Taxonomical investigation on some species of genus Allium based on the pollen <u>morphologygrain</u> micromorphology

ABSTRACT

1

2 3

4 5 6.

Aims: The main aim of this research was to investigate the micromorphological characteristics of the pollen grains in seven species from genus *Allium* belong to three subgenera including *Melanocrommyum*, *Polyprason* and *Cepa* (seven sections).

Methodology: The pollen grains were examined by using Light Microscopy (LM), Scanning Electron Microscopy (SEM) and the pollen grains of one species under TEM (Transmission Electron Microscopy).

Results: The pollen grains were oblate and medium in shape and size. The pollen ornamentation of exine surface, exine ornamentation on sulcus edge, number of exine surface lumina and the state of pollen grain apex in the examined species were different. Semitectate and columellate ectexine with discontinuous endexine were seen in the pollen wall structure (sporoderm).

Conclusion: The dendrogram obtained from the pollen characters in SEM observations by using the numerical taxonomy system (NTSYS) software confirmed phylogram of the studied species obtained from recent phylogenetic research. Our palynological dendrogram can be used for segregation the sections and subgenera taxonomical levels in the studied species of genus *Allium*.

Keywords: Allium, Amaryllidaceae, Monocotyledons, Palynology, Phylogeny, Taxonomy

1. INTRODUCTION

12 13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

The genus *Allium* is one of the largest Monocotyledons with a wide dispersion in central and south-east Asia, where the species of this genus constitutes a great part of herbaceous societies [1, 2]. Approximately, fifty species of this genus are planted extensively or jn local level that economically have great importance. Some of the wild species of this genus are used as edible, medicinal and even decorative plants. Moreover, the wild species of this genus have valuable potential for supplying of human consuming [3].

The taxonomical position of *Allium* as the polymorph genus is sophisticated [4, 5]. Lately, the phylogentical and biogeographical examination on this genus has been done been done on the endemic species on Cehina [1] and confirmed monophyly in *Allium* by using the phylogenetic analysis of molecular data (ITS nuclear marker and *rps16* chloroplast marker); but, the obtained phylogram from the phylogenetic analysis wasn't confirmed for some subgenera. In their research, three main monophyletic groups were specified: the first clade includes subgenera *Nectaroscordum*, *Amerallium* and *Microscordum*; the second clade includes subgenera *Caloscordum*, *Anguinum*, *Vvedenskya*, *Porphyroprason* and *Melanocrommyum* and the third clade includes subgenera *Butomissa*, *Cyathophora*, *Rhizirideum*, *Allium*, *Reticulatobulbosa* and *Polyprason* [1].

The palynological study of genus *Allium* is sophisticated but driven characteristics from some researches are able to classify taxonomical level on this genus. Majority of these studies were investigated the following characters: exine ornamentation to specify position of the tribe *Allieae* [6, 7], being single sulcus and having extensive sulcus as a predominant morphological pollen character in the genus *Allium* is determined [8]. [9] examined the

Comment [f1]: Why not cite the family AMARYLLIDACEAE in introduction? And never in text?

Formatted: Highlight
Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

37	species belong to sections Codonoprasum and Allium and specified the homogeneity of
38	sulcus and pollen grain ornamentation in the genus Allium. Moreover, they indicated that
39	some morphological characters of the pollen grain such as sulcus and presence or lack of
40	operculum that have taxonomic importance in the section level. [2] examined the pollen
41	grain morphology in some species of Allium (six sections including Molium, Scorodon,
42	Brevispatha, Codonoprasum, Allium and Melanocrommyum) and characterized the shape
43	of pollen grains was prolate and subprolate. Also, in all species extensive sulcus and the
44	smallest and largest pollen grains are belonged to A. guttatum (section Allium) and A.
45	roseum (section Molium), respectively. Pollen grains from 30 Allium taxa belonging to 15
46	sections were recognized in Iran [10]. In this research, the pollens were heteropolar,
47	peroblate to suboblate shape, rugulate to microrugulate, perforate to striate in subgenus
48	Melanocrommyum and striate exine ornamentation [10].

