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Abstract  7 

A Seasonal Autoregressive Integrated Moving Average (SARIMA) is proposed for Osun State 8 

monthly rainfall data, the analysis was based on probability time series modeling approach. The 9 

Seasonal Autoregressive Integrated Moving Average (SARIMA) model was estimated and the 10 

best fitted SARIMA model was used to obtain the rainfall pattern. The Plot of the original data 11 

shows that the time series is stationary and the Augmented Dickey-Fuller test did not suggest 12 

otherwise. The graph further displays evidence of seasonality and it was removed by seasonal 13 

differencing. The plots of the ACF and PACF show spikes at seasonal lags respectively, 14 

suggesting SARIMA (1, 0, 1) (2, 1, 1). Though the diagnostic check on the model favoured the 15 

fitted model, the Auto Regressive parameter was found to be statistically insignificant and this 16 

led to a reduced SARIMA (1, 0, 1) (1, 1, 1)  model that best fit the data and was used to make 17 

forecast. 18 
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1.0 Introduction  20 

The highly variable nature of rainfall as compared with the relatively stable nature  of  the  21 

temperature  appears  to  have  imbued  more  relevance  to  the former as the major component 22 

in the study of climate in a particular region. Then,  there  is  need  to  understand the dynamical 23 



 

 

processes  that  determine changes that occur in climate system, though this has been very 24 

difficult and challenging  to  climate  scientists  till  today
[2]

.  25 

The change has significantly contributed to the increase  of  global  disasters  caused  by  26 

weather,  climate  and  water  related hazards as both developed and developing countries of the 27 

world are bearing the  burden  of  repeated  floods,  temperature  extremes  and  storms in which 28 

Nigeria is not left out. Water resources are essential renewable resources that are the basis for 29 

existence and development of a society. Proper utilization of these resources requires assessment 30 

and management of the quantity and quality of the water resources both partially and temporally.  31 

Water  crises  caused  by shortages, floods and diminishing water quality, among others are  32 

increasing  in  all  parts  of  the  world.  The  growth  of population  demands  for  increased  33 

domestic  water  supplies and are the same time results with a higher consumption of water  due  34 

to  expansion  in  agriculture  and  industry
[1]

. Mismanagement and lack of knowledge about 35 

existing water resources  and  the  changing  climatic  conditions  have consequences  of  an  36 

imbalance  of  supply  and  demand  of water.  37 

2.0 Method  38 

Rainfall data are time structured and time series analyses are often employed in the analysis of 39 

the data. The data were subjected to seasonal autoregressive integrated moving average 40 

(SARIMA). Modeling
 [3]

. 41 

2.1 Seasonal Autoregressive Integrated Moving Average (SARIMA) 42 

A  time  series  is  defined  as  a  set  of  data  collected sequentially  in  time. The measurements 43 

taking during an event in a time series are arranged in a proper chronological order. A time series 44 

contain of a single variable is termed as univariate. But if records of more than one variables are 45 

considered, its termed as multivariate. 46 



 

 

2.2 Definitions  47 

An ARIMA model is an algebraic statement that describes how a time series is statistically 48 

related to its own past. The seasonal ARIMA model incorporates both non-seasonal and seasonal 49 

factors in a multiplicative model.  One shorthand notation for the model is 50 

ARIMA (p, d, q) × (P, D, Q)S, 51 

With p = non-seasonal AR order, d = non-seasonal differencing, q = non-seasonal MA order, P = 52 

seasonal AR order, D = seasonal differencing, Q = seasonal MA order, and S = time span of 53 

repeating seasonal pattern. 54 

Without differencing operations, the model could be written more formally as 55 

Φ(B
S
)φ(B)(xt - µ) = Θ(B

S
)θ(B)wt   56 

The non-seasonal components are: 57 

AR:  φ(B) = 1 - φ1B - ... - φpB
p
   58 

MA:  θ(B) = 1 + θ1B + ... + θqB
q      

 59 

The seasonal components are: 60 

Seasonal AR:  Φ(B
S
) = 1 - Φ1B

S
 - ... - ΦPB

PS
     61 

Seasonal MA:  Θ(B
S
) = 1 + Θ1B

S
 + ... + ΘQB

QS    
 62 

Note that on the left side of equation (1) the seasonal and non-seasonal AR components multiply 63 

each other, and on the right side of equation (1) the seasonal and non-seasonal MA components 64 

multiply each other
[4]

