# 3 SARIMA MODELLING OF THE FREQUENCY OF MONTHLY 4 RAINFALL IN OSUN STATE, NIGERIA

# 5

1 2

#### 6

#### 7 Abstract

A Seasonal Autoregressive Integrated Moving Average (SARIMA) is proposed for Osun State 8 monthly rainfall data, the analysis was based on probability time series modeling approach. The 9 Seasonal Autoregressive Integrated Moving Average (SARIMA) model was estimated and the 10 best fitted SARIMA model was used to obtain the rainfall pattern. The Plot of the original data 11 shows that the time series is stationary and the Augmented Dickey-Fuller test did not suggest 12 otherwise. The graph further displays evidence of seasonality and it was removed by seasonal 13 differencing. The plots of the ACF and PACF show spikes at seasonal lags respectively, 14 suggesting SARIMA (1, 0, 1) (2, 1, 1). Though the diagnostic check on the model favoured the 15 fitted model, the Auto Regressive parameter was found to be statistically insignificant and this 16 led to a reduced SARIMA (1, 0, 1) (1, 1, 1) model that best fit the data and was used to make 17 18 forecast.

- 19 Keywords: Rainfall, Seasonality, Stationarity, SARIMA, Time Series
- 20 **1.0 Introduction**

The highly variable nature of rainfall as compared with the relatively stable nature of the temperature appears to have imbued more relevance to the former as the major component in the study of climate in a particular region. Then, there is need to understand the dynamical processes that determine changes that occur in climate system, though this has been very
difficult and challenging to climate scientists till today<sup>[2]</sup>.

The change has significantly contributed to the increase of global disasters caused by 26 weather, climate and water related hazards as both developed and developing countries of the 27 world are bearing the burden of repeated floods, temperature extremes and storms in which 28 Nigeria is not left out. Water resources are essential renewable resources that are the basis for 29 existence and development of a society. Proper utilization of these resources requires assessment 30 and management of the quantity and quality of the water resources both partially and temporally. 31 Water crises caused by shortages, floods and diminishing water quality, among others are 32 increasing in all parts of the world. The growth of population demands for increased 33 domestic water supplies and are the same time results with a higher consumption of water due 34 to expansion in agriculture and industry<sup>[1]</sup>. Mismanagement and lack of knowledge about 35 existing water resources and the changing climatic conditions have consequences of an 36 imbalance of supply and demand of water. 37

38 **2.0 Method** 

Rainfall data are time structured and time series analyses are often employed in the analysis of
the data. The data were subjected to seasonal autoregressive integrated moving average
(SARIMA). Modeling<sup>[3]</sup>.

#### 42 2.1 Seasonal Autoregressive Integrated Moving Average (SARIMA)

A time series is defined as a set of data collected sequentially in time. The measurements taking during an event in a time series are arranged in a proper chronological order. A time series contain of a single variable is termed as univariate. But if records of more than one variables are considered, its termed as multivariate.

#### 47 **2.2 Definitions**

- 48 An ARIMA model is an algebraic statement that describes how a time series is statistically
- 49 related to its own past. The seasonal ARIMA model incorporates both non-seasonal and seasonal
- 50 factors in a multiplicative model. One shorthand notation for the model is
- 51 ARIMA  $(p, d, q) \times (P, D, Q)_S$ ,
- 52 With p = non-seasonal AR order, d = non-seasonal differencing, q = non-seasonal MA order, P =
- seasonal AR order, D = seasonal differencing, Q = seasonal MA order, and S = time span of
- 54 repeating seasonal pattern.
- 55 Without differencing operations, the model could be written more formally as

56 
$$\Phi(B^{3})\varphi(B)(x_{t} - \mu) = \Theta(B^{3})\theta(B)w_{t}$$

57 The non-seasonal components are:

58 AR: 
$$\varphi(B) = 1 - \varphi_1 B - ... - \varphi_p B^{l}$$

- 59 MA:  $\theta(B) = 1 + \theta_1 B + \dots + \theta_q B^q$
- 60 The seasonal components are:
- 61 Seasonal AR:  $\Phi(B^S) = 1 \Phi_I B^S \dots \Phi_P B^{PS}$
- 62 Seasonal MA:  $\Theta(B^S) = 1 + \Theta_I B^S + \dots + \Theta_Q B^{QS}$

Note that on the left side of equation (1) the seasonal and non-seasonal AR components multiply
each other, and on the right side of equation (1) the seasonal and non-seasonal MA components
multiply each other<sup>[4]</sup>.

