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Abstract

Tungiasis is a disease that mostly affects the children, the disabled, alcoholics and the aged in
Kenya and other parts of the world. Despite the intensive research that has been done on tungiasis
disease, the disease remains a threat in Muranga County. In this research, we formulated a model
which is mathematical in nature and derived a system of ordinary differential equations from
it, which we used to study the dynamics of tungiasis disease, incorporating proper hygiene as
a control measure. The basic reproduction number, R0, is calculated using the next generation
matrix. We determined the equilibrium points of the model and also carried out their stability
analysis. From stability, both disease free equilibrium and endemic equilibrium points of the
model were found to be locally asymptotically stable when R0 < 1 and R0 > 1 respectively.
Numerical simulation of the model carried out showed that effective proper hygiene leads to a
faster decrease in the spread of tungiasis.
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1 Introduction

Tungiasis is a skin infection which is parasitic in nature. It is caused by the female sand flea
tunga penetrans. Prevalence is high in the economically disadvantaged communities, especially in
the Caribbean, Latin America and Sub Saharan Africa. In Kenya, tungiasis is an important but
neglected health problem. The areas mostly affected by the disease include central Kenya, western
Nyanza, coastal and western regions. In Muranga county by 2010, more than 1358 people from
just one division were suffering from tungiasis, out of which 700 were school going children from 13
primary schools. This is according to Ahadi Kenya, [1].

Tungiasis has mostly been associated with household poverty. The Tunga penetran infestations
depends on the familys ability to access clean water, sanitation, good quality housing and good
nutrition. Tungiasis therefore is linked to poor hygiene, sanitation education, poverty and waste
disposal methods used in the villages. It mostly affects the children, the aged, alcoholics and people
with disabilities. Many affected children drop out of school due to tungiasis. This is due to the fact
that the children are unable to walk to school, and they also face the challenge of discrimination
and stigmatization. Towards the end of the last century, there is an observer who termed jiggers
as the most fearful calamity that has ever afflicted the East African peoples after seeing affected
people groaning with pain and crawling around on all fours on the slopes of Mount Kilimanjaro as
recorded in the MOH Kenya Policy, [2].

Feldmeier et al. [3] did a research on Tungiasis as a neglected disease with many challenges, and
concluded that Tungiasis has an important social dimension, and affects human rights, and that
appropriate strategies should be formulated to address this debilitating and mutilating parasitic
skin disease that has unnecessarily plagued disadvantaged communities for centuries.

Kiragu [4] did a research on the efficacy of coconut oil in the control of tungiasis. He concluded
that there is a strong relationship between infestation rate and the disease morbidity. Application
of coconut oil reduced both the number of embedded fleas as well as the rate of infection. This is a
clear indication that if serious protection measures are put into place, the rate of tungiasis infection
can reduce, hence the need to consider hygiene.

Nthiiri [5] carried out a research on mathematical modelling of jigger infection incorporating
treatment as a control strategy. Her findings were that effective treatment of jigger infection
prevents rapid progression of this infection. She further recommended protection measures like
wearing of shoes and watering of dusty floors. This two recommendations are incorporated in
hygiene as a control strategy.

Kahuru et al. [6] carried out a research on modelling the dynamics of Tungiasis transmission in
zoonotic areas. The research concentrated on the interactions between sand fleas, humans and
animal reservoirs. According to the findings, reducing the effective rate of contact between soil
environment and the susceptible animals, increasing the natural death rate of fleas and decreasing
the contribution rate of fleas lowers the basic model reproduction number. This translates to
reduced disease intensity.

Kahuru et al. [7] carried out a research on optimal control techniques on a mathematical model for
the dynamics of Tungiasis in a community. The findings indicate that controlling of infested soils
and animal reservoirs with insecticides, environmental hygiene and cementing floors of houses may
serve as a possible approach to control Tungiasis infestation. In this research we look in to hygiene
(both environmental and personal) as a major component, since it carries a lot of weight in the
fight against the spread of tungiasis disease.

In view of all the above research work done, it is evident that a lot of research needs to be done on
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protection. In this research, we carried out a study on mathematical modelling of tungiasis disease
incorporating hygiene as a control strategy. We modified work done by Nthiiri [5], by researching
on her recommendation of observing cleanliness.