. 65 

2.3 Steps to SARIMA Modeling 66 

The SARIMA modeling approach is concerned with finding a parsimonious seasonal ARIMA 67 

model that describes the underlying the generating processed of the observed time series.  Box 68 

and Jenkins
[5]

 established a three step modeling procedure: identification, estimation and 69 



 

 

diagnostic checking steps. The identification step is to tentatively choose one or more 70 

ARIMA/SARIMA model(s) using the estimated ACF and PACF plots. The ACF plot of the AR 71 

(Auto Regressive)/ SAR (Seasonal Auto Regressive) process  shows  an  exponential  decay  72 

while  its  PACF  plot truncates  at  lag p/seasonal  lag p and  diminishes  to  zero afterwards. The  73 

ACF  plot  of  the  MA process  truncates  to zero  after  lag  q/  seasonal  lag q while  its  PACF  74 

decays exponentially to zero. The two processes: AR (p)/SAR(P) and  MA (q)/SMA(Q),  could  75 

be  combined  to  form  the ARMA (p, q)/SARMA (P, Q) process which has ACF and PACF  76 

that  decays  exponentially  to  zero.  The maximum likelihood estimation method could be used 77 

in to estimate the parameters of the identified model(s) in the identification stage. The last 78 

diagnostic checking stage involves assessing the  adequacy  of  the  identified  and  fitted  models  79 

through possible statistically significant test on the residuals to verify its  consistency  with  the  80 

white  noise  process  e.g.  the Ljung-Box test
[6]

. Finally, the best fitting model would be selected 81 

among other satisfactory, competing models e.g. the information criteria statistics on the basis of 82 

the AIC
[7]

 and BIC
[8]

 rule of thumb (Models with the smallest information criterion is the best) 83 

and forecast is made with the model of best fit.  84 

3.0 Results and Discussion 85 

The data collected is a secondary data of “Osun state monthly rainfall” obtained from the 86 

National Beaurea of Statistics, Abuja from year 1981-2015. The behavior of the data was 87 

observed, after which the model was used to describe and forecast the data. The estimation of the 88 

expected models was carried out using the method of likelihood, using R software. Considering 89 

the plots of the ACF and PACF of the difference and non-difference series, From table 1 below, 90 

SARIMA (1,0,1)×(1,1,1)12 proved to be appropriate model with minimum Akaike information 91 



 

 

criterion (AIC) of 4721.14. This statistics provides an estimate of the proportion of the total 92 

variation in the series that is explained by the model. 93 

3.1 IDENTIFICATION OF THE MODEL 94 

In the process of identification, the aim is to identify the possible seasonal ARIMA model that 95 

describes the data at hand. We have already induced stationary in the series as shown in the 96 

figure 1, from that, we proceeds to obtain the Autocorrelation function ACF and the Partial 97 

Autocorrelation Function PACF. The results are shown in table 1 below.  After several iterations, 98 

some models were suggested among which are presented in the table below: 99 

SARIMA(1,0,1)(1,1,1)12, (1,0,2)(1,1,1)12, (1,0,1)(2,1,1)12, (102)(1,1,2)12, (2,0,1)(2,1,1)(1,2,1)12, 100 

(1,0,1)(1,1,2)12 as presented in the table below; 101 

Table 1: Summary of The Estimate of the Candidate components 102 

CANDIDATE 

MODEL 

COEFFICIENT S.E Sigma
2
 LOG 

LIKELIHOOD 

AIC 

AR1 

AR2 

MA1 

SAR1 

SAR2 

SMA1 

1.1418 

-0.1553 

-1.0000 

0.1062 

0.0640 

-0.9292 

0.0200 

0.0213 

0.0131 

0.0233 

0.0231 

0.0322 

 

 

5697 

 

 

-2354.59 

 

 

4723.17 

AR1 

MA1 

SAR1 

SMA1 

0.1897 

-0.0374 

0.0893 

-0.9121 

0.3071 

0.3127 

0.0593 

0.0388 

 

5775 

 

 

-2355.57 

 

4721.14 

AR1 

MA1 

MA2 

SAR1 

SMA1 

-0.3062 

0.4603 

0.0794 

0.0910 

-0.9135 

0.8815 

0.8803 

0.1361 

0.0594 

0.0387 

 

