
 

Abstract In this article, we applied a semianalytical method to study the effects of the higher-order spectral 

filtering in the cubic-quintic complex Swift-Hohenberg equation (CSHE) through the dynamics of one soliton. The 

approach is based on a reduction from an infinite-dimensional dynamical dissipative system to a finite-dimensional 

model. This formulation is helpful to study the ground state of the soliton dynamic since it depends on a trial 

function and a good set of parameters. We show that with real coefficients, the CSHE exhibits stationary dissipative 

solitons in space with the equation parameters, and the higher-order spectral filtering has a real impact on the 

cartographies of stationary soliton domain. The detailed analysis reveals the effects of spectral filtering term on the 

stationary soliton parameters, and displays that it influences differently the cubic and quintic terms of the CSHE. The 

results highlight the major influence of the spectral filtering on the temporal width of the stationary soliton whereas 

it does not have a real impact on the amplitude and the spatial width. 

Keywords: dissipative solitons, spectral filtering, fiber lasers, cubic-quintic Swift–Hohenberg equation, spectral 

response, gain spectrum

1. Introduction 

The laser systems with nonlinearity, saturable absorber 

and which allow the generations of ultra-short optical 

pulses, exhibit a variety of pulse shapes and evolutions. 

They perform a complicated dynamic, which distinguish 

them from the Hamiltonian soliton. This results from the 

fact that, in addition to dispersion and nonlinearity, the 

optical pulses include energy exchange with external 

sources. Thus, these laser cavities can be regarded as 

perfect surroundings for the concept of dissipative solitons 

and an ideal experimental frame for the exploration of 

dissipative soliton dynamics. In these systems with gain 

and loss, the soliton solutions appear as a result of a 

balance between dispersion (diffraction) and nonlinearity, 

then gain and loss must be also balanced. 

In spite of the complexity of most spatially extended laser 

systems, many of them have been shown to be described 

by the cubic-quintic complex Ginzburg-Landau equation 

(CGLE) [1].  In the field of nonlinear optics, the CGLE 

can be used to describe a wide range of systems [2], such 

as passively mode-locked lasers with fast saturable 

absorbers, parametric oscillators, wide aperture lasers, 

nonlinear optical transmission lines [3] and nonlinear 

cavities with external pump [4]. It is undoubtedly that one 

can use just this equation to explain complicated 

phenomena in various systems. Hence, the CGLE has 

been intensely studied in many research studies [5, 6] and 

revealed a rich variety of solutions: stationary, pulsating, 

creeping, and erupting solitons [7].  

In laser systems with a fast saturable absorber, a cubic-

quintic complex Ginzburg-Landau equation is a suitable 

tool to study pattern formation. In these conditions, its 

quintic nonlinearity is essential to ensure the stability of 

optical pulses overcoming something that the cubic 

Ginzburg-Landau equation could not achieve. However, a 

cubic-quintic complex Ginzburg-Landau model is 

restricted to a second-order term and a spectral response 

with a single maximum, which is not the case in many 

experiments under real conditions. In these conditions, it 

is important to make the model more realistic and to take 

into account the situation when the gain spectrum is wide 

with multiple peaks. The addition of fourth-order spectral 

filtering term into the cubic-quintic Ginzburg-Landau 

equation leads to the complex Swift-Hohenberg equation 

(CSHE) and this is needed to depict optical pulses 

formation in wide aperture.  

 The CSHE plays the role of paradigms since it outlines 

the very basic mechanisms of pulse dynamic in many 

systems. It describes quite well a general theory of 

transverse patterns in wide aperture, single longitudinal 

mode lasers and synchronously pumped optical parametric 

oscillators. Under appropriate conditions, this equation 

depicts class A and C lasers [8, 9, 10]. Likewise, the 

CSHE representation of the two-level lasers has been 

extended to model semiconductor lasers [11] and has been 

inspected in [12, 13] to illustrate its validity in this 

context. A detailed account of the possible patterns 

present in the CSHE equation has been intensely studied 

via numerical studies [14, 15] and has been characterized 

using analytical techniques in the whole parameter space 

[16, 17]. 