#### 66 2.3 Steps to SARIMA Modeling

The SARIMA modeling approach is concerned with finding a parsimonious seasonal ARIMA model that describes the underlying the generating processed of the observed time series. Box and Jenkins<sup>[5]</sup> established a three step modeling procedure: identification, estimation and 70 diagnostic checking steps. The identification step is to tentatively choose one or more ARIMA/SARIMA model(s) using the estimated ACF and PACF plots. The ACF plot of the AR 71 (Auto Regressive)/ SAR (Seasonal Auto Regressive) process shows an exponential decay 72 while its PACF plot truncates at lag p/seasonal lag p and diminishes to zero afterwards. The 73 ACF plot of the MA process truncates to zero after lag q/ seasonal lag q while its PACF 74 decays exponentially to zero. The two processes: AR (p)/SAR(P) and MA (q)/SMA(Q), could 75 be combined to form the ARMA (p, q)/SARMA (P, Q) process which has ACF and PACF 76 that decays exponentially to zero. The maximum likelihood estimation method could be used 77 in to estimate the parameters of the identified model(s) in the identification stage. The last 78 diagnostic checking stage involves assessing the adequacy of the identified and fitted models 79 through possible statistically significant test on the residuals to verify its consistency with the 80 white noise process e.g. the Ljung-Box test<sup>[6]</sup>. Finally, the best fitting model would be selected 81 among other satisfactory, competing models e.g. the information criteria statistics on the basis of 82 the AIC<sup>[7]</sup> and BIC<sup>[8]</sup> rule of thumb (Models with the smallest information criterion is the best) 83 and forecast is made with the model of best fit. 84

85 **3.0 Results and Discussion** 

The data collected is a secondary data of "Osun state monthly rainfall" obtained from the National Beaurea of Statistics, Abuja from year 1981-2015. The behavior of the data was observed, after which the model was used to describe and forecast the data. The estimation of the expected models was carried out using the method of likelihood, using R software. Considering the plots of the ACF and PACF of the difference and non-difference series, From table 1 below, SARIMA  $(1,0,1)\times(1,1,1)_{12}$  proved to be appropriate model with minimum Akaike information 92 criterion (AIC) of 4721.14. This statistics provides an estimate of the proportion of the total93 variation in the series that is explained by the model.

## 94 **3.1 IDENTIFICATION OF THE MODEL**

In the process of identification, the aim is to identify the possible seasonal ARIMA model that describes the data at hand. We have already induced stationary in the series as shown in the figure 1, from that, we proceeds to obtain the Autocorrelation function ACF and the Partial Autocorrelation Function PACF. The results are shown in table 1 below. After several iterations, some models were suggested among which are presented in the table below: SARIMA(1,0,1)(1,1,1)<sub>12</sub>, (1,0,2)(1,1,1)<sub>12</sub>, (1,0,1)(2,1,1)<sub>12</sub>, (102)(1,1,2)<sub>12</sub>, (2,0,1)(2,1,1)(1,2,1)<sub>12</sub>, (1,0,1)(1,1,2)<sub>12</sub> as presented in the table below;

| 102 | Table 1: Summary of The Estimate of the Candidate components |
|-----|--------------------------------------------------------------|
|     |                                                              |

| CANDIDATE | COEFFICIENT | S.E    | Sigma <sup>2</sup> | LOG        | AIC     |
|-----------|-------------|--------|--------------------|------------|---------|
| MODEL     |             |        |                    | LIKELIHOOD |         |
| AR1       | 1.1418      | 0.0200 |                    |            |         |
| AR2       | -0.1553     | 0.0213 |                    |            |         |
| MA1       | -1.0000     | 0.0131 | 5697               | -2354.59   | 4723.17 |
| SAR1      | 0.1062      | 0.0233 |                    |            |         |
| SAR2      | 0.0640      | 0.0231 |                    |            |         |
| SMA1      | -0.9292     | 0.0322 |                    |            |         |
| AR1       | 0.1897      | 0.3071 |                    |            |         |
| MA1       | -0.0374     | 0.3127 | 5775               |            | 4721.14 |
| SAR1      | 0.0893      | 0.0593 |                    | -2355.57   |         |
| SMA1      | -0.9121     | 0.0388 |                    |            |         |
| AR1       | -0.3062     | 0.8815 |                    |            |         |
| MA1       | 0.4603      | 0.8803 |                    |            |         |
| MA2       | 0.0794      | 0.1361 | 5771               | -2355.5    | 4723.01 |
| SAR1      | 0.0910      | 0.0594 |                    |            |         |
| SMA1      | -0.9135     | 0.0387 |                    |            |         |
| AR1       | 0.0645      | 0.3733 |                    |            |         |
| AR2       | 0.0176      | 0.3882 |                    |            |         |
| MA1       | 0.0868      | 0.3992 | 5738               | -2355.1    | 4724.20 |
| SAR1      | 0.5672      | 0.3728 |                    |            |         |
| SMA1      | -1.3955     | 0.3971 |                    |            |         |
| SMA2      | 0.4279      | 0.3571 |                    |            |         |
| AR1       | 0.2082      | 0.3220 |                    |            |         |
| MA1       | -0.0586     | 0.3293 |                    |            |         |
| SAR1      | 0.1020      | 0.0591 | 5742               | -2354.99   | 4721.97 |
| SAR2      | 0.0618      | 0.0571 |                    |            |         |
| SMA1      | -0.9317     | 0.0420 |                    |            |         |