 

5771 

 

 

-2355.5 

 

 

4723.01 

AR1 

AR2 

MA1 

SAR1 

SMA1 

SMA2 

0.0645 

0.0176 

0.0868 

0.5672 

-1.3955 

0.4279 

0.3733 

0.3882 

0.3992 

0.3728 

0.3971 

0.3571 

 

 

5738 

 

 

-2355.1 

 

 

4724.20 

AR1 

MA1 

SAR1 

SAR2 

SMA1 

0.2082 

-0.0586 

0.1020 

0.0618 

-0.9317 

0.3220 

0.3293 

0.0591 

0.0571 

0.0420 

 

 

5742 

 

 

-2354.99 

 

 

4721.97 



 

 

AR1 

MA1 

SAR1 

SMA1 

SMA2 

0.1698 

-0.0181   

 0.5540 

 -1.3815 

 0.4152   

0.3141  

0.3184   

 0.3822    

 0.4055 

 0.3643  

 

 

5739 

 

 

 

 -2355.1 

 

 

4722.2 

 

 103 

Comparing the SARIMA(1,0,1)(1,1,1)12, (1,0,2)(1,1,1)12, (1,0,1)(2,1,1)12, (102)(1,1,2)12, 104 

(2,0,1)(2,1,1)(1,2,1)12, (1,0,1)(1,1,2)12 models above in terms of the AIC, STD Error,  log 105 

likelihood, square sigma estimated and  coefficient respectively, clearly prefer 106 

SARIMA(1,0,1)(1,1,1)12 model since It has
 
smallest AIC. 107 

 108 

Figure 1 : Frequency of Monthly Rainfall in Osun State 109 

 110 

Figure 2: ACF Plot of the Frequency of Monthly Rainfall in Osun State 111 

 112 

Figure 3: PACF Plot of the Frequency of Monthly Rainfall in Osun State 113 
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 114 

From the plots in Figure1 it could be seen that the time series  plot  displays  a  wave  like  115 

pattern  an  evidence  of seasonality and no trend is observed which implies that the time series 116 

might be stationary. The sinusoidal or periodic pattern in the ACF plot is again suggesting that 117 

the series has a strong seasonal effect also, the PACF plot is neither suggesting otherwise.  In  118 

order  to  verify  the  stationarity  claim  of  the visual  displays, the  Augmented  Dickey-119 

Fuller
[10]

 test was performed 120 

Table 2: Unit Root and Stationarity tests of Osun State Monthly Rainfall 121 

Test  Test Statistics Lag Order p-value 

Dickey-Fuller -13.626 0 0.01 

Table 2 above depicts the Augmented Dickey-Fuller Test, the hypothesis; 122 

H0: the series is unit root non stationary 123 

Vs 124 

H1: the series is unit root stationary 125 

The decisions involved rejecting H0 if the p-value is less than the significance level of 0.05 and 126 

accepting H0 if otherwise. 127 

Small p-value of 0.01 less than 0.05 is in favour of the alternative hypothesis. Thus, strong 128 

evidence against the null hypothesis at 5% level of significance.   129 
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In  order  to  eliminate  the  seasonal  effect  from  the  time series i subjected the data to a  130 

seasonal  differencing and  the  data  is  re-examined visually.  131 

Figure 4: Plot of diff (1) of Monthly Rainfall in Osun State 132 

 133 

Figure 5: ACF Plot of diff (1) of the Frequency of Monthly Rainfall in Osun State 134 

 135 

Figure 6: PACF Plot of diff (1) of the Frequency of Monthly Rainfall in Osun State 136 

 137 

Table 3: Unit Root and Stationarity tests of Osun State Monthly Rainfall 138 

Test  Test Statistics Lag Order p-value 

Dickey-Fuller -12.085 1 0.032 

Table 3 above depicts the Augmented Dickey-Fuller Test, the hypothesis; 139 
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H0: the series is unit root non stationary 140 

Vs 141 

H1: the series is unit root stationary 142 

The decisions involved rejecting H0 if the p-value is less than the significance level of 0.05 and 143 

accepting H0 if otherwise. 144 

4.7 FORECASTING WITH THE FITTED MODEL 145 

One of the objectives of fitting SARIMA model to data is to be able to forecast its future values. 146 

