family size as risk factors for iron deficiency anemia among poor Egyptian infants 6 to 24 months old. Nutrition
559		Research, 32(1) :93-99.
560	5.	Mansour, P., A. S. Barduagni and F. Ahmed. 2004. Anemia among schoolchildren in Qena
561	-	Governorate, Upper Egypt East Mediterranean Health Journal, 10(8) :916-920.
562	6.	Mohamed, A., and A. Abo-donia. 2011. Contributing factors of iron deficiency anemia among
565 564		Journal 4(1):35
565	7.	Selmi, A. S. and A. Al-Hindi. 2011. Anemia among school children aged 6-11 years old in Gaza
566		Strip, Palestine. Annals of Al-Quds Medicine, 7(1):27-32.
567	8.	Kanagalingam, M. G., N. G. Forouhi and I. A. Greer. 2005. Changes in booking body mass index
568 569		over a decade: retrospective analysis from a Glasgow Maternity Hospital. British Journal of Obstetrics and Gynaecology 112(12):1431-1433
570	9.	Ogden, C. L., M. D. Carroll, L. R. Curtin, M. M. Lamb and K. M. Flegal. 2010. Prevalence of
571		high body mass index in US children and adolescents, 2007-2008. Journal of the American
572		Medical Association, 303(2) :242-249.
573	10.	El-Masry, S. A. 2007. Nutritional assessment of Egyptian children. Egyptian Medical Journal,
574 575	11	0(1) .40-49. Shaaban S V S A El-Masry N T Vounis and H H Mohamed 2008 Malnutrition among
576	11.	preschool children in Cairo Egyptian Pediatric Association Gazette 56(1) '26-34
577	12.	El-Shafie, M. A., M. H. Bahbah and A. M. Randa. 2011. Recent advances in pathophysiology and
578		management of childhood obesity. Master essay, Menoufia: Faculty of Medicine Menoufia
579		University, Menoufia, Egypt.
580	13.	Hafez, A. S., M. Y. EI-Awady and N. E. Hassan. 2000. Obesity profile among primary school
581		children in Cairo. Egypt Journal of Community Medicine, 18(1):99-119.
582	14.	El-Shafie, A. M. and A. A. Sleem. 2013. Prevalence of obesity in primary school children living
583		in Mit-Ghamr State, Dakahlia Governorate. Master Tesis in Pediatrics, Menoufia: Faculty of
584		Medicine, Menoufia University, Menoufia, Egypt.
585	15.	Ismail, G. 1998. Study of the problem of obesity among primary school children in Alexandria.
586	47	High Institute of Public Health, Alexandria, Egypt.
58/	16.	Giroux, S. 2008. An evaluation of infant growth: the use and interpretation of anthropometry in infanta. WILO Working Group on Infant Crowth, Dullating of the World Harlth, O
588		iniants. WHO Working Group on Infant Growth. Bulletin of the World Health Organization, 72:165–174
589		/ 3.103-1/4.