2 Model Formulation

The model is formulated where the total population is generally in four categories. These include;
proper hygiene practice group (P), the susceptible group (S), the infected group (I) and the treated
group (T). This implies that the total population, N, at any time t, is given by N(t) = P (t) +
S(t) + I(t) + T (t). The proper hygiene practice group is recruited at birth at a rate δψ while the
susceptible group is recruited at a rate (1− δ)ψ, where ψ is the rate of recruitment at birth, and δ
is the probability of getting recruited into the class of proper hygiene practice. The proper hygiene
practice group (P) become susceptible(S) at a rate π. Then upon infection, the susceptible group
(S) move to the infected group (I) at a rate α. After receiving treatment, the infected people (I)
move to the treated group (T) at a rate β. All individuals in each compartment experience natural
death at a rate ε. This rate is proportional to the number of individuals in each compartment. The
rate of infection, α, is defined as α = κcI

N
. Where κ is the probability of being infected following

prolonged contacts with individuals who are infected, and c is the contact rate with individuals who
are infected.

Assumptions of the Model are:

i. Human birth and natural death takes place at different rates.

ii. Only susceptible individuals get infected.

iii. There is permanent immunity on recovery.

iv. Infected individuals die from natural or disease induced death.

Based on the above description and assumptions we obtain the flow chart below;

Fig. 1. Flow chart
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From Fig. 1, we derive the following differential equations of the model with non-negative
initial conditions.

dP

dt
= δψ − (π + ε)P

dS

dt
= (1− δ)ψ + πP − (α+ ε)S

dI

dt
= αS − (Ω + β + ε)I

dT

dt
= βI − εT

(2.1)

3 Model Analysis

Since the system (2.1) describes human population, all the solutions of state variable with non-
negative initial conditions are non-negative ∀ t > 0 and they are bounded in the feasible region
Φ = {(P, S, I, T ) ∈ R4

+;S > 0;P, I, T,≥ 0;N ≤ ψ
ε
}

3.1 Existence of Equilibrium Points

In this section we calculate the equilibrium points of system (2.1); disease free equilibrium (DEE)
and endemic equilibrium (EE).
To obtain the equilibrium points for the model, we set the right hand side to zero, that is

δψ − (π + ε)P = 0

(1− δ)ψ + πP − (α+ ε)S = 0

αS − (Ω + β + ε)I = 0

βI − εT = 0

(3.1)

Where α = κcI
N

To determine the DFE (E0), we substitute P = P 0 = 0, S = S0 = N0 = N , I = I0 = 0 and
T = T 0 = 0 in system (2.1) to obtain
(1− δ)ψ − (α+ ε)S0 = 0

Implying that S0 = (1−δ)ψ
(α+ε)

Thus the DFE is E0(0, (1−δ)ψ
(α+ε)

, 0, 0)

Next, to determine the EE (E∗), first, we substitute α = κcI
N

in system (3.1) followed by E∗(P ∗, S∗, I∗, T ∗)
and N = N∗, to get

δψ − (π + ε)P ∗ = 0

(1− δ)ψ + πP ∗ − (
κcI∗

N∗ + ε)S∗ = 0

κcI∗S∗

N∗ − (Ω + β + ε)I∗ = 0

βI∗ − εT ∗ = 0

(3.2)
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Solving for P ∗, S∗, I∗ and T ∗, we obtain

E∗


P ∗

S∗

I∗

T ∗

 = E∗



δψ
ε+π

N∗(ε+Ω+β)
κc

1
(ε+Ω+β)

[
(ε+π−δε)ψ

(ε+π)
− εN∗(ε+Ω+β)

κc

]
β

ε(ε+Ω+β)

[
(ε+π−δε)ψ

(ε+π)
− εN∗(ε+Ω+β)

κc

]


where N∗ = P ∗ + S∗ + I∗ + T ∗

3.2 The Basic Reproduction Number

The basic reproduction number, R0 is the average number of secondary infections caused by a
single infectious individual during his/her entire lifetime as an infective, in a purely susceptible
population. Using the next generation matrix method by [8], R0 is the spectral radius of the matrix
FV −1. Where F is the Jacobian of fj , where fj is the rate of appearance of new infections in
compartment j, and V is the Jacobian of vj , where vj is the rate of transfer out of compartment j.
R0 is important in that it is directly related to the effort required to eliminate infection. The larger
the R0 number, the harder it is to eliminate infection and vice versa. The infected class is given by
the third equation of system (2.1)
dI

dt
= αS − (Ω + β + ε)I (3.3)

From equation (3.3), we have

fj = αS = κcIS
N

and vj = (Ω + β + ε)I

which can be expressed as

F = κc and V = Ω + β + ε

Hence

FV −1 = κc
Ω+β+ε

or

R0 =
κc

Ω + β + ε
(3.4)

3.3 Local stability of the Disease-free Equilibrium (DFE)

In this section we investigate the stability of its disease free equilibrium of system (2.1).

