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Dilation of Time and Newton’s Absolute Time 

 
 

 

Abstract 

The space in which the cosmic microwave background radiation (CMBR) has no dipole is identical 
with Newton’s absolute space. Light propagates in this space only. In contrast, in a moving inertial 
frame of reference light propagation is in-homogeneous, i.e. it depends on the direction. Therefore, the 
derivation of the dilation of time in the sense Einstein’s relativity (SR), i.e., together with the derivation 
of the length contraction under the constraint of constant cross dimensions, loses its plausibility, and 
one has to search for new physical foundations of the relativistic contraction and dilation of time. The 
Cosmic Membrane theory (CM) states that light paths remain always constant independent on the 
orientation and the speed of the moving inertial frame of reference. Effects arise by the dilation of time. 
We predict a long term effect of the Kennedy-Thorndike experiment, but we show also that this effect 
is undetectable with today’s means. The reason is that the line width of the light sources hides the 
effect. The use of lasers, cavities and Fabry-Pérot etalons do not change this. We propose a light 
clock of special construction that could indicate Newton’s absolute time t0 nearly precisely. 

Keywords: Dilation of time; relativity; membrane; absolute space; Kennedy-Thorndike experiment 

 

1. Introduction 

 

In the Cosmic Membrane Theory (CM), time is connected with the 4-th dimension of space, w (w=VE 
t).  The quantity VE is the speed of expansion oft he cosmic membrane, similar to the construction –ct 
of Einstein’s relativity (SR, GR). The dilation of time of moving clocks holds in the CM for each 
movement in the absolute space. In the case of earth-bound clocks we need to consider, besides the 
speed of the galaxy, the speed of the Sun, the movement of the Earth around the Sun and the rotation 
of the Earth in addition to the influence of the gravitational field in form of the gravitational red-shift. 
Because of the fact that the Earth as moving body is subject both to the relativistic change of mass 
and to the relativistic contraction, earth-bound clocks are imposed to influences of manifold nature, 
which are difficult to separate. 

In the CM, dilation of time formally equals the dilation of time in the SR, i. e.  

2
0 1/  tt .  (1.1) 

Here, β=v/c,  with v beeing the speed of the clock in the absolute space, and c beeing the speed of 
light. The time t0 is Newton’s absolute time, indicated by a clock that rests in absolute space and is not 
under the influence of a gravitational field. The relation of Eq. (1.1) has been proven sufficiently 
accurately in several experiments [I1, 2]. The contraction of length of moving bodies is, in the SR, 

21  ll .  (1.2) 

This relation has been never verified experimentally. However, both relations (Eq. 1.1 and Eq. 1.2) 
play an important role in the Lorentz-transform, and therefore also in the SR. A common derivation of 
the two equations, Eq. 1.1 and Eq. 1.2, is based on the postulate of the SR that the light of a light 
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source is spreading with speed c in each direction in each inertial frame of reference, i. e. it has 
always the form of a spherical wave. It holds 

22222222 )()( tczyxctzyx  .  (1.3) 

Here, x, y, and z are the coordinates, t is the time in the first inertial frame of reference, and x’, y’, and 
z’ are the coordinates, and t’ the time in the second inertial frame of reference. The second frame of 
reference has the constant speed v relative to the first inertial frame of reference. The x-axis and the 
x’-axis, respectively, point in the same direction without restriction of generality. With the another 
postulate – the cross-dimensions that are perpendicular to the speed vector v of the moving body in 
the two inertial frames of reference remain unchanged – one ultimately obtains the above two 
equations (Eq. 1.1 and Eq. 1.2). Therefore, the dilation of time and the length contraction are 
inseparably linked by this derivation. 

However, since the discovery of the CMBR by Wilson and Penzias [3] we know that there exists a 
special frame of reference, σ0. It is exactly that frame of reference in which the CMBR has no dipole 
due to the Doppler effect [4]. This fact suggests the strong assumption that this frame of reference, σ0, 
defines an absolute space in the sense of Newton. Therefore, a spherical, centrally point-symmetric 
light propagation is reasonably conceivable only in the frame of reference σ0. Light propagates 
furthermore spherically and with speed c, but not further centrally symmetric with respect to the light 
source. From the perspective of the moving observer the center of the spherically shaped wave of light 
moves in reverse direction to the speed v of the moved frame of reference σ. Only an observer resting 
within the rest frame σ0 observes a spherical wave front with its center at that position the light source 
had held at the moment of radiation. 

The above derivation (eq. 1.3) of the transformation formulas (Eq. 1.1 and Eq. 1.2) is , thus, obsolete. 
In addition, the postulate of the unchanged cross-dimensions loses its meaning, since only this 
postulate enables the close connection between length contraction and dilation of time. 

In a series of papers, [5-10], we proposed a cosmological model, the CM, in which we use the frame of 
reference, σ0, defined by the CMBR, in the sense of a special space-time. A 4-dimensional balloon 
with a thin 3-dimensional envelope (membrane) expands in the 4D-hyperspace with an unknown 
speed of expansion, VE. At the same time, a homogeneous vector field permeates the membrane 
perpendicularly. The membrane does not resist (or resists only marginally), if it is free of matter and 
tensed perpendicularly to the homogeneous vector field. However, when the membrane is charged 
with matter it resists. The resistance produces a force that causes the curvature of the membrane 
(curvature of space), and as an additional consequence, gravity and the effects of the dark matter. 

One can illustrate the origin of the homogeneous vector field by different physical phenomena, for 
example a material flow reverse to the speed of expansion, VE, or a material flow from the inside of the 
balloon, if one accepts over-pressure there. However, the origin of the homogeneous vector field can 
also be a form of radiation, or a completely new phenomenon. The authors hold back here, and 
enumerate here only some indispensables properties [6]. 

The following strong evidence speaks in support of the cosmic membrane model: 

 The experimentally proven existence of the dipole-free frame of reference, σ0. Therefore, the 
discovery of the CMBR by Wilson and Penzias [3] is one of the pilars of the CM. 

 The result of the atomic-clock experiment of Häfele and Keating [2] can be explained much 
easier in the CM than in the SR. Therefore, the atomic-clock experiment is one of the key 
experiments of the CM. 

 A 3D-membrane tensed in 4D-hyperspace bends under central load as 1/r, which corresponds 
exactly to Newton’s gravitational potential. For this reason, gravity becomes simply a downhill 
force, and becomes clearly explainable [5]. 

 Another property of the membrane is that it clearly explains the decrease of the speed of light 
in a gravitational funnel, and it also explains in a simple manner light bending, radar echo 
delay, Einstein rings, and similar optical phenomena [7]. 
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 Gravitational waves can appear in this cosmological model as well as longitudinal waves as in 
the form of transversal waves. The speed of the transversal waves still needs to be explicated. 