According to result of [11], the morphological character of sulcus in investigated species in 49 Iran-was observed in genus Allium, and section Allium that this character wasn't observed 50 aboutin the other sections. [12] observed an extensive sulcus from the beginning to the end 51 of the pollen grains in all taxa in sections of Rhizirideum, Codonoprasum and Allium. In 52 ultrastructure wall of the pollen grains, the exine semitectate and simplicolumellate were 53 observed in all investigated sections. In addition, the exine ornamentation in these sections 54 and related species were heterogeneous and weren't synchronize in classification of these 55 sections and three exine ornamentation including striate-perforate, striate-rugulate-56 57 perforate and rugulate-perforate were observed in these species. They also stated that availability of operculum as an apomorphic character and narrow endexine layer as a 58 taxonomic character in the genus Allium determined in the sections of Rhizirideum, 59 Codonoprasum and Allium [12]. [15] separated A. ursinum in subspecies level based on 60

Comment [f2]: How many species are there in each section? Show the relevance of studying only few species of them.

Comment [f3]: Authorities of species names!

Comment [f4]: Change. It is not linking with next sentece.

Comment [f5]: Rewrite! It is difficult to understand.

61 the exine ornamentation and stated that this character is an appropriate taxonomic character (granulate-rugulate, rugulate-striate ornamentation in the subspecies Ucrainicum 62 and perforate-rugulate ornamentation in the subspecies Ursinum). [14] examined three 63 types of pollen grains in seven subgenera and thirteen sections of Allium in Pakistan that 64 65 weren't in agreement with the mentioned classifications and determined the types of A. 66 fedtschenkoanum (reticulate ornamentation), A. grifthianum (rugulate-foveolate ornamentation) and A. roylei (subpsilate ornamentation). [15] demonstrated characteristics 67 of the pollen grains including qualitative and quantitative characters of some European 68 species of genus Allium including three subgenera (Allium, Amerallium and Rhizirideum) 69 and five sections that explicitly being synchronize with the sections classification. 70

The main aim of our research was to evaluate the pollen grain micromorphologyical characters and its comparison with<u>implications on</u> the taxonomy and phylogeny of <u>some</u> <u>species of the</u> genus *Allium*-including seven species belong to seven different sections. The pollen grain characters were reported in some species for the first time. In addition, compared with the previous researches, more pollen grain micromorphological characters were evaluated.

2. MATERIAL AND METHODS

71

78

79 80

81

82

83

84

85

The pollen grains were provided from the collected samples of Main Botanical Garden of Russian Academy of Sciences (MHA), Moscow, Russia. <u>The speciementsSamples</u> were collected since May and June 2003 and identified by <u>E. Kalikov_(Table 1)</u>. Also, taxonomic relationships among the studied species in this research showed in Table 1 [1]. For <u>light</u> <u>microscopy analysis (LM) observations</u>, the pollen grains were acetolyzed based on Comment [f6]: How is close Allium pollen of other genera in family? Look for other authors who did LM and SEM in their studies for comparisons! See: http://dx.doi.org/10.1590/S0102-

33062007000400021

Comment [f7]: You can reduce the text, and show main pollen character of the groups.

Comment [f8]: Who is?

Erdtman's method [16]. Then, mounted preparations withen glycerine jelly glass slides. 86 Thirty pollen grains were measured by Leitz Light Microscopy (HM-LUX3) from each studied species and images were taken by Dino camera (AM-423). 88

For scanning electron microscopy analysis (SEM)-observations, non-acetolyzed pollen 89 grains were put on metal-legs stubs and transferred to the EMITECH sputter coater for 90 coating by gold-paladium (K450X). Finally, the obtained micrographs were taken by VEGA-91 TESCAN Scanning Electron Microscopy. Terminology for LM and SEM observations were 92 explored accrording to the following references [17, 18, 19]. 93

