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ABSTRACT 16 

The engineering of bandgap in materials is desired to develop new optoelectronic and 
photonic devices. The structure, electronic and optical properties of MgO (an insulator) 
mixed with CdO (a semiconductor) in the stoichiometry           (0       are 
calculated using the ab initio density functional theory. The bond character changes from 
partial covalent to a more stronger covalent bond as Cd concentration increases in MgO. 
The dominant covalent bond, coupled with high bulk modulus values predicts that the mixed 
compounds are hard materials and that Cd and Mg compliments each other to increase the 
hardness. All the mixed compounds are indirect bandgap materials. The dielectric function 
and the refractive index shifts to lower energy domain as Cd concentration increases, 
indicating that the optoelectronic property of the compounds is Cd dependent. The evaluated 
optoelectronic property predicts the material to be effective for applications in the visible and 
UV regions of the energy spectrum.   
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1. INTRODUCTION 19 

Due to their distinctive physical properties and wide application areas, considerable attention 20 
have been devoted to the understanding of the oxides of group II-VI elements. A member of 21 
this group is magnesium oxide (MgO). Stoichiometrically, MgO is an insulator with a cubic 22 
sodium chloride (NaCl) rock-salt structure. Its band gap (Eg) is 7.3 eV. It has high thermal 23 
conductivity and melting temperature [1-4]. Another member of this group is cadmium oxide 24 
(CdO). It is a semiconductor with a band gap of 0.85 eV at room temperature. Its normal 25 
structure is also the cubic sodium chloride (NaCl) rock-salt (see Fig. 1(a)), which can under 26 
pressure, undergo a first-order structural phase transition from the NaCl to the cesium-27 
chloride (CsCl) structure [5]. Because CdO is optically transparent and electrically 28 
conductive, it is widely used as window for solar cells. It is also used to manufacture thin-film 29 
resistors [6,7]. On the other hand, MgO have shown prospect for high-temperature 30 
superconductor and ferroelectric material production [8-11]. Thin layers of MgO are used as 31 
dielectrics both to improve discharge characteristics and lifetime in plasma screens [2, 12]. It 32 



 

 
 
 

is a material of choice as antireflection layer in solar cells and as the insulating material for 33 
the gates [13] in Insulated Gates Field Effect Transistors (IGFETs). 34 
   35 
In materials science, it is a common knowledge that the magnitude/size of Eg, will affect the 36 
optoelectronic as well as the photonic properties of the material. With addition of element(s) 37 
into a lattice (through doping or full/partial substitution), a change in Eg can be achieved. The 38 
adjustment of Eg in insulating/semiconducting compounds and the impact of such 39 
adjustment on the electronic, optoelectronic and the photonic properties of the material must 40 
be understood in order to design new functional devices. In the present theoretical work, the 41 
bandgap of the rock salt MgO (an insulator) is varied systematically by alloying with that of 42 
CdO (a semi-metal). In order to understand the optoelectronic nature of these alloys, their 43 
structural, electronic and optical properties are investigated.  44 

 45 

2.  CALCULATION METHODS 46 

All calculation is performed using the plane-wave pseudo-potential Density Functional 47 
Theory (DFT), of which its one particle Schrödinger equation is written as [14, 15]: 48 
 49 
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where  
 

 
   is the kinetic energy,       is the Coulomb energy and        is the exchange-52 

correlation. The solutions to (1) are one-particle wave-functions related to the total electron 53 
density as:  54 
 55 
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 57 
where     is the i

th
  state occupation number.  The unknown wave-function      , is usually 58 

expanded in terms of known basis functions      with unknown linear expansion coefficients 59 

    as: 60 

 61 
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 63 
The unknown coefficients     are obtained by applying variational procedure to solve a matrix 64 

of the form:  65 
 66 

         ,                       (4) 67 
where H and S, have matrix elements:  68 
 69 
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 73 
in which   is the eigenvalue and c is the coefficients that are solution to the column vector. 74 
To obtain the eigenvalues and the coefficients, the matrix in (4) has to be diagonalized. All 75 
the equations in (1) – (6) are solved using the Quantum Espresso (QE) computer code [16]. 76 
The Vanderbilt-type ultra-soft pseudo-potential (USPP) [17] is used for electron-ion 77 
interactions. The exchange and correlation effect in the DFT are treated with the generalized 78 
gradient approximation (GGA) of Perdew–Burke–Ernzerhof [18]. A convergence threshold of 79 
10