 Another property of the curved membrane is the increased resistance. The increased 
resistance can explain the dark matter. Dark matter is, thus, a simple effect of the membrane 
which only arises together with the curvature of the membrane (curvature of the space), and 
therefore only in the neighborhood of real matter [6]. 

 The geodetic precession of a rotating body in the gravitational field can be explained by an 
increase in mass in the gravitational field together with the above mentioned change of the 
speed of light in the gravitational funnel [4]. 

 Frame-dragging is conceivable in the CM, but not the Lense-Thirring effect. We have shown 
[8] that the value of the Lense-Thirring effect found by the Gravity B Experiment is with high 
probability the geodetic precession of the gyroscopes in the gravitational field of the Sun, 
caused by the absolute speed in the rest frame σ0. Therefore, the Gravity B Experiment is one 
of the key experiments of the CM. 

 Because of the coefficient of elasticity of the membrane of Fo = 2.164�1019 [N/m2] [6], neutron 
stars of the mass of the Sun must have a diameter of at least 200 km. A similar restriction for 
the minimal size or maximal mass also holds for black holes. 

 The fact that the electrons orbit the atomic nuclei without fatigue since the big bang, or that 
light waves propagate without fatigue over billions of years through the space, is probably the 
influence of the homogeneous vector field. The homogeneous vector field submits nonstop 
huge amounts of energy to the matter embedded in the membrane. 

 Because of the extremely high coefficient of elasticity of the membrane of Fo = 2.164�1019 

[N/m2] [6], one can conceive the stuff the membrane is made of only as a glassy, super strong 
material (for comparison: steel has a coefficient of elasticity of about 2�1011 [N/m2]). 
Therefore, it is more likely that waves propagate instead of particles [11] 

The central, spherical propagation of light is explainable meaningfully only in the rest frame of 
reference, σ0. Therefore, some questions arise concerning the SR. The classical derivation of the 
relativistic equations of the Lorentz-transformation, Eq. ( 1.1) and Eq. (1.2), is not valid anymore. It 
needs to be redone. In earlier work, we have published some results on this matter: 

 Light propagates, as the CMBR does, only in the rest frame of reference σ0. Far from centers 
of strong gravity, light propagates with constant speed c. 

 Light paths remain constant independent of the inertial frame of reference if one uses, instead 

of the length contraction 21  ll according to Eq. (1.2), a new length contraction of the 

form  21  xx  together with a new cross contraction of the form  21  yy (a 

similar formula holds for z‘). 

 The above assumption of a new length and cross contraction causes a change of about ± 36 
m/s of the measured speed of light according to the change in the speed of the Earth on its 
orbit around the Sun. However, here we had to use the old definition v=s/t (velocity is the 
quotient of distance s and time t). The distance s (covered in the rest frame of reference σ0) 
remains constant in the CM, but the measurement of time t depends, with reference to the 
dilation of time, on the speed v of the clock in the absolute space σ0, and on the strength of 
the gravitational field. 

 There is no contradiction to the very exact measurements of the speed of light by Evenson et 
al. [12], because the speed of light is also constant under the paradigm of the membrane. An 
apparent contradiction arises only through the fact that Evenson and his team had replaced 
the distance s by the wave length λ of a source of reference. This way, the authors divide two 
frequencies and eliminate  time dilation. This method corresponds to the assumption of an 
absolute time in the sense of Newton. (By the way, the series of the classical measurements 
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of the speed of light ended in 1960 with errors of about ± 50 m/s [9]. Our prediction of a yearly 
variation of ± 36 m/s of the speed of light lies inside the error bar of the classic 
measurements.) 

 The results of the experiments of Michelson-Morley and Kennedy-Thorndike constitute no 
proofs in support of or against one of the theories, because the null result is demanded by 
both theories, the SR and the CM. Actually, the Kennedy-Thorndike experiment would have to 
show a long-term effect, but this effect is not measurable by today’s means according to our 
research. 

In the present article, we show, that, under the paradigm of an absolute space, the Kennedy-
Thorndike experiment would have to show a long-term effect. However, this effect is extremely small 
and undetectable by today’s means. Moreover, the effect is not precisely defined because of the 
complicated interaction of the movement of the source of light in the absolute space and the red shift 
caused by gravity (see introduction). 

The experiment of Kennedy and Thorndike [13] is an extension of the Michelson-Morley experiment as 
they use an interferometer with unequal arm length. Furthermore, the experiment has been planned as 
a long-term experiment for the purpose of studying the influence of the different directions of the 
movement of the Earth on its orbit around the Sun. The aim of the experiment by Kennedy and 

Thorndike has been to prove that the relativistic time dilation 21/  tt  and the relativistic 

length-contraction 21  ll (with β=v/c) condition each other. In other words, only the Lorentz-

transformation and, thus, the SR describe exactly the experiment. The null result should serve as 
proof, i.e., no change in the observed interference pattern during a rotation of the interferometer, and 
that based on an observation over a period of several months. Actually, Kennedy and Thorndike have 
found no change in the observed interference pattern, neither during rotation nor over the course of 
time. However, the accuracy of their experimental arrangement was low. In 1977, Mansouri and Sexl 
[14] criticized it, and suggested various improved tests, which have been performed later. In 1990, Hils 
and Hall and also Braxmaier [15, 16] coupled a laser to an optical spectral line (line of reference), and 
to a second laser with a highly stable cavity.  Based on the testing theory of Mansouri and Sexl, this 
experiment was 300 times more accurate than the original experiment of Kennedy and Thorndike. In 
2004, Wolf et al. [17, 18] used a cryogenic sapphire oscillator and a hydrogen maser. The frequency of 
the oscillator remained stable both during a rotation of the oscillator and over a long time, during which 
the Earth changed its speed orbiting the Sun (Kennedy-Thorndike test). The authors improved once 
more the accuracy of the experiment by a factor of 30. In 2009, Tobar et al. [19] used a similar 
arrangement, and they further increased the accuracy. In 1995, Müller and Soffel [20], and in 1999, 
Müller et al. [21], performed an analysis of the data of the lunar laser ranging. They also found no 
evidence of a deviation of length-contraction and time dilation from the values demanded by the SR. 
The accuracy of their analysis was comparable with the results of Hils and Hall in 1990. So, all results 
of the newer experiments confirmed the result of Kennedy and Thorndike, i.e., the null effect. 

However, already Robertson [22] had criticized in 1949 that the experiment of Kennedy and Thorndike 
only tests the ratio of length-contraction and cross-contraction. It is sufficient that the value of this ratio 

is that of the Lorentz factor 21  . Exactly that is fulfilled as well in the CM and in the SR. Another 

criticism (by us) is the adherence to the long term stability of the source of light, more precisely the 
light’s strength and frequency. We suggest a long term effect, but it is extremely small, and difficulties 
are very high to stabilize highly accurate interferometry during a period of several months. In addition, 
we comment that the modern laser technology obscures the effect (see Section 2). 