590 17. UNICEF. 2003. Child rights report, United Nation Children's Fund, New York, New York, USA. Accessed March 2019 from : http://www.unicef.org.uk//. 591 592 18. El-Zanaty, F. and A. Way. 2009. Egypt demographic and health survey. National Population 593 Council, Ministry of Health and Population, Cairo, Egypt, pp: 12–13. 19. El-Gillany, A., A. El-Wehady and M. El-Wasify. 2012. Updating and validation of the 594 socioeconomic status scale for health research in Egypt. East Mediterranean Health Journal, 595 596 18(9):962-968. 597 20. UNWFP. 2109. World Food program Report, United Nations, Rome, Italy. Accessed March 2019 from : https://sustainabledevelopment.un.org/partnership/partners/?id=75. 598 21. Becker, E. W. 2004. Microalgae in human and animal nutrition. In Handbook of microalgal 599 culture, A. Richmond (Ed), Oxford: Blackwell), pp: 312-351. 600 601 22. Batista, A. P., L. Gouveia, N. M. Bandarra, J. M. Franco and A. A. Raymundo. 2013. 602 Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Research, 2(2):164–173. 603 23. Brown, M., R. Mular, M. Miller, I. Farmer and C. Trenerry, 1999. The vitamin content of 604 microalgae used in aquaculture. Journal of Applied Phycology, 11(2): 247-255. 605 24. Gami, B., A. Naik and B. Patel. 2011. Cultivation of Spirulina species in different liquid media. 606 607 Journal of Algal Biomass Utilization, 2(1): 15–26. 25. Bandarra, N. M., P. A. Pereira, I., Atista and M. H. Vilela. 2003. Fatty acids, sterol α-tocopherol 608 609 in Isochrysis galbana. Journal of Food Lipids, 18(1): 25-34. 26. Donato, M., M. H. Vilela, and N. M. Bandarra. 2003. Fatty acids, sterols, α-tocopherol and total 610 carotenoids composition of Diacronema vlkianum. Journal of Food Lipids, 10(2):267-276. 611 612 27. Molina-Grima, E., E. H. Belarbi, F. G. Acien-Fernandez, A. Robles-Medina and C. Yusuf. 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology 613 Advances, 20(7-8):491-515. 614 28. Khan, Z., O. bhadouria and P. Bisan. 2005. Nutrition and therapeutic potential of spirulina. 615 Current Pharmaceutical Biotechnology, 6(3):373-379 616 617 29. McCarty, F. M. 2007. Clinical potential of spirulina: A source of phycocyanobilin. Journal of Medical Food, 10(4):566-570 618 30. Gouveia, L., C. Coutinho, E. Mendonça, A. P. Batista, I. Sousa, A. Bandarra, N. M. Raymundo. 619 2008. Functional biscuits with PUFA-w3 from Isochrysis galbana. Journal of the Science of Food 620 and Agriculture, 88(5): 891-896. 621 622 31. Spolaore, P., C. Joannis-cassan and E. Duran. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2): 87-96. 623 32. Priyadarshani, I. and B. Rath. 2012. Commercial and industrial applications of microalgae- A 624 625 review. Journal of Algal Biomass Utilization, 3(4):89-100. 33. Gouveia, L., A. E. Marques, J. M. Sousa, P. Moura and N. M. Bandara. 2010. Microalgae source 626 of natural bioactive molecules as functional ingredients. Food Science & Technology Bulletin: 627 Functional Foods 7(1): 21–37. 628 34. Chen, Y.Z. and Y.M. Li. 1999. Development of nutritious Spirulina noodle. Zhongguo Liangyou 629 630 Xuebao, 14(4): 13-15. 35. Fradique, M., A. Batista, M. Nunes, L. Gouveia, N. Bandarra and A. Raymundo. 2010. 631 Incorporation of Chlorella culgaris and Spirulina maxima biomass on pasta products. Part 1: 632 preparation and evaluation. Journal of Science, Food and Agriculture, 90(12): 1656-1664. 633 36. Feng, C. F. and S. P. Peng. 1991. Production method of blue-bacteria- Spirulina drink. Chinese 634 635 Patent, CN1035425A. 636 37. Adiba, B. D., B. Salem, S. Nabil and M. Abdelkim. 2011. Preliminary characterization of food 637 tablets from date phoenix dactylifera and *Spirulina* (*Spirulina* sp.) powders. Powder Technology, 638 208:725-730. 38. Ghaly, A., A. Hamouda and A. Alhatab. 2015. Developmebt and sensory evaluation International 639 Journal of Bioprocesse and Biotechnological Advances 1(2):63-73 640

- 39. AOAC, 2012. Official Methods of Analysis. Association of Analytical Chemists, Rockville, Maryland.
- 40. Salehifar, M., S. Shahbazizadeh, K. Khosravi Darani, H. Behmadi and R. Ferdowsi. 2013.
 Possibility of using microalgae *Spirulina Platensis* powder in industrial production of Iranian traditional cookies. Iranian Journal of Nutrition Sciences & Food Technology, 7(1): 63-72.
- 41. Lyer, U. M., S. A. Dhruv and I. U. Mani. 2007. Spirulina and its therapeutic implications as a food product. In: Gershwin, M.E. and A. Belay. Spirulina in human nutrition and health. CRC
 Press, Boca Raton, Florida, (pp: 51).