-3 
Ry/a.u. is placed on the ground-state energy during structure optimization. The adopted 80 

integration scheme over irreducible Brillouin zone is that of Monkhorst and Pack [19]. The 81 
lattice parameter and bulk modulus of           (0       are evaluated from a fit of the 82 
energy-volume data to an equation of state [20] given as: 83 
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,                     (7) 85 

where    is the total energy of the supercell,   is the unit volume,    is the bulk modulus at 86 
zero pressure and   

  is the derivative of bulk modulus with pressure. 87 
 88 
There is a relationship between the optical properties of a material and its dielectric function 89 
( ). The two parts to the dielectric function; the real and the imaginary parts are given as: 90 
 91 
                                           (8) 92 
 93 
For the           (0       mixed compounds, the imaginary and the real parts can be 94 
calculated using [21, 22]: 95 

       
 

    
            

   

                          (9) 96 

 97 

         
 

 
  

      
  

        
   

 

 
               (10) 98 

 99 
The refractive index can be calculated in terms of the real and the imaginary parts of the 100 
dielectric function by the following relation: 101 
 102 
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 104 
and the absorption coefficient can be calculated by:  105 
 106 
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 108 
Since all the functions in (8) – (11) depend on the electronic band structure, they can thus be 109 
easily evaluated from DFT calculations. 110 
 111 

3. RESULTS AND DISCUSSION 112 

The composition of Cd at a step of 0.25 in MgO resulted significantly into different crystal 113 
structure as shown in Fig. 1 (b) – (d). The atomic mass of Cd (112.41 g) is quite large, 114 
compared to that of Mg (24.31 g). This is suspected to have impacted on the atomic volumes 115 
and therefore the change in the crystal structure of           (0      , as the 116 
concentration of Mg increases from 0 to 100%. Due to the volume change, the space group 117 
of the structure obtained also changed from Fm-3m to Pm-3m at ratio 3:1 (see Fig. 1b) of Cd 118 
to Mg (Cd0.75Mg0.25O), A similar space group is obtained at ratio 1:3 (see Fig. 1d) of Cd to 119 
Mg (Cd0.25Mg0.75O). At a ratio of 1:1 of Cd to Mg (Cd0.50Mg0.50O), the structure changes from 120 
cubic to tetragonal as shown in Fig. 1(c).  121 
 122 
The calculated lattice constant (LP), bulk modulus (B0) and the band-gaps (Eg) are 123 
presented in Table 1. The experimental data on the binary compounds (MgO and CdO) 124 
deviates from theoretical results.  This is not surprising because theoretical bandgap data 125 
are usually underestimated by DFT calculation methods. The trend seen in LP as Cd 126 
substitutes Mg is expected, as the atomic radius of Cd (144 pm) is slightly higher than for Mg 127 
(141 pm). However, despite the systematic variation in the LP, a huge difference can be 128 
seen in the bulk modulus as Cd supplants Mg in MgO. When 25% Mg is substituted with Cd 129 
in MgO (             ), B0 rose from 149.3 GPa to 614.2 GPa (an increment that is well 130 
above 300%). On the Vickers scale, B0 relates directly with materials hardness [23]. Thus, it 131 



 

 
 
 

can be concluded that Cd in MgO is an excellent hardener, where the level of hardness 132 
depends majorly on Cd content. 133 
 134 
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     (c)                        (d) 167 

Fig. 1. Crystal structure of (a) CdO, (b)               (c)             and (d) 168 
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 170 

The band structure for MgO and CdO are shown in figure 2. The projected density of states 171 

is also presented alongside in order to understand bonding and the origin of these bands. It 172 

is evident from Fig. 3(a) that MgO is an insulator. Its bands are scanty both in the conduction 173 

and the valence band. Also, a wide bandgap is seen in its band diagram. On the other hand, 174 

a narrow bandgap coupled with denser bands are seen in the band diagram of CdO (see 175 

figure 3(b)). Both MgO and CdO are direct bandgap materials. The conduction and valence 176 

bands of CdO are influenced by Cd-2s, Cd-3p and O-2p orbitals. In MgO, the activities at the 177 

valence band are influenced solely by O-2p while it is influenced at the conduction band by 178 



 

 
 
 

Mg-3s and O-2p orbitals. Going by the Pauling Scale, the electro-negativity difference 179 

between Cd (1.69), Mg (1.31) and O (3.04) indicates that covalent bond dominates in CdO 180 

than in MgO. When this information is combined with their respective high B0 values, CdO 181 

and MgO are hard and brittle materials. 182 

 183 

Table 1: Calculated lattice constants (LP), bulk modulus (B0) and bandgap (Eg) for mixed 184 

compounds of           (0      . Experimental data are in bracket and are from [24]. 185 