We acknowledge, in accordance with Michelson-Morley and Kennedy-Thorndike, that no effect occurs 
during a rotation of the interferometer. This holds also when we use the length-contraction of the form 

 21  xx  together with an additional cross-contraction of the form 21  yy  instead of 

the length-contraction 21  ll given by Lorentz. Otherwise, we contradict the null effect of time. 

The relativistic time dilation, 21/  tt , which is experimentally well proven and used also by us, 
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causes inevitably a small deviation or some other change in the interference pattern over the course of 
a year. The cause of the time dilation is the movement of the Earth around the Sun and its 
consequence in form of the change in the speed of the inertial frame Earth in the absolute space. 

Monochromatic light is a requirement of interferometry. We will show that the production of 
monochromatic light, for example using an optical diffraction grating, does not depend on the 
orientation of the grating in each inertial frame, moved or resting. This statement also applies to the 
use of lasers. But we will also show that each change in the speed of the inertial frame causes a little 
change in the diffraction angle at the diffraction grating. The reasons for this are the change in the 

frequency of the light source caused by the relativistic time dilation 21/  tt , and the involved 

change of the wavelength λ of the light. 

In the following Section,1, we show, using the example of an optical grating, that a constant diffraction 
angle will be measured in each inertial frame of reference if one disregards the dilation of time. In 
Section 2, we show that the thermal broadening of the line width of the sources of light hides the long 
term effect of the Kennedy-Thorndike experiment. We also show that the use of lasers, cavities and 
Fabry-Pérot etalons do not change that either. In Section 3, we consider an oscillator model in an 
attempt to explain the relativistic dilation of time in connection with the increase of the relativistic mass. 
We discuss the results in Section 4, and in Section 5, we draw some conclusions. 

 

2. Diffraction of light by a grating in moved inertial frames 

 

In this section, we show, using the example of a grating spectrograph, that an optical arrangement 
would result in no effect caused by a change in the orientation in the space if one neglects the dilation 
of time. However, under consideration of time dilation, we find an error of the order of ± 3.6 �10−08. 
This value is extremely small, and, furthermore, it does not occur until after a period of three months. 
In Section 2, we show that this error is not detectable using today’s means. 

The movement of an optical apparatus in the absolute space causes a series of changes and effects: 

 A length-contraction and a cross-contraction depending on the orientation in the space and the 
speed of the movement. 

 Connected with the length- and cross-contraction the angles of the moved coordinate axes 
can change. 

 The light of a moving light source is subject to the Doppler effect, i.e., the wave length 
depends on the direction of propagation. 

The diffraction of light can be done by optical gratings. Optical gratings exist for a wide range of 
wavelengths – from microwaves to x-rays. The lattice constant d has to be of the order of the 
wavelength λ. In the case of visible light, one uses scratched transparent gratings made of glass (see 
Fig. 1). In the case of reflection, one can also use scratched metallic mirrors. 

We consider a certain wavelength λ0, which should result from the diffraction arrangement as final 
product with the highest possible purity. A moving real light source produces the light. The light rays 
leave slit 1 in a divergent form. A lens collects the divergent rays and forms flat wave fronts. The flat 
wave fronts strike the optical grating. Behind the grating, the diffracted wave fronts are collected by a 
second lens to focus a band pattern. A second slit lets pass only light of about wavelength λ0. This 
way, the optical arrangement produces nearly monochromatic light, which can be used for 
interferometric experiments. 
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Fig. 1: Diffraction of a wave front by grating 

 

The diffraction angle γk with respect to the x-axis is, for the k-th order diffraction maximum and 
wavelength λ0, 









d

k
k

0arccos
     with k = 0, 1, 2, ... (2.1) 

The main maximum for order k=0 is not interesting. It corresponds to the straight pass of the incoming 
wave front. We consider the first and strongest diffraction maximum for k=1 only. In this case, the 
diffraction angle is  γ = arccos ( λo / d ). 

We assume that the diffraction arrangement of Fig. 1 rests in the absolute space σ0, i.e., its speed is 
v=0. The lattice constant is d, the wavelength λ0, the x-z-coordinates of Slit 2 are x=Lx and z=Lz , the 
diffraction angle is γ1. The diffraction angle γ1 is also the angle under which Slit 2 is seen from the 
origin of the coordinate system. Furthermore, we demand that the incoming wave fronts are exactly 

parallel to the x-axis, i.e., their normal vector P


 is arranged parallel to the z-axis. 

Now we assume that the same diffraction arrangement moves with speed v>0 in an arbitrary direction 

v


 in the absolute space. The coordinate system (x’, z’) rests in the absolute space, but its origin is 
fixed at that point where the first wave front strikes point G0 of the grating. The x’-axis is still parallel to 
the x-axis of σ0, and the z’-axis is parallel to the z-axis of σ0. 

The Sun moves through the space in the direction of the Virgo cluster. The Earth orbits the Sun. The 
self-rotation of the Earth adds yet an additional speed component. Moreover, caused by the self-
rotation of the Earth, an earth-bound laboratory changes permanently its orientation with respect to the 
course of the Sun. Therefore, we also consider the influence of the vector addition of velocities and 
the revolution of the local coordinate axes, coupled with the diffracting grating. 

Around September 23rd (autumn point), the connecting line Earth-Sun is directed rather exactly to the 
Virgo cluster (constellation Virgo). We take the projection of this line on the ecliptic (slice of Earth’s 
orbit around the Sun) as xE-axis of the long-term astronomically fixed coordinate system xE, yE, zE. The 
zE-axis is perpendicular to the ecliptic, and it is directed to about the north celestial pole. Then, the yE-
axis is directed to about the point the Earth is positioned on June 21. The axis of Earth has a 
declination of about 23° with respect to the zE-axis, and it is directed exactly to the north celestial pole. 
We propose that the earthly laboratory together with the diffraction grating have the coordinates xL, yL, 
zL. The xL-axis is directed parallel to the longitudinal direction of the grating, i.e. perpendicular to the 
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gridlines, the yL-axis parallel to the gridlines, and the zL-axis is vertically upwards-directed in the 
direction of the incident light beam of the source. 
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Fig. 2: The ecliptic coordinate system XE, YE, ZE 

 