Since, as the influence of spectral filtering on mode-

locked fiber lasers is well known through several studies 

[18, 19], our purpose in the present study is to investigate 

the impact of the higher-order spectral filtering on the 

stationary solutions of the CSHE. In recent studies, the 
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authors have presented in [20] the effect of spectral 

filtering in mode-locked fiber lasers with an extended 

geometrical model. They demonstrated that the spectral 

filtering leads to strong nonlinear dynamics in a mode-

locked fiber laser cavity, which can be used to understand 

the pulse dynamics in mode-locked soliton fiber lasers. 

Thus, in [21] the numerical models show the vital roles of 

the spectral filtering effects on chirped pulse behaviors. 

In this paper, using chirped Gaussian pulse, we analyze 

the impact of the spectral filtering on the dynamic of the 

stationary soliton in the two-dimensional complex Swift-

Hohenberg equation. The remainder of the paper is 

organized as follows: first, we introduce in section 2 the 

governing equation and present the collective variables 

approach. The variational equations obtained from this 

semianalytical approach are then reported and analyzed. 

The section 3 is devoted to the investigation of the 

influence of the higher-order spectral filtering in the two-

dimensional cubic-quintic complex Swift-Hohenberg 

equation through the dynamics of one soliton. Finally, in 

section 4, we give some concluding remarks. 

2. Model and Analytical Study 

In general, the cubic-quintic complex Swift-Hohenberg 

equation has complex coefficients and hence time-

dependent solutions. Nevertheless, in the present paper, 

we restrict our attention to an important but special case of 

this equation, namely the case of real coefficients and two 

spatial dimensions. The analysis of this equation reveals a 

great variety of patterns and structures.  It describes as 

both quantitatively and qualitatively many nonlinear 

effects that occur during the optical pulses propagation. 

The CSHE characterizes also passively the mode-locked 

lasers that allow the generation of self-shaped ultra-short 

pulses in a laser system [22], and semiconductor laser 

[23]. The CSHE can be read in this normalized form [24, 

25]: 

 

                    | |     | |  
     | |         | |  
                                                          

 

Where   (treated as a continuous variable) is the 

propagation distance or cavity round trip number,   is the 

retarded time in a frame of reference moving with the 

pulse and    (  √     ) represents the transverse 

coordinate, taking account of the spatial diffraction 

effects. Here,            describes the complex 

amplitude of the transverse electric field, for example, 

inside a cavity. 

The equation (1) without the additive term        is the 

same as the cubic-quintic complex Ginzburg-Landau 

equation  In this study, the coefficients  ,  ,  ,  ,  ,  , 

   and   are real constants, the right-hand-side of equation 

(1) contains the dissipative terms and the left-hand side 

holds the conservative terms.        and   are the 

coefficients for linear loss (if negative), nonlinear gain (if 

positive), spectral filtering (if positive) and saturation of 

the nonlinear gain (if negative), respectively.   
       is for the anomalous (normal) dispersion 

propagation regime and   represents, if negative, the 

saturation coefficient of the Kerr nonlinearity.   stands for 

Kerr nonlinearity coefficient. In our study, the dispersion 

is anomalous, and   is kept relatively small. Finally, 

  which is of major significance for this present study 

represents the higher-order spectral filter term. The 

parameter    must be positive to have stable pulses in the 

frequency domain. The effect of the spectral filter can be 

described by the following transfer function: 

 

 

                                  
                              

 

We have shown in the reference [26] that when      

(which corresponds to the CGLE), the spectral response is 

a Gaussian curve with amplitude   and width     and has a 

single maximum. But when    is nonzero, the response of 

the spectral filter is much more affected and gives a 

spectral response with two distinct maximums. In this case 

the spectral response depends on the values of     as we 

can see in Figure 1. Whatever the values of the higher-

order spectral filter term (   are, the evolutions present 

two maximums but have a common local minimum. The 

amplitudes of these maximums depend on the    values. 

Maximum spectral responses evolve in a manner that is 

inversely proportional to the    parameter values. The less 

   is, the higher the maximum is.  

 

 

Figure 1. Spectral responses evolution according to the values of the 

higher-order spectral filter term   . Red:        , blue:        , and 

black:         

 

 

In our previous studies [16, 26, 27], using the collective 

variables theory [28] we have investigated with some 

effectiveness the stationary two-dimensional solutions of 

the CSHE. Indeed, as the 2D CHSE has several 

parameters that define the existence of stationary 

solutions, it is a tedious work to find the different types of 

the soliton according to the set of the equation parameters. 