| AR1  | 0.1698  | 0.3141 |      |         |        |
|------|---------|--------|------|---------|--------|
| MA1  | -0.0181 | 0.3184 |      |         |        |
| SAR1 | 0.5540  | 0.3822 | 5739 | -2355.1 | 4722.2 |
| SMA1 | -1.3815 | 0.4055 |      |         |        |
| SMA2 | 0.4152  | 0.3643 |      |         |        |

103

104 Comparing the SARIMA $(1,0,1)(1,1,1)_{12}$ ,  $(1,0,2)(1,1,1)_{12}$ ,  $(1,0,1)(2,1,1)_{12}$ ,  $(102)(1,1,2)_{12}$ , 105  $(2,0,1)(2,1,1)(1,2,1)_{12}$ ,  $(1,0,1)(1,1,2)_{12}$  models above in terms of the AIC, STD Error, log 106 likelihood, square sigma estimated and coefficient respectively, clearly prefer 107 SARIMA $(1,0,1)(1,1,1)_{12}$  model since It has smallest AIC.

108

110

# 109 Figure 1 : Frequency of Monthly Rainfall in Osun State



111 Figure 2: ACF Plot of the Frequency of Monthly Rainfall in Osun State





**Figure 3: PACF Plot of the Frequency of Monthly Rainfall in Osun State** 





From the plots in Figure1 it could be seen that the time series plot displays a wave like pattern an evidence of seasonality and no trend is observed which implies that the time series might be stationary. The sinusoidal or periodic pattern in the ACF plot is again suggesting that the series has a strong seasonal effect also, the PACF plot is neither suggesting otherwise. In order to verify the stationarity claim of the visual displays, the Augmented Dickey-Fuller<sup>[10]</sup> test was performed

121 Table 2: Unit Root and Stationarity tests of Osun State Monthly Rainfall

| Test          | Test Statistics | Lag Order | p-value |
|---------------|-----------------|-----------|---------|
| Dickey-Fuller | -13.626         | 0         | 0.01    |

122 Table 2 above depicts the Augmented Dickey-Fuller Test, the hypothesis;

- 123  $H_0$ : the series is unit root non stationary
- 124 Vs
- 125  $H_1$ : the series is unit root stationary
- 126 The decisions involved rejecting  $H_0$  if the p-value is less than the significance level of 0.05 and
- 127 accepting  $H_0$  if otherwise.
- 128 Small p-value of 0.01 less than 0.05 is in favour of the alternative hypothesis. Thus, strong
- evidence against the null hypothesis at 5% level of significance.

In order to eliminate the seasonal effect from the time series i subjected the data to aseasonal differencing and the data is re-examined visually.

132 Figure 4: Plot of diff (1) of Monthly Rainfall in Osun State



133

135

137

134 Figure 5: ACF Plot of diff (1) of the Frequency of Monthly Rainfall in Osun State



136 Figure 6: PACF Plot of diff (1) of the Frequency of Monthly Rainfall in Osun State



138 Table 3: Unit Root and Stationarity tests of Osun State Monthly Rainfall

| Test          | Test Statistics | Lag Order | p-value |
|---------------|-----------------|-----------|---------|
| Dickey-Fuller | -12.085         | 1         | 0.032   |

139 Table 3 above depicts the Augmented Dickey-Fuller Test, the hypothesis;

140 H<sub>0</sub>: the series is unit root non stationary

141 Vs

142  $H_1$ : the series is unit root stationary

143 The decisions involved rejecting  $H_0$  if the p-value is less than the significance level of 0.05 and

144 accepting  $H_0$  if otherwise.