The axis of Earth is stable for a long time in the absolute space, and it is always declined by an angle 
of about 23° with respect to our zE-axis in the direction of the -yE-axis. This implies a rotation around 
the xE-axis by 23°. However, the initial orientation of our earth’s axis is parallel to the north celestial 
pole. We will align this axis later. The laboratory rotates together with its coordinate system xL, yL, zL 
during the daily rotation of the Earth. Here, because of the small difference, we do not discriminate 
between sidereal time and solar time. We implement an initial orientation at autumn point (September 
23). At this point, the axes xL, yL, zL of the laboratory shall have the same directions as the axes xE, yE, 
zE of the astronomically fixed ecliptic coordinate system. Additionally, we set the time to t=0. This 
corresponds to a laboratory site on the North Pole. Then, in a first step, we rotate the coordinate 
system xL, yL, zL around the xE-axis to get the declination of the needed degree of latitude, β°, this is 
where the laboratory is actually positioned. To simulate the daytime t corresponding to Earth’s rotation, 
the second turn is performed around the zE-axis by the angle ωt. The third and final turn is again about 
the axis zE, so that Earth’s axis gets the declination of 23° with respect to the zE-axis in direction of the 
negative yE-axis. We use the two rotation matrices 


















)cos()sin(0

)sin()cos(0

001


xD             (2.2) 

and 















 


100

0)cos()sin(

0)sin()cos(




ZD . (2.3) 

Fig. 3 shows the constellation of Sun and Earth in the two coordinate systems 
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Fig. 3: The two coordinate systems – the ecliptic (E) and the laboratory (L) 

 

Now, we assume that our diffraction grating (Fig. 1) moves with speed RES vvvv


  in the 

absolute space. Here, velocity vS =369 km/s is the velocity oft he Sun in direction oft he Virgo cluster, 
velocity vE is the velocity of the Earth on its orbit around the Sun with an orbital angle αE with respect 
to the xE-axis and an amount of 30 km/s, and velocity vR is the velocity of the laboratory caused by the 
rotation of the Earth. In the not rotated coordinate system xE, yE, zE, the three components of vector v


 

are 

)sin()sin(30369 0 tvv RExE   ,  (2.4) 

)cos()cos()cos(30 0 AREyE tvv   , (2.5) 

)cos()cos()sin( 0 ARAzE tvv  .             (2.6) 

Here, vR0 =RE ω cos(β°), is the rotational speed in km/s with respect to the degree of latitude. The 
quantity RE is the radius of Earth in km, the quantity ω is the angular frequency of Earth’s rotation, the 
quantity αE is the Earth’s orbital angle as measured from the xE-axis, the product ωt is the rotational 
angle of Earth’s rotation measured from the xE-axis, and the quantity αA is the declination of Earth’s 
axis as measured from the zE-axis. 

However, it is computationally easier to rotate the speed vector v


 the same three times, but with 
reverse angles, than to rotate the coordinate system of the laboratory xL, yL, zL. The effect is identical. 

We compute the rotated vector v


 by the following three consecutive turns as shown in Eq. (2.7). 

  vDDDv ytzy


  ,,, . (1.7) 

Because the laboratory has the initial position North Pole, we reach the needed degree of latitude, β°, 
by a rotation of π−β. However, because we had to take the reverse angle, we use here the rotational 
angle β’= β−π. In the case of the other two angles, ωt and αA , a simple reversion of the sign is 
sufficient for proper orientation, i.e. α’= −αA  and  ωt’= −ωt. 

We fix the coordinate system (xL, yL, zL) in the absolute space σ0 so that its origin OL is positioned at 
that position of the grid point G0 where the first wave front arrives at the middle of the grid line G0. Fact 

is that the normal vector P


of the wave fronts can also have an xL-component as an yL-component if 
we demand that the incoming light beam shall propagate parallel to the moving vertical of the grid. 
Therefore, we have to deal with two aberration angles, αxL and αyL, i.e., the planes of the wave fronts 
are sloped in two directions (Fig. 4 shows only the angle αxL). This implies, we have to consider not 
only grid points but grid lines with some spatial extension in the yL-direction. Grid point G0 is the middle 
of grid line G0, grid point G1 is the middle of grid line G1, etc. The wave fronts do not arrive 
simultaneously at all grid points G0, G1, ..., but consecutively. This holds also for the yL-direction. In the 
case of an aberration in yL-direction, the wave front does not hit simultaneously the whole line, but 
consecutively.  
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Fig. 4: Wave front and moving grid point G1 

A sphere in the absolute space σ0 changes its shape if it is accelerated to speed v 


. This change in 
shape is caused by the fact that length contraction and cross contraction differ in quantity. A sphere in 
the absolute space σ0 is transformed into a spheroid or ellipsoid of rotation. The rotational axis is the 
minor axis, and it is parallel to the speed vector v 


. The two major axes are of the same length and 

perpendicular to each other. If none of the three axes of the coordinate system (xL, yL, zL) is parallel to 

the speed vector v 


 (or anti-parallel) then the local axes shorten and twist. We obtain the magnitude 
and the new direction of the shortened and twisted xL-axis by the following transformations. First, we 
compute the projection of v 


onto the x-direction using the inner product. From the inner product we 

get the angle αv’x between v 


 and the x-axis. (Remember that the axes xL, yL, zL have the same 
directions as the axes xE, yE, zE.) However, in the theory of the ellipse, the counting of the angles 
starts at the major axis. Therefore, we take as angle the supplement to the right angle, i.e., 

)arccos(22/ '' vxxv ee   . (2.8) 

According to the theory of the ellipse the angle α changes into the angle α’. 

))tan()/arctan(( aba  . (2.9) 

Here,  22 /1 cva   and 22 /1 cvb   are the contracted axes of the unit circle. Then, we 

compute the unit vector q


 by a twofold application of the outer product. The unit vector q


 lies in the 

plane spanned by the vectors xe


and 've


. Simultaneously, the unit vector q


 is perpendicular to unit 

vector xe


, i.e., 

     xvxxvx eeeeeeq


 '' / . (2.10) 

Now, we rotate the unit vector xe


 by the angle dα= α’- α and normalize it by way of 

qde

qde
e

x

x
dx 











 . (2.11) 

We decompose the new unit vector dxe


and obtain its components x and y. Component x is the length 

of the length-contracted projection of vector dxe


onto vector v 


, and y the length of the perpendicular 

cross-contracted component. 
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x = a cos(α),     y = b sin(α).  (2.12) 

We obtain the rotated and contracted vector xd 


 (the original vector was xe


) by Eq. (2.13). Vector xd 


 

is not an unit vector. 

22 yxed dxx 


. (2.13) 

Similarly, we obtain the rotated unit vector dze


 and the rotated and contracted vector zd 


. The y-

direction of the laboratory plays a minor role in the computation of the diffraction angle. Therefore, 
there is no need of a  transformation of the y-axis. 