The model that best fits the data is SARIMA (1,0,1)×(1,1,1)12 . Consider the general SARIMA 147 

case. The fitted model is therefore usd to forecast for 16 years, from 2016-2030.  148 

        Point Forecast      Lo 80         Hi 80        Lo 95          Hi 95 149 

Jan 2016  15.36211  -82.25182 112.9768 -133.925716 164.6507 150 

Feb 2016 30.07109 -68.75338 128.8956  -121.067900 181.2101 151 

Mar 2016 87.03243 -11.83149 185.8963 -64.166884 238.2317 152 

Apr 2016 135.47231 36.60574 234.3389 -15.731056 286.6757 153 

May 2016 217.30619 118.43930 316.1731 66.102330 368.5101 154 

Jun 2016 221.34064 122.47370 320.2076 70.136708 372.5446 155 

Jul 2016 180.92120 82.05425 279.7881 29.717249 332.1251 156 

Aug 2016 156.42678 57.55984 255.2937 5.222836 307.6307 157 

Sep 2016 215.29227 116.42532 314.1592 64.088317 366.4962 158 

Oct 2016 202.80709 103.94012 301.6741 51.603108 354.0111 159 

Nov 2016 68.80167 -30.06542 167.6688 -82.402493 220.0058 160 

Dec 2016 53.45305 -45.41474 152.3208 -97.752177 204.6583 161 

Jan 2017  22.87171 -77.59039 123.3338 -130.771816  176.5152 162 



 

 

Feb 2017 33.48983 -67.02443 134.0041 -120.233470 187.2131 163 

Mar 2017 84.42676 -16.09105 184.9446 -69.301961 238.1555 164 

Apr 2017 136.37262 35.85437 236.8909 -17.356773 290.1020 165 

May 2017 207.18579 106.66748 307.7041 53.456301 360.9153 166 

Jun 2017 220.21331 119.69499 320.7316 66.483810 373.9428 167 

Jul 2017 182.39962 81.88129 282.9179 28.670109 336.1291 168 

Aug 2017 149.68948 49.17116 250.2078 -4.040030        303.4190 169 

Sep 2017 212.07930 111.56098 312.5976 58.349791       365.8088 170 

Oct 2017 199.83608 99.31773 300.3544 46.106535 353.5656 171 

Nov 2017 67.77333 -32.74517 168.2918 -85.956453 221.5031 172 

Dec 2017 58.44459 -42.07480 158.9640 -95.286561 212.1758 173 

Jan 2018 23.24208 -78.49374 124.9779 -132.349433 178.8336 174 

Feb 2018 34.57036 -67.20853 136.3493 -121.087027 190.2277 175 

Mar 2018 83.61879 -18.16338 185.4010 -72.043613 239.2812 176 

Apr 2018 135.06850 33.28591 236.8511  -20.594546 290.7316 177 

May 2018 202.12505 100.34239 303.9077 46.461902 357.7882 178 

Jun 2018 219.42295 117.64028 321.2056 63.759786 375.0861 179 

Jul 2018 186.30029  84.51762 288.0830 30.637129 341.9635 180 

Aug 2018 136.99492  35.21224 238.7776  -18.668248 292.6581 181 

Sep 2018 203.84346 102.06079 305.6261 48.180291 359.5066 182 

Oct 2018 199.05576  97.27305 300.8385 43.392541 354.7190 183 

Nov 2018 66.53447 -35.24841 168.3174  -89.129019 222.1980 184 

Dec 2018 61.65131 -40.13266 163.4353 -94.013840 217.3165 185 



 

 