# 145 **4.7 FORECASTING WITH THE FITTED MODEL**

146 One of the objectives of fitting SARIMA model to data is to be able to forecast its future values.

147 The model that best fits the data is SARIMA  $(1,0,1)\times(1,1,1)_{12}$ . Consider the general SARIMA

case. The fitted model is therefore usd to forecast for 16 years, from 2016-2030.

| 149 | Point Fo | recast Lo 80 | 0 Hi 80   | Lo 9:    | 5 Hi 95     | 5        |
|-----|----------|--------------|-----------|----------|-------------|----------|
| 150 | Jan 2016 | 15.36211     | -82.25182 | 112.9768 | -133.925716 | 164.6507 |
| 151 | Feb 2016 | 30.07109     | -68.75338 | 128.8956 | -121.067900 | 181.2101 |
| 152 | Mar 2016 | 87.03243     | -11.83149 | 185.8963 | -64.166884  | 238.2317 |
| 153 | Apr 2016 | 135.47231    | 36.60574  | 234.3389 | -15.731056  | 286.6757 |
| 154 | May 2016 | 217.30619    | 118.43930 | 316.1731 | 66.102330   | 368.5101 |
| 155 | Jun 2016 | 221.34064    | 122.47370 | 320.2076 | 70.136708   | 372.5446 |
| 156 | Jul 2016 | 180.92120    | 82.05425  | 279.7881 | 29.717249   | 332.1251 |
| 157 | Aug 2016 | 156.42678    | 57.55984  | 255.2937 | 5.222836    | 307.6307 |
| 158 | Sep 2016 | 215.29227    | 116.42532 | 314.1592 | 64.088317   | 366.4962 |
| 159 | Oct 2016 | 202.80709    | 103.94012 | 301.6741 | 51.603108   | 354.0111 |
| 160 | Nov 2016 | 68.80167     | -30.06542 | 167.6688 | -82.402493  | 220.0058 |
| 161 | Dec 2016 | 53.45305     | -45.41474 | 152.3208 | -97.752177  | 204.6583 |
| 162 | Jan 2017 | 22.87171     | -77.59039 | 123.3338 | -130.771816 | 176.5152 |

| 163 | Feb 2017 | 33.48983  | -67.02443 | 134.0041 | -120.233470 | 187.2131 |
|-----|----------|-----------|-----------|----------|-------------|----------|
| 164 | Mar 2017 | 84.42676  | -16.09105 | 184.9446 | -69.301961  | 238.1555 |
| 165 | Apr 2017 | 136.37262 | 35.85437  | 236.8909 | -17.356773  | 290.1020 |
| 166 | May 2017 | 207.18579 | 106.66748 | 307.7041 | 53.456301   | 360.9153 |
| 167 | Jun 2017 | 220.21331 | 119.69499 | 320.7316 | 66.483810   | 373.9428 |
| 168 | Jul 2017 | 182.39962 | 81.88129  | 282.9179 | 28.670109   | 336.1291 |
| 169 | Aug 2017 | 149.68948 | 49.17116  | 250.2078 | -4.040030   | 303.4190 |
| 170 | Sep 2017 | 212.07930 | 111.56098 | 312.5976 | 58.349791   | 365.8088 |
| 171 | Oct 2017 | 199.83608 | 99.31773  | 300.3544 | 46.106535   | 353.5656 |
| 172 | Nov 2017 | 67.77333  | -32.74517 | 168.2918 | -85.956453  | 221.5031 |
| 173 | Dec 2017 | 58.44459  | -42.07480 | 158.9640 | -95.286561  | 212.1758 |
| 174 | Jan 2018 | 23.24208  | -78.49374 | 124.9779 | -132.349433 | 178.8336 |
| 175 | Feb 2018 | 34.57036  | -67.20853 | 136.3493 | -121.087027 | 190.2277 |
| 176 | Mar 2018 | 83.61879  | -18.16338 | 185.4010 | -72.043613  | 239.2812 |
| 177 | Apr 2018 | 135.06850 | 33.28591  | 236.8511 | -20.594546  | 290.7316 |
| 178 | May 2018 | 202.12505 | 100.34239 | 303.9077 | 46.461902   | 357.7882 |
| 179 | Jun 2018 | 219.42295 | 117.64028 | 321.2056 | 63.759786   | 375.0861 |
| 180 | Jul 2018 | 186.30029 | 84.51762  | 288.0830 | 30.637129   | 341.9635 |
| 181 | Aug 2018 | 136.99492 | 35.21224  | 238.7776 | -18.668248  | 292.6581 |
| 182 | Sep 2018 | 203.84346 | 102.06079 | 305.6261 | 48.180291   | 359.5066 |
| 183 | Oct 2018 | 199.05576 | 97.27305  | 300.8385 | 43.392541   | 354.7190 |
| 184 | Nov 2018 | 66.53447  | -35.24841 | 168.3174 | -89.129019  | 222.1980 |
| 185 | Dec 2018 | 61.65131  | -40.13266 | 163.4353 | -94.013840  | 217.3165 |