We turn to the construction of the normal vector P


 of the wave fronts. In the resting system, let the 
propagation of the light waves have exactly the direction of the z-axis. In the moving system the light 
beam has to propagate in parallel to the moving z


-axis. After time t, the coordinates of the end point 

of vector P


 are 

  tvectttP dzzz 


, .  (2.14) 

Here, c is he speed of light, and tz a time that we compute so that for t=1 the vector P


 has exactly 
norm c. Quantity tz is computed iteratively. 

Now, we compute the exact position of grid point G1 for the moment at which it coincides with wave 

front 2. Grid point G1 is positioned on the rotated and contracted axis xd 


. Therefore, we term its 

position G’1. During time tαλ’ , grid point G’1 has moved over the distance v 


tαλ’  to the new position G“1 
(see Fig. 4). Wave 2 has, during the same time, propagated, starting from the foot Fp, over the 
distance λ’0 + sα . We find 

  tvGG


11    with   xddG 


01  (2.15) 

Distance sα is the projection of vector 1G 


 onto the unit vector Pe


(unit vector of the normal vector P


 

of the wave fronts). We find  

1Ges P 


 .  (2.16) 

Time tαλ’ is computed iteratively so that the criterion (2.17) 

(tαλ’ −((sα+ λ’0)/c) ) 2 = 0  (2.17) 

is fulfilled. This means, the distance from foot Fp to position G“1 divided by speed of light c equals the 
runtime of grid point G1 from position G’1 to position G“1 .  Here, wave length λ’0  is wave length λ0, but 
changed by the Doppler effect. By the motion of the light source through the space, a factor arises for 
wave length λ0 of a resting source. This factor differs from value 1 by the projection of speed vector v 


 

onto the direction of the normal vector P


, divided by the speed of light, c. Wave length λ0 will, this 
way, either be shortened or lengthened. 







 


c

ev P



100  . (2.18) 

Now, we calculate the direction W 


 of the diffracted beam. Vector W 


 has to fulfill the following three 
conditions: (1) the distance sα+λ’0 , starting from grid point G0 and showing in direction of Slit 2, has to 
have exactly this amount; (2) and has to be exactly perpendicular to the connecting line G0 - G“1 ; (3) 
the outgoing beam has to lie at each moment t on the (x’-z’)-plane. This plane moves with speed v 


 

through the space. We set the components wy and wz of vectorW 


to: 
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  222
0,, zxydzxydxyy wwsewetvw   


 (2.19) 

and                                 222
0 yxz wwsw   .  (2.20) 

Component wx has an arbitrary initial value between 0 and the grid constant d0. Then, the exact value 

is computed iteratively so that the above three conditions are fulfilled. The quantities ydxe ,


 and  ydze ,


 

are the y-components of the rotated unit vectors of the axes, dxe


and dze


. Equations (2.19) and (2.20) 

contain a vicious circle (circulus vitiosus), because we use in the Eq. (1.19) for the component wy the 
component wz which itself depends on wy . However, one can leave the vicious circle by the use of a 
series expansion. One inserts preliminary values of wz in the correcting term 

  222
0, zxydz wwse  


 of the wy-component, and improves the value of wz iteratively (interested 

readers can contact us). The above condition (2) is determined in the form of an inner product. The 
absolute value has to equal 0. The third condition, (3), is fulfilled automatically by Eq. (2.19). 
Therefore, the target criterion of the iteration of component wx is 

  01  WGW


. (2.21) 

Finally, we calculate unit vector "We


 from vector W 


. 

Now, we consider the coordinates of slit 2. In the resting system σ0, slit 2 is positioned at the distance 
L from the origin O. It is seen from this point under the angle γ1, i.e., the coordinates of slit 2 are 
Lx=Lcos(γ1) , Ly=0 und  Lz=L sin(γ1). In the moved and rotated system σ’, the coordinates Lx , Ly and Lz 
change by the length- and cross-contraction, depending on the length and the direction of the speed 

vector v 


. Therefore, we have to transform vector L


. We use the same method as we have used to 

transform the x- and the z-axis. First, we calculate the unit vector Le


. Then, we calculate the inner 

product vL ee 


, and, from this, the angle αv’L between L


 and v 


, from angle α (see Eq. (2.8)). With 

angle α, we find the new angle α’ due to the theory of the ellipse (see Eq. (2.9)), and with α’ the 

angular difference dα= α’- α. With vector      LvLLvL eeeeeeq


 '' / , we construct an auxiliary 

unit vector in the plane of the vectors L


 und v 


, a vector that is also perpendicular to L


. We rotate 

unit vector dLe


 by the angle dα= α’- α and normalize it in a similar way as given by Eq. (2.11). We 

obtain the rotated unit vector dLe


. Now, we decompose the rotated unit vector dLe


, and obtain its 

components x and y. Here, x is the length of the component that is parallel to v 


, and y the length of 
the perpendicular component. Component x = a cos(α)  is length-contracted, and component y = b 

sin(α) is cross-contracted. From the two components, we obtain the contracted vector Ll 


, which is no 

longer a unit vector, i.e., 

22 yxel dLL 


 (2.22) 

By normalization of vector Ll 


, we obtain the unit vector dLe 


. Now, we have to model the motion of the 

whole arrangement of the origin and slit 2 with speed v 


 in absolute space. This method is similar to 

the construction of the wave normal P


. We find 

LdLdLvt tvee  
. (2.23) 

Here, the quantity tL is a time which is computed iteratively. The target criterion of the iteration is the 
equality of run time tL of the arrangement in the space and run time of the wave front, i.e. 
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cet dLvtL /


.  (2.24) 

The unit vector dLvte 


 is the result of the iteration. In the last step, we calculate the two diffraction 

angles L1   and W1   of the moved arrangement from the two unit vectors dLe 


 and "We


 as  

 xdLzdLL ee ,,1 arctan    (2.25) 

and 

 xWzWW ee ,,1 arctan


 . (2.26) 

Without consideration of a change in the wave length caused by the motion of the diffraction 
arrangement in the absolute space, the two angles are equal to each other (within computational 
accuracy), i.e., 

γ’1L= γ1W.  (2.27) 

In y-direction, a residual error remains of magnitude εy =3 �10−10. However, this error is negligible 
because the grid lines are extended in y-direction by an amount that is much greater than this error. 
Probably, this residual error εy is caused by the finite series expansion of the vector component wy 
(see Eq. (2.19).  

However, the results of our computations change dramatically with a change of the frequency of the 
light source due to time dilation, and the resulting change in the wave length from λ0 to 

2
00 1/   , i.e., depending on the speed v


 of the arrangement in absolute space. A change 

in the diffraction angle εγ is connected with this change in the wave length, i.e. 

11   .  (2.28) 

Here, 1   is the angle calculated after the relativistic change in the wave length due to the dilation of 

time. 