Jan 2019 23.94533 -78.40262 126.2933 -132.582346 180.4730 186 

Feb 2019 35.09976 -67.27187 137.4714 -121.464135 191.6637 187 

Mar 2019 83.59608 -18.77772 185.9699  -72.971136 240.1633 188 

Apr 2019 135.20616  32.83206 237.5803 -21.361512 291.7738 189 

May 2019 201.22227 98.84812 303.5964 44.654520 357.7900 190 

Jun 2019 219.49075 117.11659 321.8649    62.922989  376.0585 191 

Jul 2019 186.99776 84.62360 289.3719 30.430001 343.5655 192 

Aug 2019 135.52501 33.15085 237.8992 -21.042751 292.0928 193 

Sep 2019 203.03491 100.66076 305.4091 46.467149 359.6027 194 

Oct 2019 199.01391 96.63972 301.3881 42.446099 355.5817 195 

Nov 2019 66.56296 -35.81142 168.9374 -90.005152 223.1311 196 

Dec 2019 62.48961 -39.88596 164.8652 -94.080322 219.0595 197 

Jan 2020 24.25371 -78.62394 127.1314 -133.084081 181.5915 198 

Feb 2020 35.43322 -67.46663 138.3331 -121.938523 192.8050 199 

Mar 2020 83.76050 -19.14149 186.6625 -73.614511 241.1355 200 

Apr 2020 135.35698 32.45470 238.2593 -22.018483 292.7324 201 

May 2020 201.04265 98.14032 303.9450 43.667115 358.4182 202 

Jun 2020 219.66535 116.76301 322.5677 62.289804 377.0409 203 

Jul 2020 187.51743 84.61510 290.4198  30.141889 344.8930 204 

Aug 2020 134.83001 31.92767 237.7323 -22.545539 292.2056 205 

Sep 2020 202.67424  99.77190 305.5766   45.298687 360.0498 206 

Oct 2020 199.17805 96.27568 302.0804 41.802451 356.5537 207 

Nov 2020 66.70668 -36.19591 169.6093 -90.669246 224.0826 208 



 

 

Dec 2020 62.98184 -39.92203 165.8857  -94.396044 220.3597 209 

 210 

In the process of identification, the aim is to identify the possible seasonal ARIMA model that 211 

describes the data at hand. I have already induced stationary in the series as shown in the figure 7 212 

from that, i proceed to obtain the Autocorrelation function ACF and the Partial Autocorrelation 213 

Function PACF. After several iterations, some models were suggested. 214 

The estimation of the expected models was carried out using the method of likelihood, using R 215 

software. Considering the plots of the ACF and PACF of the difference and non difference 216 

series, from figure 3 and 4 above, SARIMA (1, 0, 1) × (1, 1, 1)12 proved to be appropriate model 217 

with minimum Akaike information criterion (AIC) of 4721.14. This statistics provides an 218 

estimate of the proportion of the total variation in the series that is explained by the model. 219 

 220 

Table 4 fitted SARIMA (1,0,1)(1,1,1)12 model 221 

Sigma
2
 LOG LIKELIHOOD AIC 

5771 -2355.5 4723.01 

 222 

The model validation is concerned with checking the residual of the model to determine if the 223 

model contains any systematic pattern which can be removed to improve on the selected model 224 

may appear to be the best among a number of models considered it become necessary to do 225 

diagnostic checking to verify that the model is adequate. 226 

 227 

 228 

 229 



 

 

Figure 7 Model Verification Plot 230 

 231 

The plots Figure 7 above comprise of the time plot of the residuals, ACF and the PACF plot of 232 

the residuals respectively. The plot clearly shows that the residuals appear to be randomly 233 

scattered, no evidence exists that the error terms are correlated with one another as well as no 234 

evidence of existence of an outlier. The residuals or errors are therefore conceived of as an 235 

independently and identically distributed (i.i.d) sequence with a constant variance and a zero 236 

mean. The ACF and the PACF plot of the residuals show no evidence of a significant spike 237 

indicating that the residuals seem to be uncorrelated. Therefore, the SARIMA (1,0,1)(1,1,1)12 238 

model appears to fit well so we can use this model to make forecasts. 239 

Figure 8 Forecasting Plot 240 
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 241 

4. CONCLUSION 242 

In this study, the frequency, not the amount of monthly rainfall from 1981 to 2015 obtained from 243 

the National Beaurea of Statistics, Abuja is analysed using seasonal time series modeling 244 

approach.  The plot of the original data shows that the time series is stationary and has evidence 245 

of seasonality. The augmented Dickey Fuller test confirmed the stationarity claim. Seasonal 246 

differencing was done to remove the seasonal effect. SARIMA modeling of the data was upheld 247 

after duly following the conventional three steps of identification. This resulted in obtaining 248 

SARIMA (1,0,1)(2,1,1)12. However, the seasonal auto regressive parameter was found to be 249 

statistically insignificant and this consequently led to a new SARIMA (1,0,1)(1,1,1)12 that best fit 250 

the data and was used to make forecast.  251 
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