650

651

652

653

657 658

662 663

664 665

666

667

668

669

670 671

679

- 42. Sharma, V. and V. Dunkwal. 2012. Development of *Spirulina* based "biscuits": a potential method of value addition. Ethno Medicine, 6(1):31-34.
- 43. Lemes, A. C., K. P. Takeuchi, J. C. M. de Varvalho and E. D. G. Danesi. 2012. Fresh pasta production enriched with *Spirulina platensis* biomass. Brazilian Archives of Biology and Technology, 55(5): 741-750.
- 44. Morsy, O. M., A. M. Sharoba, A. I. El-Desouky, H. E. M. Bahlol and E. M. Abd El Mawla. 2014.
 Production and evaluation of some extruded food products using spirulina algae. Annals of
 Agricultural Science, Moshtohor Journal, 54(4): 329-342.
 - 45. Vijayarani, V., S. Ponnalaghu and J. Rajathivya. 2012. Development of value-added product using *spirulina*. International Journal of Health Science and Research, 2(4):42-47.
- 46. Foure, A. and D. Bendahan. 2017. Is branched-chain amino acids supplement an efficient nutritional strategy to alleviate skeletal muscle damage: A system review. Nutrients 9(10):1047-1059.
 - 47. Nattia, J. S., K. Kamisoglu, M. G. Ierapetriton, I. P. Androulakis and F. Berthiaume. 2013. Branched-chain amino acids supplementation: Impact on signaling and relevant to critical illness. Bio-Medicine, 5(4): 449-460.
 - 48. Bifari, F., C. Roucco, I. Decimo, G. Fumagalli, A. Valerio and E. Nisoli. 2017. Amino acids supplements and metabolic health: A potential interplay between intestinal microbiota and system control. Genes and Nutrition, 12(1):12-27.
 - 49. Akram, M., H. M. Asif, M. Uzair, N. Akhtar, A. Madni and S. M. A. Saleh. Amio acids: A review article. Journal of Medicinal Plants, 5(17): 33997-4000.
 - 50. Swanson, D., R. Block and S. Mousa. 2012. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Advances in Nutrition 3(1): 1-7.
- 51. Pipingas A., R. Cockerell, N. Grima, A. Sinclair, C. Stough, A. Scholey, S. Myers, K. Croft, A.
 Sali and M. P. Pase. 2014. Randomized controlled trial examining the effects of fish oil and multivitamin supplementation on the incorporation of omega-3 and omega-6 fatty acids into red blood cells. Nutrients, 6(6):1956–1970.
- 52. Stonehouse, W., L. C. 2014. Does consumption of LC omega-3 PUFA enhance cognitive performance in healthy school-aged children and throughout adulthood? Evidence from clinical trials. Nutrients. 6(6):2730–2758.
 - 53. Kamangar, F. and A, Emadi. 2012. Vitamins and minerals supplements: Do we really need them? International Journal of Reviews in Medicine, 3(3):221-226.
- 54. Meyer F., P. Galan, P. Douville, I. Bairati, P. Kegle and S. Bertrais. 2005. Antioxidant vitamin
 and mineral supplementation and prostate cancer prevention in the SU.VI.MAX trial.
 International Journal of Cancer, 116(1):182–6.
- 55. Lippman, S. M., E. A.Klein, P. J. Goodman, M. S. Lucia, I. M. Thompson and L. G. Ford. 2009.
 Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The Selenium and Vitamin E Cancer Prevention Trial, Journal of American Medical Association, 301(1):39–51.
- 56. ATBC-CPG. 1994. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. New England Journal of Medicine, 330(10):1029–1035

- 690 57. Omenn, G. S. G. E. Goodman, M. D. Thornquist, J. Balmes, M. R. Cullen and A. Glass. 1996. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular 691 692 disease. New England Journal of Medicine, 334(10):1150-1155.
- 58. Sesso, H. D., J. E. Buring, W. G. Christen, T. Kurth, C. Belanger and J. MacFadyen. 2008. 693 Vitamins E and C in the prevention of cardiovascular disease in men: The Physicians' Health 694 Study II randomized controlled trial. Journal of American Medical Association, 300(11):2123-695 696 2133.
- 697 59. Gaziano, J. M., R. J. Glynn, W. G. Christen, T. Kurth, C. Belanger and J. MacFadyen . 2009. 698 Vitamins E and C in the prevention of prostate and total cancer in men: The Physicians' Health Study II randomized controlled trial. Journal of American Medical Association, 301(1):52-62. 699
- 60. Clarke, R., J. Halsey, S. Lewington, E. Lonn, J. Armitage and J. E. Manson. 2010. Effects of 700 701 lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause-702 specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals. Archives of International Medicine, 170(10):1622–1631. 703
- 61. Mevers, K. J., C. B. Watkins, M. P. Pritts and R. H. Liu, 2003. Antioxidant and ant proliferative 704 activities of strawberries. Journal of Agricultural and Food Chemistry 51(6): 6887-6892. 705
- 62. Olsson, M. E., C. S. Andersson, S. Oredsson, R. H. Berglund and K. Gustavsson. 2006. 706 Antioxidant levels and inhibition of cancer cell proliferation in vitro by extracts from organically 707 and conventionally cultivated strawberries. Journal of Agricultural and Food Chemistry 54(4): 708 709 1248 - 1255.