In the following numerical example, the speed of light is c=3�10 8 m/s, wave length is λ0 =5.6�10 −7 m, 
grid constant is d0 =2�10 −6 m, the distance of slit 2 from the origin (grid point G0) is L=0.3 m, the 
orbital speed of the Earth round the Sun is vE = 30 km/s, and the speed of the Sun in the absolute 
space vS = 369 km/s. 

The mean change εγ in the diffraction angle is  90
 = 2.22�10 −7 for an angle of αE=90° of the orbit of 

the Earth. In the case in which the velocities of Sun and Earth add up, i.e., when v = vS + vE , εγ =  2.58 

�10 −07. In the case of subtraction, we find εγ =  1.86 �10−07. The mean value of 90
 = 2.22 �10−07 

subtracts in Earth-bound diffraction experiments. So, only a relative angular deviation ∆eγ remains in 
the order of magnitude of ∆eγ = ± 3.6 �10−08 (see Fig. 5). This angular deviation is very small, and it 

does not appear until after three months. Fig. 5 shows the angular deviation 90
 eee   of the 

diffracted beam for one Earth’s orbit around the Sun in units of 10 −8 rad. 
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Fig. 5: Angular deviation ∆eγ of the diffracted beam over the angle 
of the Earth’s orbit around the Sun 

 

The Earth’s self-rotation causes a much smaller effect compared with the effect of the Earth’s orbit 
around the Sun. In our numerical example, we found an angular deviation of eγ = ± 1.5 �10−10 rad per 
rotation. 

 

3. Linewidth and long term stability of light sources 

 

In this section, we show that the long-term null-effect of the Kennedy-Thorndike experiment is 
incorrect with high probability. The Doppler effect caused by the thermal movement of the atoms in the 
active medium of the laser causes a finite line width of the laser light, and this line width masks the 
long-term effect predicted by us, and this masking is also not prevented by modern techniques as 
cryogenic cavities or Fabry-Pérot etalons. 

A laser is basically a resonator (a tube) with concave mirrors at its ends (confocal resonator). The tube 
contains an active medium. The molecules or atoms of the medium have a sufficient number of energy 
levels. By the pumping of light energy from outside, a sufficient number of atoms or molecules get an 
excited state. First by spontaneous emission, light waves go back and forth. Then, by stimulated 
emission, the intensity of the light is amplified. One of the two mirrors is partially transparent. There, 
the usable coherent and only slightly divergent light beam emanates. This light is usable for the 
experiments. 

The resonator amplifies several, closely spaced frequencies v0, v1, ... The reason is the Doppler shift 
of the actual frequency of the atomic or molecular vibration in the medium. The frequencies v0, v1, ... 
are subject to the resonator condition vi=nk c/2L, where nk is an integer wavenumber, c the speed of 
light in the medium, and L the length of the light path between the two mirrors. However, the resonator 
does not amplify an arbitrary number of frequencies. The reason is that the envelope of the thermally 
caused line broadening has nearly a Gaussian shape (a Lorentzian function). The frequencies near 
the edge do not receive enough energy for the self-amplifying effect. One can select a single 
frequency v0 by a Fabry-Pérot etalon. This etalon is a resonator with two partially transparent mirrors. 
A light beam can pass the Fabry-Pérot etalon only if it fulfills the resonator condition. The finesse F is 
the relation of that range around a resonance peak which is free from intensity and the width of the 
resonance peak. High-quality etalons reach F-values of F=10 6. 
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The linewidth ∆ν is the width of that range of the frequency interval that is occupied by a single line of 
the frequency spectrum. The linewidth is defined by the half-width of the peak, i.e. its width at the half 
height. One assumes as causes the general energy uncertainty of Heisenberg (resonance curve, 
Lorentzian function), and, in addition, the Doppler effect caused by the thermal vibrations of the 
emitting atoms or molecules. The course of the intensity, I(v), over the frequency v is similar to a 
Gaussian function (bell curve) with its maximum at frequency v0. 

The Schawlow-Townes-limit defines the lower limit of the linewidth of the light of a laser. However, the 
Schawlow-Townes-limit is very small. Only extremely faint solid state lasers hit the limit. This type of 
laser works at temperatures near the absolute zero. The causes of the finite linewidth includes 
spontaneous emission which is not in phase, Heisenberg’s relation of energy uncertainty, and 
interactions of the photons with the components of the laser causing noise [23]. In the case of gas 
lasers, but also solid state lasers not working in the cryogenic temperature range, one has to add 
inevitably to the linewidth the Doppler effect of the moving atoms. The pumping power of a laser has to 
be at least the tenfold of the radiation power. This fact causes an input of energy that does not simplify 
temperature stabilization. In the same way, one gets a smaller aperture of the produced beam only by 
a higher pumping power. The aperture is inversely proportional to the coherence length. 

Currently, the LIGO-observatories (Laser Interferometer Gravitational-wave Observatory) use that type 
of interferometers with the highest coherence length of the used monochromatic light, for example in 
Hanford (USA, Washington) or Livingston (USA, Louisiana). Several times, observatories of this kind 
have detected gravitational waves [ 24, 25]. The observatories use a Michelson-interferometer with an 
arm length of 4 km in Livingston (2 km in Hanford). However, the effective arm length is about 1120 
km by multiple mirroring. The mirrors are so adjusted that both partial rays erase one another by 
interference. The passage of a gravitational wave changes the lengths of the light paths in a different 
way. The partial rays do not erase one another any more, and a photodiode sends a signal. 

The CM allows gravitational waves in two forms – longitudinal and transversal. However, one cannot 
use arbitrary weak solid state lasers working in the cryogenic temperature range, because the 
frequencies of the gravitational waves are in the audio band, and this sort of lasers is unable to record 
the quick change in the signal. In the practice of the detection of gravitational waves, a laser is used 
with a light power of 20 W laser output. Additionally, one has to handle noise and errors, for example 
the temperature control of the laser, the temperature control of the long tunnel tubes of the arms, or 
seismic vibrations. The interferometer registers even the fine vibrations of the ocean surf at a distance 
of several hundred miles. That is the reason why one has permanently to perform corrections, mostly 
through piezo-electrically changeable mirror positions. Thus, a long term effect is hidden behind a 
great number of corrections. 

Another issue is the stabilization of frequency. The frequency of the emitted light of the laser is subject 
to fluctuations. Reasons and causes are manifold, for example fluctuations of the temperature or 
pressure of the medium, thermal expansion of the tube, fluctuations of the pumping power, and, 
additionally by our theory, a seasonal fluctuation of the frequencies of atomic transitions. 