To overcome this difficulty, on can use the master 

equation approach which helps to reduce an infinite-

dimensional to an ordinary differential equation. In fact, 

the collective variables method [28] is based on a trial 

function theory.  The idea consists to associate collective 

variables with the pulse’s parameters of interest for which 

equations of motion may be derived. The resulting 

dynamical system controls the evolution of a finite 

number of parameters such as the pulse amplitude, width, 

and chirp. This is the way to obtain a significant reduction 

in the number of variables used for the description of the 
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soliton dynamics. To this end, we can decompose the 

optical field in the following way: 

 

                                                     

 

with   the trial function, dependent on the collective 

variables (  ), and   the residual field that describes all 

other excitations in the system (radiation, dressing field, 

noise, etc.) 

Using the bare approximation [28] to the 2D CSHE (for 

more details, see [16, 26, 27, 28]) and applying the 

following Gaussian function as ansatz function: 
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we obtain six collective variables that evolve according to 

the following set of six coupled ordinary differential 

equations.  
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 ,    ,   ,    ,     and   are the collective variables and 

represent respectively the amplitude, the temporal and 

spatial widths of the soliton, the chirp along    axis, the 

spatial chirp and   the global phase. The collective 

variables (   ) are variables that evolve along the 

propagation direction   and the dynamic of the dissipative 

soliton. 

One can clearly see that the CSHE, equation (1) is reduced 

to an ordinary differential equation given by the soliton 

parameters  ,   ,   ,   ,    and  . As well, the collective 

variables method helps to show explicitly how each 

coefficient of the CSHE (equation 1) governs the soliton 

parameters (amplitude, widths, chirps and the global 

phase). A detailed analysis of the six coupled ordinary 

differential equations reveals that the spectral filter terms 

(   and  ) don’t affect the spatial width and the spatial 

chirp. However, the evolution of the temporal parameters 

(width and chirp), the amplitude and the global phase are 

influenced by the effects of the spectral filter. All in all, 

the impact of the higher-order spectral filter term is clearly 

highlighted with the help of ordinary differential 

equations. Through the equation (5) illustrate the role of 

the dissipative and conservative terms of the CSHE. 

The collective variables approach’s best asset lies in the 

fact that it reveals in detail the influence of each parameter 

of CSHE under soliton parameters. In addition, it makes it 

possible to express the total energy with respect to the 

soliton parameters, and gives a first idea on the dynamic 

of the pulse. Here, the total energy is given by the 

following equation: 

 

                                      
 √  

 
   

   
                                

 

it relies solely on the amplitude of the soliton, its temporal 

and spatial widths. 

 

3. Stationary Soliton under Influence of 

Spectral Filtering  

The CSHE admits stationary solitons and we provide 

evidence for its localized solutions in the space parameters 

in our recent studies [26]. The stationary solutions 

correspond to the stable fixed points of the system, 

obtained from the ordinary differential equations. We 

proved that the collective variables approach is suitable 

for the procedure of derivation of the variational 

equations. It also provides the basic parameters of the 

fixed points, and helps to cartography the stationary and 

the pulsating solutions [26, 27]. Indeed, as it is extremely 

difficult, if not impossible to vary all the parameters at the 

same time to find stable solutions; the ingenuity is to vary 

two parameters by setting all the others. Thus, we can 

easily obtain in a map all the different solutions.  

With the following initial condition, 

 

                              ( 
  

   
 

  

    
)               

 

and investigating the parameter regions located in the 

vicinity of the parameters      ,       ,   
    ,        and         , we have illustrated the 

stable stationary solutions in the       plane. In fact, the 

behavior of the laser system is then largely determined by 

the gain   and principally the cavity detuning  , which is 

directly related to the difference between the atomic 

frequency and the closest cavity resonance frequency.  

For a given set of    and   values, the use of the Newton-

Raphson helps to find the corresponding fixed point 

before determining its stability. The mapping below 

(Fig. 2) shows the result of this rigorous analysis for the 

range of the selected values. The cartographies in red 

display the domains of stationary solitons for the set of 

parameters    while the other parameters remain constant. 