 186 

 Alloy    LP ( )  B0 (GPa) Eg (eV) 187 

 MgO                4.249               149.3  3.216 [7.00] 188 

               4.391  614.2  1.185 189 

             4.431; 4.775 600.0  0.684 190 

               4.476  689.3  0.013 191 

 CdO                5.372   29.30  0.303 [0.85] 192 

 193 

The band diagram for the compounds in which the ratio of Mg to Cd is 1:3 (             ) 194 

and 3:1 (             ) are shown in Fig. 3, while that for which Mg to Cd is in ratio 1:1 is 195 

shown in Figure 4. It can be predicted from Figures 3 and 4 that           (0.25    196 

      mixed compounds are indirect bandgap materials. The nature of the bandgap is not 197 

affected even as Cd substitutes Mg. Rather, the bandgap decreases from 3.216 eV (for 198 

MgO) down to 0.134 eV (for Cd0.75Mg0.25O). In Figure 3(a), O-2p orbital is solely responsible 199 

for bonding and the band character at the valence and conduction bands. It is therefore 200 

interesting to see that while Cd-2s, Cd-3p and O-2p are responsible for orbital hybridization 201 

in CdO, the story is quite different when one Cd is replaced with Mg (giving Cd0.75Mg0.25O). 202 

The interchange of state seen is due to a change in the nature of the bonding. The 203 

electronegativity of Cd > Mg, hence, a decrease in the dominant nature of covalent bonding 204 

is expected with increase in Mg content. In this light, O-2p dominates at the valence band, 205 

while Cd-3p and O-2p are responsible for the band character at the conduction band in 206 

Cd0.25Mg0.75O (Fig. 3(b)). Likewise, at 50% composition of Mg to Cd in Cd0.5Mg0.5O, O-2p 207 

dominates at the valence band, while Cd-3p and O-2p are responsible for the band 208 

character at the conduction band. In comparison with MgO, partial covalent bonding is 209 



 

 
 
 

predominant in           (0.25         , hence the reason for their respective high B0 210 

values.   211 
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Fig. 2. Calculated band structure for (a) CdO and (b) MgO 262 
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Fig. 3. Band structure calculation for (a) MgCd3O, (b) Mg3CdO and (c) MgCdO. 314 
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 316 
Fig. 4. Band structure calculation for MgCdO. 317 

 318 
Materials with bandgap (Eg) are required for optoelectronic applications. Available evidence 319 
[25, 26] has shown that materials with Eg ≤ 3.1 eV work well for devices working within the 320 
visible region of energy spectrum while those with Eg > 3.1 eV are good for devices working 321 
within the UV region. The mixture of MgO (an insulator) with CdO (a semiconductor) in 322 
          (0       stoichiometry should provide promising devices whose bandgap 323 
would vary between 0.85 and 7.00 eV. The calculated Eg results in Table 1, especially for 324 
the binary compounds (MgO and CdO) are lower compared to experimental Eg. This is to be 325 
expected because DFT usually underestimate Eg. Despite the underestimation, it is 326 

predicted that           (0.25          compounds should suite optoelectronic 327 
applications both in the visible and ultraviolet (UV) regions. To understand the prominent 328 
variations in the optical absorption behavior of the materials, the calculated dielectric 329 
function (the imaginary part) in the 0–25 eV energy range is shown in Fig. 5. It is evident 330 
from this figure that the absorption of MgO is somewhat between 4.8 and 18 eV with its 331 
critical point at about 11.2 eV. As the concentration of Cd increases, the width and critical 332 
points of the absorption region shift toward lower energy, except for              where the 333 
critical point is maintained at almost 11.2 eV and this may be attributed to the structural 334 
change (cubic to tetragonal) that occurred at that composition.  335 
 336 
A plot of      for           (0       is shown in Fig. 6. There are two things that are 337 
obvious here. First, a broad spectrum of       over wide energy range is noted. The  338 
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Fig. 5. Frequency dependent imaginary part of dielectric functions of Cd1-xMgxO 389 
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Fig. 6. Frequency dependent refractive indices of Cd1-xMgxO (0     ) 442 
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     maxima shift to lower energy region with increase in Cd concentration. Secondly,      443 

drops below unity at certain energy ranges. Any      lesser than unity means that    (the 444 

group velocity) of the wave packet is larger than c (   
 

 
). In other words, at      < 1,    445 

would shifts to the negative domain and hence, the material becomes superluminal for high 446 
energy incident photons [27, 28]. 447 
 448 

4. CONCLUSION 449 

For the first time, the Density functional calculation method have been performed to 450 
investigate the structure and the optoelectronic properties of compounds formed from 451 
systematic mixture of MgO and CdO in ratio            (0        At equal concentration 452 
of Cd to Mg, structure change from cubic to tetragonal is predicted. The bonding nature in 453 
the materials significantly varies with Cd resulting in extremely hard materials. All the mixed 454 
compounds have indirect bandgaps according to their calculated band structure. It can be 455 
concluded that with appropriate experimental procedure, the material can be used in 456 
optoelectronic applications working in the visible and UV regions of spectrum.  457 
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