| 186 | Jan 2019 | 23.94533  | -78.40262 | 126.2933 | -132.582346 | 180.4730 |
|-----|----------|-----------|-----------|----------|-------------|----------|
| 187 | Feb 2019 | 35.09976  | -67.27187 | 137.4714 | -121.464135 | 191.6637 |
| 188 | Mar 2019 | 83.59608  | -18.77772 | 185.9699 | -72.971136  | 240.1633 |
| 189 | Apr 2019 | 135.20616 | 32.83206  | 237.5803 | -21.361512  | 291.7738 |
| 190 | May 2019 | 201.22227 | 98.84812  | 303.5964 | 44.654520   | 357.7900 |
| 191 | Jun 2019 | 219.49075 | 117.11659 | 321.8649 | 62.922989   | 376.0585 |
| 192 | Jul 2019 | 186.99776 | 84.62360  | 289.3719 | 30.430001   | 343.5655 |
| 193 | Aug 2019 | 135.52501 | 33.15085  | 237.8992 | -21.042751  | 292.0928 |
| 194 | Sep 2019 | 203.03491 | 100.66076 | 305.4091 | 46.467149   | 359.6027 |
| 195 | Oct 2019 | 199.01391 | 96.63972  | 301.3881 | 42.446099   | 355.5817 |
| 196 | Nov 2019 | 66.56296  | -35.81142 | 168.9374 | -90.005152  | 223.1311 |
| 197 | Dec 2019 | 62.48961  | -39.88596 | 164.8652 | -94.080322  | 219.0595 |
| 198 | Jan 2020 | 24.25371  | -78.62394 | 127.1314 | -133.084081 | 181.5915 |
| 199 | Feb 2020 | 35.43322  | -67.46663 | 138.3331 | -121.938523 | 192.8050 |
| 200 | Mar 2020 | 83.76050  | -19.14149 | 186.6625 | -73.614511  | 241.1355 |
| 201 | Apr 2020 | 135.35698 | 32.45470  | 238.2593 | -22.018483  | 292.7324 |
| 202 | May 2020 | 201.04265 | 98.14032  | 303.9450 | 43.667115   | 358.4182 |
| 203 | Jun 2020 | 219.66535 | 116.76301 | 322.5677 | 62.289804   | 377.0409 |
| 204 | Jul 2020 | 187.51743 | 84.61510  | 290.4198 | 30.141889   | 344.8930 |
| 205 | Aug 2020 | 134.83001 | 31.92767  | 237.7323 | -22.545539  | 292.2056 |
| 206 | Sep 2020 | 202.67424 | 99.77190  | 305.5766 | 45.298687   | 360.0498 |
| 207 | Oct 2020 | 199.17805 | 96.27568  | 302.0804 | 41.802451   | 356.5537 |
| 208 | Nov 2020 | 66.70668  | -36.19591 | 169.6093 | -90.669246  | 224.0826 |

| 209 | Dec 2020 | 62.98184 | -39.92203 | 165.8857 | -94.396044 | 220.3597 |
|-----|----------|----------|-----------|----------|------------|----------|
| 210 |          |          |           |          |            |          |

from that, i proceed to obtain the Autocorrelation function ACF and the Partial Autocorrelation
Function PACF. After several iterations, some models were suggested.
The estimation of the expected models was carried out using the method of likelihood, using R
software. Considering the plots of the ACF and PACF of the difference and non difference
series, from figure 3 and 4 above, SARIMA (1, 0, 1) × (1, 1, 1)<sub>12</sub> proved to be appropriate model
with minimum Akaike information criterion (AIC) of 4721.14. This statistics provides an
estimate of the proportion of the total variation in the series that is explained by the model.