Theorem 1. The disease free equilibrium E0 of the model is locally asymptotically stable whenever
R0 < 1.

Proof. The Jacobian matrix of system (2.1) is given by

J =


−(π + ε) 0 0 0

π −
(
ε+ κcI

N

) −κcS
N

0
0 κcI

N
κcS
N
− (ε+ Ω + β) 0

0 0 β −ε


At DFE, the Jacobian matrix becomes
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J(E0) =


−(π + ε) 0 0 0

π −ε −κc 0
0 0 κc− (ε+ Ω + β) 0
0 0 β −ε


Upon calculation of the trace and determinant of J(E0), we obtain

Tr(J(E0)) = −(π + ε)− 2ε+ κc− (ε+ Ω + β)

Det(J(E0) = −ε2(π + ε)(κc− (ε+ Ω + β))

clearly Tr(J(E0)) < 0 and Det(J(E0) > 0 for R0 < 1 i.e κc < (ε+ Ω + β)

Hence by Routh-Hurwitz criteria, the DFE is locally asymptotically stable.

3.4 Local stability of the endemic equilibrium (EE) of the model

If a disease persists in a population, it is said to be endemic

Theorem 2. The endemic equilibrium of the model is locally asymptotically stable whenever R0 > 1

Proof. We use the Routh-Hurwitz criterion to prove this theorem. The Jacobian matrix at E∗ is
given by

J(E∗) =


−(π + ε) 0 0 0

π −
(
ε+ κcX

N∗

)
−(ε+ Ω + β) 0

0 κcX
N∗ 0 0

0 0 β −ε


Where

X = 1
(ε+Ω+β)

[
(ε+π−δε)ψ

(ε+π)
− εN∗(ε+Ω+β)

κc

]
The characteristic equation is given by

(π + ε+ λ)(ε+ λ)[λ2 +
(
ε+ κcX

N∗

)
λ+ κc(ε+Ω+β)X

N∗ ] = 0

Clearly the first two eigenvalues are λ1 = −(π + ε) and λ2 = −ε. The rest are given by

λ2 +

(
ε+

κcX

N∗

)
λ+

κc(ε+ Ω + β)X

N∗ = 0 (3.5)

Upon substitution for X in equation (3.5), we obtain
λ2 + aλ+ b = 0 (3.6)

a = R0(ε+π−δε)ψ
N∗(ε+π)

b = κc(ε+π−δε)ψ
N∗(ε+π)

− ε(ε+ Ω + β)

clearly a, b > 0 for R0 = κc
Ω+β+ε

> 1
Using Routh-Hurwitz criterion for a polynomial of degree two, the eigenvalues given by equation
(3.6) are negative. Thus the EE of the model is locally asymptotically stable whenever R0 > 1.

4 Numerical Simulation

Numerical simulations are carried out to investigate the effect of proper hygiene practice on the
dynamics of tungiasis infection. This was done with the help of MATLAB by using the parameter
values in Table 1 below.
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Table 1: Parameter values of the model

Parameter description Symbol Value Source

Recruitment rate ψ 0.0044 [9]

Natural mortality rate ε 0.016 [9]

Disease induced mortality rate Ω 0.005 Estimated

Loss of protection rate π 0.001 Estimated

Transmission probability rate of tungiasis κ 0.0011 Estimated

Contact rate of infection c 0.0002 Estimated

Adjustment parameter δ 0 < δ < 1 Assumed

Rate of treatment β 0.9 Estimated

Fig. 2. shows the effect of proper hygiene practice on infectious individuals at different rates of
recruitment to proper hygiene practice class. From the figure, it can be seen that all trajectories
of the solutions of infectious individuals converge to zero. Also, it can be seen that the trajectories
converge to zero at different times. For instance, when δ = 0 (No proper hygiene practice) the
trajectory takes more than 20 days to converge zero while for δ = 0.9 it takes around 10 days.
This implies that as the rate of recruitment to proper hygiene practice class increases infectious
individuals take shorter time to converge to zero (disease free equilibrium point).

Fig. 2. The effect of proper hygiene practice on infected individuals

5 Conclusion

In this research we formulated a mathematical model of tungiasis dynamics with incorporation
of proper hygiene practice. We carried out stability analysis and it showed that the disease free
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equilibrium is locally asymptotically stable provided that R0 < 1 while endemic equilibrium is
locally asymptotically stable provided that R0 > 1. Numerical simulation results demonstrate that
effective proper hygiene practice helps in reducing tungiasis infection.
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