Here, we could specify that for dissipative systems, the 

total energy is not conserved but evolves in accordance 

with the so-called balance equation. So, when we have the 

stationary soliton, the total energy converges to a constant 
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value. Thus, each soliton parameter (amplitude and 

widths) in the stationary domain (in red) remains constant 

regardless of propagation distance. 

A fine analysis of the figure 2 a), b), and c), reveals that 

the higher-order spectral filter term value plays an 

important role on the size of the stable stationary domain. 

It clearly appears that for the set of fixed parameters when 

the higher-order spectral filter term    decreases (from 

     to     ) the domain of stationary soliton (in red) 

widens. In this context, stationary solutions have a 

tendency to vanish gradually when    increases; which 

shows the importance of this parameter. The spectral 

filtering is therefore decisive in the formation of CSHE 

stationary solitons. 

 

Figure 2. Cartographies of the solutions of the 2D complex Swift-

Hohenberg equation in the       plane. The stable fixed points regions in 

red represent the domain of stationary solitons. Other CSHE parameters 

appear inside the Figure 2. 

We performed an investigation of the total energy 

evolution according to the nonlinear gain coefficient for 

different values of the higher-order spectral filter term   . 

The figure 3 shows significantly this description. It 

appears that the total energy increases in size as the 

nonlinear gain increases for a given    value.  

This clearly reflects that for these stationary solitons, an 

increase in nonlinear gain lead to energy solutions. 

Furthermore, the higher-order spectral filter term    also 

plays an important role in the evolution of energy. In fact, 

the Figure 3 points out the evolution of the energies for 

different values of    (           = 0.03, and    
    ). We can clearly deduce that for small values of the 

nonlinear gain, the three curves are almost identical. 

However, when the nonlinear gain is greater than    
     , the energy evolutions are considerably 

distinguishable. The curves look the same. The more    is, 

the more important is the energy. We can thus notice that 

for these chosen values, the stationary solutions will have 

practically the same energy regardless of the values of    , 

for the low values of the gain. But, when the nonlinear 

gain exceeds a threshold, the energy increases with the 

higher-order spectral filter term. 

 
Figure 3. Evolution of the total energies of stationary dissipative solitons 

for different values of the higher-order spectral filter term. The red curve 

corresponds to        , blue to        , and black to        . 

The values of other parameters are      ,       ,       , 

       and           
 

As the nonlinear gain   is a cubic term, we have tried to 

see how    acts on the quintic terms. Therefore, we 

plotted the evolution of the total energy according to the 

saturation coefficient of the Kerr nonlinearity for the same 

different values of the higher-order spectral filter term   . 

We notice that the appearance of the curves (figure 3 vs 

figure 4) is reversed. The figure 4 shows distinctly that the 

total energy decreases in size as the saturation of the Kerr 

nonlinearity increases for a given value of   . For low 

saturation coefficient of the Kerr nonlinearity values, the 

energy evolutions are well separated. More   increases, 

the curves get closer without getting confused. For a given 

  , the stationary soliton energy decreases when the 

quintic terms increases. The three curves keep the same 

appearance.  

The energy increases with different increasing values of 

  . It appears precisely that the higher-order spectral filter 

term acts differently on the actions of the cubic and 

quintic terms. 
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Figure 4. Evolution of the total energies of stationary dissipative solitons 

for different values of the higher-order spectral filter term. The red curve 

corresponds to        , blue to        , and black to        . 

The values of other parameters are      ,       ,       , 

       and         

 