In the process of identification, the aim is to identify the possible seasonal ARIMA model that

describes the data at hand. I have already induced stationary in the series as shown in the figure 7

220

211

212

## 221 Table 4 fitted SARIMA (1,0,1)(1,1,1)<sub>12</sub> model

| Sigma <sup>2</sup> | LOG LIKELIHOOD | AIC     |
|--------------------|----------------|---------|
|                    |                |         |
| 5771               | -2355.5        | 4723.01 |
|                    |                |         |

222

The model validation is concerned with checking the residual of the model to determine if the model contains any systematic pattern which can be removed to improve on the selected model may appear to be the best among a number of models considered it become necessary to do diagnostic checking to verify that the model is adequate.

227

228

229



The plots Figure 7 above comprise of the time plot of the residuals, ACF and the PACF plot of 232 the residuals respectively. The plot clearly shows that the residuals appear to be randomly 233 scattered, no evidence exists that the error terms are correlated with one another as well as no 234 evidence of existence of an outlier. The residuals or errors are therefore conceived of as an 235 independently and identically distributed (i.i.d) sequence with a constant variance and a zero 236 mean. The ACF and the PACF plot of the residuals show no evidence of a significant spike 237 indicating that the residuals seem to be uncorrelated. Therefore, the SARIMA  $(1,0,1)(1,1,1)_{12}$ 238 model appears to fit well so we can use this model to make forecasts. 239

240 Figure 8 Forecasting Plot

231



#### 242 4. CONCLUSION

In this study, the frequency, not the amount of monthly rainfall from 1981 to 2015 obtained from 243 the National Beaurea of Statistics, Abuja is analysed using seasonal time series modeling 244 approach. The plot of the original data shows that the time series is stationary and has evidence 245 of seasonality. The augmented Dickey Fuller test confirmed the stationarity claim. Seasonal 246 differencing was done to remove the seasonal effect. SARIMA modeling of the data was upheld 247 after duly following the conventional three steps of identification. This resulted in obtaining 248 SARIMA  $(1,0,1)(2,1,1)_{12}$ . However, the seasonal auto regressive parameter was found to be 249 250 statistically insignificant and this consequently led to a new SARIMA  $(1,0,1)(1,1,1)_{12}$  that best fit the data and was used to make forecast. 251

252 **References** 

- IPCC (2011). Intergovernmental Panel on Climate change. Third Assessment Report:
   Climate change 2001. WG1: The scientific basis, summary for policymakers, Geneva,
   Switzerland.
- Adejuwon, J.O., Balogun, E.E. and Adejuwon, S.A. (1990). On the annual and seasonal
   pattern of rainfall fluctuations in sub-Saharan West Africa. International Journal of
   Climatology, 10: 839–848.

| 259 | 3. | Adejuwon, J.O., Balogun, E.E. and Adejuwon, S.A. (1990). On the annual and seasonal      |
|-----|----|------------------------------------------------------------------------------------------|
| 260 |    | pattern of rainfall fluctuations in sub-Saharan West Africa. International Journal of    |
| 261 |    | Climatology, 10: 839-848.                                                                |
| 262 | 4. | Box G.E.P. and Jenkins G.M. Time series Analysis, Forecasting and Control . San          |
| 263 |    | Francisco: Holden Day, 1976.                                                             |
| 264 | 5. | J. Lee, "Univariate time series modeling and forecasting (Box-Jenkins Method)", Econ     |
| 265 |    | 413, lecture 4.                                                                          |
| 266 | 6. | Ljung G. M. and Box G. E. P. On a Measure of Lack of Fit in Time Series Models.          |
| 267 |    | Biometrika 1978 Vol. vol. 65 pp. 297.                                                    |
| 268 | 7. | Akaike H. A New Look at the Statistical Model Identification. Annals of Statistics: IEEE |
| 269 |    | Trans. Automat. Contr., 1974 Vols. Ac-19 pp. 716-723.                                    |
| 270 | 8. | Schwarz G. Estimating the Dimension of a Model. Annals of Statistics 1978 Vol. 6.        |
| 271 |    | - pp. 461-464.                                                                           |
| 272 | 9. | R Development Core Team R: A language and environment for statistical computing // R     |
| 273 |    | Foundation for Statistical Computing Vienna, Austria: [s.n.], 2014 3-900051-07-0.        |
| 274 | 10 | . Dickey D. A. and Fuller W.A. Autoregressive Time Series with a Unit Root. Journal of   |
| 275 |    | American Statistical Association 1979 Vol. 74 pp. 427-431.                               |
|     |    |                                                                                          |
|     |    |                                                                                          |
|     |    |                                                                                          |
|     |    |                                                                                          |