63. Becker, E. W. 2007. Micro algae as a source of protein. Journal of Biotechnology Advances, 710 25(2) 207-210. 711

712 64. Appendix: 65.

713

715

714 66. Name:

68.

70.

Date:

- 67. The texture is the appearance, finish or consistency of a surface of a substance. It is the 716 717 characteristic of the physical structure of an object given by the size, shape, arrangement and proportions of its parts. It could also be defined as the way that a food feels in the mouth. 718
- 719
- 69. A-Please describe the surface appearance and mouth feel of the samples using the following list 720
- 721

Appearance	Mouth Feel	
Coarse	Heavy	
Clumpy	Rough	
Grating	Dry	
Gritty	Firm	
Grainy	Chewy	
Granular	Sticky	
Sandy	Sandy	
Smooth	Grainy	
Fuzzy	Smooth	
Slimy	Moist	
Other (Specify)	Other (Specify)	

Sample	Appearance	Mouth Feel			
1					
2					
3					
4					
	74. Thank you for your time				
75. Figure S-1. Texture eva	luation sheet (adopted from [38].				
76.					
77.					
78.					
79.					
80. Name:		Date:			
	_				
81. Shredding/breaking is a	method of cutting or breaking food into smal	l pieces.			
82.					
83 Please describe the eas	iness with which breaking is made, the appear	rance of the broken par			
the breeking line of the	d to the trace describe the easiness with which breaking is made, the appearance of the broken parts is				
	samples using the following list.				
84.					
Toughness/Easiness	Appearance of Fragments	Breaking Line			
Firm and hard to break	Beaks into granules	Uniform			
Soft and easy to break	Breaks into large parts	C (1			
5		Smooth			
Sticky and hard to separate	Breaks into irregular parts	Irregular			
Sticky and hard to separate Sticky and separate to clumps	Breaks into irregular parts Breaks into sticky parts/clumps	Smooth Irregular Continuous			
Sticky and hard to separate Sticky and separate to clumps Other (Specify)	Breaks into irregular parts Breaks into sticky parts/clumps Other (Specify)	Smooth Irregular Continuous Other (Specify			
Sticky and hard to separate Sticky and separate to clumps Other (Specify)	Breaks into irregular parts Breaks into sticky parts/clumps Other (Specify)	Smooth Irregular Continuous Other (Specify			
Sticky and hard to separate Sticky and separate to clumps Other (Specify)	Breaks into irregular parts Breaks into sticky parts/clumps Other (Specify) 85.	Smooth Irregular Continuous Other (Specify			
Sticky and hard to separate Sticky and separate to clumps Other (Specify)	Breaks into irregular parts Breaks into sticky parts/clumps Other (Specify) 85. 86.	Smooth Irregular Continuous Other (Specify			
Sticky and hard to separate Sticky and separate to clumps Other (Specify)	Breaks into irregular parts Breaks into sticky parts/clumps Other (Specify) 85. 86. 87. RATING	Smooth Irregular Continuous Other (Specify			
Sticky and hard to separate Sticky and separate to clumps Other (Specify)	Breaks into irregular parts Breaks into sticky parts/clumps Other (Specify) 85. 86. 87. RATING Fragmentation	Smooth Irregular Continuous Other (Specify Break Line			
Sticky and hard to separate Sticky and separate to clumps Other (Specify) Sample Toughness	Breaks into irregular parts Breaks into sticky parts/clumps Other (Specify) 85. 86. 87. RATING Fragmentation	Smooth Irregular Continuous Other (Specify Break Line			