Stabilization with optical resonators is one of the common methods today. A resonator is constructed 
using a stable tube and two mirrors at the ends in a constant distance, similarly to the construction of 
the laser. One of the mirrors is transparent to a small percentage. Before the light waves leave the 
resonator through the transparent mirror, they run several times back and forth between the two 
mirrors. Hereby, the constancy of the distance between the mirrors is very important. Therefore, one 
uses silicon for the tube in the cryogenic temperature range. This way, one avoids thermal noise to a 
large extent, and one achieves a line width of some few mHz with the resonator [26.]. In the CM, the 
length of the optical path between two mirrors does not change with the speed of motion in the 
absolute space [9]. The light path remains absolutely constant by the interaction of length- and cross-
contraction. Such an optical resonator, manufactured from silicon and running in the cryogenic 
temperature range is indeed a stable frequency standard. 

However, we posit that a laser with frequency v0 stabilized by such a resonator will react only by a tiny 
change of its light power to a general change in the frequencies caused by the dilation of time (see 
Fig. 2.1). The reason is that the medium of the laser produces light with a line width much greater than 
the line width of the frequency normal. The frequencies v0, v1, ... of the laser modes do not change 
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due to CM, because they are a feature of the laser resonator. These frequencies are assigned to the 
maxima of the intensity function I(v) over the frequency v. Also, the frequency v0 of an etalon does not 
change. A frequency fluctuation of the atomic transitions in the laser just moves the center of mass of 
the envelope of Gaussian shape. In Fig. 6, the dashed line shows a second intensity function I(v) due 
to a small left shift of the Gaussian curve. One can see that the intensity of the frequency of the etalon, 
i.e. I(v0), changes only negligibly. However, the intensities of the modes besides the main maximum at 
v0 change more clearly. 

 

Fig. 6: Change in intensity of the laser modes by line shift 

 

The wave length (the frequency v0) does not change either at the output of the laser or the output of a 
Fabry-Pérot etalon, but a small change of the light power is possible. This implies that a long term 
effect caused by the dilation of time does not cause a change in the interference pattern, but only a 
minimal fluctuation of the brightness over the course of a year. In addition, we have to add to this the 
previously unexplained influence of the relativistic change of mass and the relativistic contraction of 
the Earth on the gravitational field, and, thus, to the gravitational red shift of the frequency lines. 

 

4. Dilation of time under the paradigm of a membrane 

 

GR and CM conform to each other to 88%, SR and CM conform to 93% [8]. This implies that small 
differences exist between the theories. According to our statements in the introduction (Section 1, Eq. 
(1.3)), it is most likely that the dilation of time is not coupled with the length-contraction. In this section, 
we show that the probability is much greater that a connection exists between the dilation of time and 
the relativistic increase of mass. Both phenomena, the dilation of time and the relativistic increase of 
mass, are experimentally well proven facts. 

The dilation of time is dependent on the speed v


 of the clock 

                                           21/  tt ,  (see Eq. (1.1)). 

For the relativistic increase of the transverse mass Eq. (4.1) is generally accepted [27]., 

2
0 1/)(  mvm .  (4.1) 

We have derived this from the energy square [8] in coincidence with Puthoff [28]. Until now, we have 
not found an specific theory in the context of the CM for both phenomena – neither for the dilation of 
time nor the relativistic increase of mass. Therefore, we use, for the time being,  Eq. (1.1) and Eq. 
(4.1) as experimentally well proven phenomena. Here, in both formulae , β=v/c and v


 the speed in the 

absolute space. 
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To connect the dilation of time with the relativistic increase of mass consider a harmonic undamped 
oscillator. The oscillator is constructed using two oscillating masses m, swinging against each other, 
and connected by an ideally elastic spring with spring constant k. 

 
 
           m                                        m 
 

                                k 
 

Fig. 7: Harmonic oscillator 

The homogeneous ODE of the oscillator is, at rest, in the absolute space 

0)()( 00  txktxm  . (4.2) 

The quantity m0 is the oscillating mass, quantity k0 is the spring constant. The natural frequency ω0 is 

0

0
0 m

k
 . (4.3) 

Now, suppose the same oscillator is in motion. The dilation of time (or the decrease of frequency) 
caused by the relativistic increase of mass due to Eq. (4.1) is given by Eq. (4.4) for the case in which 

the harmonic oscillator oscillates perpendicularly to speed v


. 

2

0

1
)(

)(

)(
)(  

m

vk

vm

vk
v . (4.4) 

However, the desired result for the change in frequency, 2
0 1)(  v , demands that we accept 

the relation given in Eq. (4.5) for the dependency k(v), i.e.,  

2
0 1)(  kvk  (4.5) 

Indeed, from this follows 

  2
0

2
2

0

0 11)(  
m

k
v .  (4.6) 

But what does Eq. (4.5) mean? The transversal constant of elasticity of the harmonic oscillator 
decreases with increasing speed v


 in the absolute space. We have yet to find an appropriate model 

that would explain this relation. We will focus our future research on this topic. Equation (4.5) also 
says, indirectly, that particles could be more fragile at high speed than at rest. Despite intensive 
search, we have not found any evidence in support of this proposition [ 29-31]. 

 

5.  Results and discussion 

 

The SR posits the null effect in the case of the Michelson-Morley experiment. In the case of the 
Kennedy-Thorndike experiment, the SR demands, in addition, the null effect for a long term period of 
time. The CM also demands the null effect for both the Michelson-Morley experiment and for the 
Kennedy-Thorndike experiment in the case of short term experiments. However, in the case of the 
Kennedy-Thorndike experiment, the CM predicts a long term effect (after three months) in the order of 
10 -8 of the diffraction angle. The reason of this long term effect is the change in frequency of the 
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moved light source caused by the dilation of time, and this is triggered by the change in the Earth’s 
speed in the absolute space (see Section 2). However, the Earth’s gravitational field remains as the 
big unknown (see introduction). 

However, given today’s means, one can not measure a diffraction effect in the order of 10 -8. 
Therefore, the long term effect remains hidden. In the CM, light paths are constant and do not 
dependent on the speed and the orientation of the optical arrangement in the absolute space. 
Therefore, all effects come from the dilation of time. The long term effect caused by the dilation of time 
has only a small impact on the intensity of a laser-based interferometer as was shown in Section 3. 
However, an experiment without the use of a Fabry-Pérot etalon would also fail because the natural 
line width of the laser is broadened by the thermal Doppler effect, and, for this reason, significantly 
greater than the effect under scrutiny (10 -6 compared to 10 -8). 

Müller et al. [20, 21] had analyzed the data of the Lunar Laser Ranging, and confirmed the null effect 
over a period of some years. We have no explanation of this result, but we refer to a similar discussion 
related on the LAGEOS mission [8, 33,34] in the context of the Lens-Thirringeffect. The interaction of 
the motion of the satellite with the gravitational field and relativistic effects seems to involve some 
riddles which we are unable to explain, until now. The explanation becomes even more complicated 
when one considers that the system Earth-Moon could be subject to the dilation of time in a way 
similar to the orbitals of the system atomic nucleus – electrons which are subject to the dilation of time. 