It emerges from the examination of figures 3 and 4 that 

the higher-order spectral filter parameter    has a real 

impact on the dynamics of stationary solitons through the 

energies evolution. As we have seen above, the parameter 

   influences differently the cubic and quintic terms of the 

CSHE. To further investigate this study, it seemed 

appropriate to see how this same term (  ) affects the 

stationary soliton amplitude and widths. For indeed, one 

of the benefits of the collective variables approach is 

being able to follow (individually) the dynamic of soliton 

parameters namely its amplitude and widths. To highlight 

the action of the    factor on the propagation of the 

stationary soliton, we plotted on the figures 5, 6 and 7 the 

evolution of the soliton amplitude and widths for different 

   values (            = 0.03, and        ) while 

keeping the other terms constant and for fixed values of 

nonlinear gain (       ) and saturation of the Kerr 

nonlinearity (        ). A thorough interpret of these 

figures reveals that when    goes from      to     , the 

amplitude of the stationary soliton is largely unchanged 

(    ). Moreover, the spatial width is not influenced by 

this variation (    ). This is quite in accordance with the 

ordinary differential equations (4). In fact, in these 

equations (5), the spatial width evolution ( ̇ ) doesn’t 

contain any coefficient    , so has no influence on its 

propagation, which is in accordance with the figures 5, 6 

and 7. On the other hand, it is quite true that the amplitude 

equation ( ̇ ) contains the term    , but its variation (from 

     to     ) has no significant effect on the amplitude 

propagation (figures 5, 6 and 7). The     term being not 

preponderant with respect to other terms, its action turns 

out to be practically negligible. In addition, the study of 

the figures shows that the higher-order spectral filter    

variation (from      to     ) dominates the dynamic of 

the temporal width. For        ,    = 0.03, and 

       ,  the temporal width stays to        , 

       ,        , respectively. The temporal widths 

remain constant but the amplitude dynamic changes for a 

given value of   . This demonstration points out that the 

higher-order spectral filter    really affects the temporal 

width solely. Otherwise the contour plot confirms the 

studies and shows that the variations mainly concern the 

temporal widths. To conclude this section and confirm the 

results of the higher- 

 
 

 

Figure 5. Evolution of stationary soliton amplitude, spatial and temporal 

widths for the higher-order spectral filter         . The values of other 

parameters are      ,       ,       ,            
       and         . 

 
 

 
 

Figure 6. Evolution of stationary soliton amplitude, spatial and temporal 

widths for the higher-order spectral filter         . The values of other 

parameters are      ,       ,       ,            

       and         . 

 

 

Figure 7. Evolution of stationary soliton amplitude, spatial and temporal 

widths for the higher-order spectral filter         . The values of other 

parameters are      ,       ,       ,            

       and         . 
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-order spectral filter    effect on the stationary solitons, 

we have plotted the temporal and radial profiles of a 

stationary soliton for different    values and for the values 

of nonlinear gain (       ) and saturation of the Kerr 

nonlinearity (        ). The fruit of these efforts is 

illustrated on the figures 8 and 9. It clearly appears that the 

higher-order spectral filter    has no effect on the 

amplitude and the spatial width of the stationary soliton 

(figure 8). However, the temporal width changes for each 

value of the higher-order spectral filter    (figure 9) but 

keep the same amplitude.  

 

 

Figure 8. The radial profiles of the total stationary dissipative solitons 

for different values of higher-order spectral filter term. The red curve 

corresponds to        , blue to        , and black to    
      The values of other parameters are      ,       ,   
    ,                  and         . 

 

 

Figure 9. The temporal profiles of the total stationary dissipative solitons 

for different values of higher-order spectral filter term. The red curve 

corresponds to        , blue to        , and black to    
      The values of other parameters are      ,       ,   
    ,                   and         . 

 

4. Conclusion 

We have investigated the effects of higher-order spectral 

filter term on the stationary dissipative soliton. The 

dynamical behavior of stationary soliton in the two-

dimensional Complex Swift-Hohenberg equation under 

the spectral filtering was carried out. The domains of 

coexistence of stationary soliton are obtained through the 

semianalytical method, i.e., the collective variable 

approach. It appears in this study that the spectral filtering 

plays an important role in the formation of the stable 

stationary soliton. Therefore, the dissipative stationary 

solutions tend to vanish gradually when    increases. The 

detailed analysis points out that the spectral filtering also 

has a significant impact on the temporal width of the 

stationary profile while it does not really affect the 

amplitude and the spatial width. In addition, the parameter 

   influences differently the cubic and quintic terms of the 

2D CSHE. Thus, when designing lasers, attention should 

be paid to the cubic and quintic parameters because they 

act differently on the spectral filtering. 

To conclude, in this paper using a semianalytical approach 

with a suitable trial function, we have demonstrated the 

influence of the spectral filtering on stationary soliton 

parameters. We hope that these results can be extended to 

describe the pulsed operation in laser cavity and can be 

utilized to understand and engineer the pulse dynamics in 

mode-locked soliton fiber lasers. 
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