	3				
	4				
741	88. Thank you for your time				
742	89. Figure S-2. Shred/break eva	luation sheet (ad	opted from [38].		
743	90	× ×			
744	91.				
745	92.				
746	93.				
747	94.				
748	95. Name:			Date:	
749					
750	96. The color is the property of	f			
751	reflecting light of a	i RED			OLET
752	particular wavelength. The		URANGE TELLO		
753	distinct colors of the	e	vellow-	Vell	
754	spectrum are red, orange	,	green yellow	yellow orange	
755	yellow, green, blue, indigo	,	Yelliveen	arange	
756	and violet. Each of these			6 4 C	*
757	colors is shading into the				2
758	next as shown in the	9ree		-	8
759	diagram.	545			viol
760	97.	gree gree			더 랴 야
761	98.				
762	99.	greet			Nole Piole
763	100.				
764	101.	C. C. C.	CHERNER !!	See.	8
765	102.	5 m	4	. Alex	-80-
766	103.		-we hi	410.	
768	104.		violet- bl	ue-violet blue	
769	105.		0/ue	Notes	
. 55		7.	/0 10/.		
772	108				
773	100. 109 Please identify the	color of the sa	mples according	to the above diagram and	d rate
774	the saturation of the color	using scale of	1:10 (dull=1 and	vivid=10).	. 1410
775	110.				
776		111.	RATING		
	Sample	Со	lor	Saturation	

_	1						
_		2					
_		3					
_		4					
	112	Thank you for your time					
778	112.	Figure S-3 Color evaluation s	sheet (adopted from [38]				
79	114.		sileet (adopted from [50].				
80	115.	Name		Date:			
81 82	116.						
'83	der/Sme	Il is the property of substan	ce that activates the sensory sme	ell. The intensity is the			
84	perceive	perceived strength of odor/smell sensation. Hedonic assessment is the process of rating on a scale ranging from extremely unpleasant to extremely pleasant. The characters of the odor are the					
35	ranging						
86	ability to	distinguish the nature of odo	or/smell.				
37	117.	6					
88	118	118					
20	-Please r	-Please rate the samples as to the presence of odor/smell (Intensity) and the odor/smell Hedonic					
20	Tone usi	ng the following scale	ence of outfishen (intensity) and t				
50 21							
) <u> </u>	Intensity		Hedonic Tone				
	No odor	0	No Smell	0			
	Very Faint	1-2	Extremely Pleasant	1-2			
	Faint	3-4	Pleasant	3-4			
	Weak	5-7	Neutral	5-7			
	Strong	8-9	Un Pleasant	8-9			
	very Strong	10	Intolerable	10			
2			120.				
3	121.	B- Please describe the cha	racter of the odor/smell of each	h sample by giving an			
4	appropri	ate descriptive term using the	e list below. You may use a term o	of your choice which you			
5	feel prop	erly describes the odor/smell.					
	Mold		Yeast				
	Musty		Ammonia				
	Fish		Animal feed				
	Stagnant wa	ter	Sour				
	Sea water		Kotten cabbage				
	Eartny		Other (Please specify)				
6	122.						

123. RATING

	Sample	Presence Rating	Hedonic Tone Rating	Odor Description
	1			
	2			
	3			
	4			
		124.	Thank you for your tin	ne
125.	Figure S-4	. Odor evaluation shee	t (adopted from [38].	
126.	Name:			Date:
127.	Taste is the	he sensation of a flav	or perceived in the mouth	h and throat on contact with
S	substance. The cl	haracters of the taste	are the ability to distin	guish flavors. The Degree
8	acceptability is the	e process of rating the t	aste on a scale ranging from	m nasty to delicious
128.				
129.	A-Please r	rate the samples as to the	ne characters and the hedor	nic tone of flavor.
Characte	rs	De	gree of Acceptance	
Sweet		Nas	sty	1
Vinegar		Bac	ł	2-3
Sour		Unj	pleasant	4-5
Bitter		Tas	steless	6-7
Salty		Ple	asant	8-9
Coffee		Del	icious	10
Pumpkin				
Others (S	Specially)			
			130.	
			31. RATING	
Sample		Taste		Hedonic Tone
1	U.s.			
2	\mathbf{O}			
3				
4				
132.	Thank you	ı for your time		
133.	Figure S-5	5. Taste evaluation shee	et (adopted from [38].	