A clock t0 indicates Newton’s absolute time if it is resting in the absolute space and far away from 
gravitational fields. The CM says that the absolute time t0 only depends on the speed of the 
expansion, VE, of the cosmic membrane. However, a clock in motion works with a decelerated time 
interval t as indicated by Eq. (1.1). One needs to compute the integral Eq. (5.1) in all cases in which 
the speed of motion changes. 

 



T

cv

d
t

0 20

)(1 


 (5.1) 

The integral adds the changing time intervals depending on the changing speed of the clock. All earth-
bound clocks are subject to this change in motion over the course of a year. Fig. 8 illustrates the anual 

relative frequency shift ES   , caused by the dilation of time,  between a clock that moves 

with the Sun and a second clock that moves with the Earth.  

 

Fig. 8: Relative frequency in 10-7 

The dilation of time adds to the diffrence of time, tS-t, between sun-time tS and the time indicated by an 
earthbound clock t as shown in Fig. 9. 
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Fig. 9: Time delay  tS – t  in seconds 

After the course of a year, a small time difference remains between the two clocks of about ∆t=0.08 
seconds. The reason is that the Sun moves strightly whereas the Earth orbits additionally the Sun. 
However, both clocks run more slowly than a resting clock, t0. The time difference ∆t between the time 
indicated by a resting clock t0 and sun-time tS is ∆t=t0-tS=23.87 seconds after one year, calculated with 
a speed of vS=369 km/s of the Sun in the absolute space. 

The Häfele-Keating experiment [2] used six atomic clocks. One pair of these clocks traveled with 
normal passenger jets eastwards, another pair westwards around the globe. The third pair remained in 
the institute for comparision. The first pair of the clocks traveled with the self-rotation of the Earth, the 
second pair against. So, over the course of two days, the first pair orbited the Earth three times (1.5 ω 
with ω as angular frequency of Earth’s rotation), but the second pair only once (0.5 ω). Because jets 
move in an altitude of about 30.000 feet, the gravitational force of the Earth is diminished and speeds 
up the clocks. Here, we do not discuss this effect, because it is not interesting in this consideration. 
We consider only the effect of the time delation caused by the motion of the clocks. For further 
simplification, we assume that all speed vectors lie in the ecliptic, i.e., in the x-y-plane (see Fig. 2). 
Because the center of Earth does not change significantly its speed and its direction in the absolute 
space during two days, the movement of both pairs of clocks can be described by Eq. 5.2. 
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Here, the quantity vE is the nearly-constant short-time speed of the Earth in the absolute space, the 
quantity vR is the rotational speed of the clocks with vR =RE ki ω cos(β°) (see Eqs. 2.5 and 2.6), and 
k1=1.5, k2=0.5. For the integration of Eq. 5.1, one has to calculate the square of speed vector v
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 (6.3) 

The integrand of integral 5.1 has an absolute value near one, i.e., 1-ε. So we can replace the root-

function 1  by 1-ε/2, and, in the division, replace by the change of the sign, i.e., 1+ε/2. Integrating 

over full days, the mixed terms, containing the sine- and cosine-function, disappear. The comparision 
of the clocks implies subtraction of the calculated values of the two integrals. Here, during subtraction, 

the constant term 2
Ev  disappears as well. The remaining part describes the Häfele-Keating result, and 

this is the same result as found by the SR (after some discussions concerning relativity and inertial 
frames). Because the comparision of clocks needs the direct contact, only motions with full circles are 
allowed, and, this way, the influence of the absolute space disappears. In the CM, one needs no 
discussion of relativity to explain the Häfele-Keating result. Therefore, the atomic-clock experiment is 
one of the key experiments of the CM. 
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Earth-bound clocks are subject to various influences, for example the gravitational field of the Earth. 
But the main effect comes from the change in speed of the clock in absolute space (see introduction). 
This effect acts also in the case of atomic clocks. Atomic clocks do not indicate the absolute time t0 but 
the time given by the integral Eq. (5.1), and that regardless of the increasing precision of the clock 
(cesium clock, rubidium fountain clock). The reason is that the two types of clocks use the frequency 
of atomic transitions between energy levels. The frequency of the actual clock, a quartz watch, is 
controlled by the atomic frequency, and so also subject to the dilation of time [35]. 

A light clock of special construction perhaps could indicate Newton’s absolute time t0 nearly precisely. 
In the CM the light path remains constant between two fixed mirrors independently of speed and 
orientation in space [9]. A cryogenic frequency standard with a precision of a few mHz [26] combined 
with a frequency comb [36] are a promising approach. However, one needs to select a constant wave 
length at the output of the laser of the frequency comb by the use of a Fabry-Pérot etalon. This way, 
one avoids the influence of the dilation of time which controls the atomic sources of the laser light. 
Otherwise, the line width of the atomic source inside the laser should not be smaller than the annual 
change in frequency. This condition ensures that the cryogenic frequency standard and the frequency 
comb are supplied with light energy throughout the year. One of the remaining sources of errors is the 
acceleration and rotation of the cryogenic frequency standard caused by the motion of the Earth and 
its rotation. Based on Einstein’s results [37], acceleration has the same effect as gravitation. Rotation 
also changes the frequency as the experiment of Sagnac [38] has shown. 

Possibly, one could explain the dilation of time by an oscillator model. The increase of the relativistic 
mass together with a relativistic decrease of the constant of elasticity could possibly decrease the 
oscillator frequency. Unfortunately, we have yet to find adequate models that could explain the 
relativistic decrease of the constant of elasticity and the relativistic mass by the means of the 
membrane. However, we consider this paper as another introduction to the physical explanation of 
basic phenomena [39, 40]. Using the time and the dilation of time, we try to leave the pure 
mathematical description of the phenomenon as given by  Eq. (1.1), and to obtain a more fundamental 
statement that might, someday, be derived from the properties of the cosmic membrane themselves. 

 

6.  Conclusions 

 

Accepting Newton’s absolute space, the derivation of the dilation of time in the sense of the SR, i.e. 
together with the derivation of the length contraction under the constraint of constant cross 
dimensions, loses its plausibility. One has to go other ways to explain the experimentally well proven 
dilation of time with the help of the physical properties of the space. 

The difficulties are enormous since, up to now, the unification of the quantum theory and the theory of 
gravitation does not exist. Additional important questions arise, beginning with the nature of the dark 
matter, and ending with the question, what space and time actually constitute. Therefore, we will 
concentrate our efforts on the search of proper models, which could become a little step in the pursuit 
of truth. 
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