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Analysis of Transmission Dynamics of Anthrax in Animal Population. A modeling 2 

Approach 3 

Abstract 4 

This paper seeks to develop a SIR model with vaccination compartment in the study of 5 

anthrax transmission dynamics in animal population. The model employ ordinary differential 6 

equations in the formulation of the model’s equation. The model’s steady states solutions are 7 

investigated. The disease free equilibrium and endemic equilibrium of the model are analyzed 8 

qualitatively. Vaccination rate below a certain critical value causes the anthrax disease to 9 

persist. Recruitment and contact rates are the most sensitive parameters that contribute 10 

significantly to the basic reproductive ratio. 11 

 1.0 Introduction      12 

Anthrax is an infectious disease categorized under zoonotic diseases caused by a bacterium 13 

called Bacillus anthracis [4]. The disease is found naturally in soil [19] and mostly affects 14 

herbivores. Anthrax is one of the major diseases that cause uncontrolled mortality in cattle, 15 

pigs, sheep, goats and horses worldwide [3, 10, 15]. Animals easily get infected with anthrax 16 

through contact with infected animals, consumption of infected grass or water and by 17 

inhalation of anthrax spores [18]. The environment is usually infected with carcasses from 18 

infected animals. Grass and soil become the reservoirs of anthrax spores which can persist in 19 

the soil or grass for an extended period of time even under very extreme weather and 20 

environmental conditions. 21 

Authors [1] model consists of susceptible, contamination, infective and pathogens. The model 22 

regards infective compartment as key to the transmission of anthrax. In this model, the 23 

infected animals do show clinical signs of the disease. According to author [2], the model 24 

consists of susceptible, contamination and pathogens. The model does not include infective 25 

compartment. According to the model, the infective compartment do have very low 26 

reproductive ratio [11] and does not cause any infections in animals. 27 

Research done by authors [8] the model considers transmission, carcass ingestion, 28 

environment and migration as possible means through which anthrax is transmitted in 29 

animals. In this model, carcass ingestion and removal of carcasses from the environment does 30 

not cause any decline of anthrax transmission in animals.  31 
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2.0 The Model 32 

This model divides the total animal population at any time (t) into four sub compartments 33 

with respect to their disease status in the system. The total animal population is given by N (t) 34 

=S(t)+I(t)+R(t)+V(t) where S (t) represents animals at risk of developing anthrax infection, I 35 

(t) represents animals showing anthrax symptoms, R (t) represents animals recovered from 36 

anthrax infection and acquired temporal immunity and V (t) represents animals susceptible 37 

and are vaccinated against anthrax attack.  38 

The parameters used in this model are:  denotes recruitment rate;   denotes contact rate;   39 

denotes natural death rate;    denotes vaccination rate;    denotes waning immunity of 40 

vaccinated animals;   denotes waning recovery rate;   denotes disease induced death rate 41 

and    animal recovery rate.  42 

The diagram below shows SIR model flow chart with vaccination compartment for anthrax 43 

transmission in animal population. 44 

 45 

            46 

 47 

.                                              Figure 1: SIR Flow chart with vaccination compartment 48 
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The model equations are: 49 
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Disease Free Equilibrium is given by 0 0 0 0 0( , , , )S I R V   .There exists no anthrax disease 51 

and no animals are infected with anthrax. The critical point is given by 0   = ( ,0,0,0)


 
.  52 

According to authors  [3, 11], reproductive ratio can be found using Jacobian matrix J of (1) 53 

as: 54 
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(2) 56 
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 (4)                                                  Expression (4) is called the basic reproductive 60 

ratio ܴை. 61 

Theorem 1 62 

Disease free equilibrium point is locally asymptotically stable if 0R  < 1 and anthrax disease 63 

will not persist.  64 
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 If 0R  > 1, disease free equilibrium become unstable. 65 

 66 

 67 

 68 

Proof 69 
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At disease free equilibrium ( )
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Equation (5) can be expressed as 1
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Therefore, 0 1R   < 0 which implies that 0R  < 1. 76 

Given that 0R  < 1, we have disease free equilibrium point which is locally asymptotically 77 

stable. 78 

Lemma 1 79 
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 > 0 80 

Therefore, 0R  > 1 which implies that the disease will persist in animal population. 81 

According to authors in [15], endemic equilibrium of dynamical system (1) is given by 82 

( , , , )S I R V       where S  >0, I   >0, R  >0 and  V   >0.  83 

From (2), the rest point becomes: 84 
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(6)   88 

If the vaccination is less than a certain critical value, the disease persist. 89 

 90 

 91 

 92 

Theorem 2 93 

If   <
( )
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, then the endemic equilibrium point become unstable. The disease will 94 
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Proof 96 
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 97 

The determinant is greater than zero 98 
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Re-arranging (7) yields 100 
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But from (4), 0 ( )( )
R
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
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  102 

Therefore, 0R  >1.         (9) 103 

The endemic equilibrium will only occur if 0R  >1. This means that the disease become 104 

unstable and the rest point is lost. The vaccinated animals loose their immunity and become 105 

susceptible. 106 

Lemma 2 107 

If   >
 

  


 
, the endemic equilibrium point becomes stable. Therefore, the disease 108 

persists. 109 

The table below shows sensitivity analysis on how each parameter contribute to the basic 110 

reproductive ratio 0R of the model. Sensitivity analysis is given by the relation: 111 

 112 

                 0 0

0

R
A

R A
S

A R


 


 . 113 

             Where A is any parameter used in the model. 114 

 115 

Parameter   Contribution Baseline values References 

   Positive 200 [4] 

   Positive 0.0001 [1,7] 

   Negative 0.001 Estimate 

   Negative 0.10 [7] 

   Negative 0.02 Estimate 

   Negative 0.003 [3] 
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 116 

 117 

     3.0 Results and Discussion 118 

In this study, we modeled vaccination compartment in the transmission dynamics of anthrax 119 

in animal population. The outcome of stability analysis of the endemic equilibrium state 120 

shows that it is possible to effectively control anthrax outbreak in animal population.  121 

Taking the initial conditions for endemic equilibrium ሺ∗ߝ    ܵ∗ ൌ 2000, ∗ܫ ൌ 100, ܴ∗ ൌ122 

300, ܸ∗ ൌ 500ሻ and time t= 10 years and considering parameters baseline values from other 123 

literature as indicated above, the reproductive ratio OR  =1.2299. Increasing the rate of 124 

vaccination    , the reproductive ratio OR  decreases. Therefore, animals will not die as a 125 

result of anthrax infection. When   is increased by 24.5%,the reproductive ratio OR  decrease 126 

by 19.50%.In this case, reproductive ratio become 0.9900 which is less than unit. Hence, the 127 

disease free equilibrium. 128 

    129 

The outcome of the model shows that vaccination is a good control strategy against anthrax 130 

outbreak in animal population. However, vaccination may not completely guarantee 131 

protection of the animals against anthrax but it is possible that the vaccinated animals with 132 

time may lose immunity and may contract anthrax disease again. Therefore, there is need to 133 

keep vaccinating animals periodically against anthrax to keep anthrax prevalence as low as 134 

possible or completely eradicated. 135 

 136 

  137 
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