For construction the dendrogram, the obtained characters by SEM observations from the 94 pollen grains were coded (Table 4). Finally, the NTSYS Software [20] was used along 95 based on Single Linkage method and UN1 similarity coefficient (binary coefficient) (Table 96 5). For TEM preparation, the pollen grains were fixed by 2% osmium tetroxide and stained 97 by uranylacetate solution [21]. Then, dehydrated in ethanol series and were put in acetone. 98 Finally, embedded in Epon mixture (Epon 812, Epon Harter DDSA, Epon Harter MNA) 99 according to the standard method of [22]. Ultrathin sections of the pollen grains were 100 101 obtained by an ultramicrotome (LKB 8800), then stained with lead citrate (LKB 8800, Ultratome III) [21]. The micrographs were made by using a JEOL-JEM-100B Transmission 102 Electron Microscopy. 103

3. RESULTS AND DISCUSSION

87

104

105

106

Based on the LM observations, T the pollen grains in the studied species were observed 107 oblate in shape and medium in size (Table 2 and Fig. 1). In SEM micrographs, the pollen 108 grain characters were different in these species (Table 3, Figs. 2 and 3). The exine 109 ornamentation on surface and the exine ornamentation on sulcus edge were different and 110

Comment [f9]: Very confuse an long Begin with general charactes (size and shape), then describe apertures (size and membrane, or edge here), and exine (thickness and ornamentation). Organize point to point, because it is easier for reader get your information. Try your text in short paragraphs, yours are too long! Formatted: Highlight Comment [f10]: Provide a plate with the main edge ornamentarion. It is difficult to see on you pollen plates! Formatted: Highlight

111	these characters for each species are expressed as follows: striate exine ornamentation on	
112	surface and sulcus edge for A. altissimum, perforate-striate exine ornamentation on surface	
113	and perforate on sulcus edge for A. fetisowii, striate-perforate exine ornamentation on	
114	surface and striate on sulcus edge for A. backhousianum, exine ornamentation on surface	
115	and sulcus edge of macrostriate for A. karataviense, striate-psilate exine ornamentation on	
116	surface and psilate-striate exine ornamentation on sulcus edge for A. obliquum, perforate-	
117	striate exine ornamentation on surface and psilate exine ornamentation on sulcus edge for	
118	A. rosenbachianum, perforate-microstriate exine ornamentation on surface and sulcus	
119	edge for A. schoenoprasum (Table 3). The pollen grains of A. fetisowii and A.	
120	schoenoprasum species were acute in the end and in the other species were obtuse (Table	
121	3). The size of lumina and muri in the studied species also was different, The scope of	Formatted: Highlight
122	changes in lumina's size in surface of the pollen grain almost was observed similar in A.	
123	altissimum, A. backhousianum and A. karataviense (0.06- 0.13 μ m) (Table 3). The number	
124	of exine surface lumina, was the least (4 lumina at 2 μ m ²) for <i>A. altissimum</i> and the most	Comment [f11]: PER or BY or /
125	(30 and 31 lumina at 2 μ m ²) for A. fetisowii and A. backhousianum species, respectively	
126	(Table 3).	
127		
128	The results of A. schoenoprasum TEM micrographs belongs to section Schoenoprasum	
129	and subgenus Cepa revealed that the ectexine is semitectate, infratectum is	
130	simplicolumellate, foot-layer is discontinuous and endexine layer is very thin and	
131	discontinuous (Fig. 4).	
132		
133	This research indicated that there were less differences about the LM observations (shape	Comment [f12]: What does it mean?
134	and size); but, the dendrogram of pollen micromorphological characters from SEM	

135	observations provided useful valuable taxonomical characters on the subgenera and	
136	sections classifications (Table 4 & 5, Fig. 5).	
137		
138	Various shapes of pollen grains were observed in this genus Allium spp. on previous	Formatted: Font: Italic
139	investigations and the dominant-main shape of the pollen grains in this genus is oblate	
140	shape. Medium pollen type was observed in the most species studied here of this genus	
141	during this research and previous research [2, 9, 10, 11, 13, 14, 15].	
142		
143	Exine ornamentation was varied in genus Allium [2, 9, 10, 11, 13, 14, 15]. Our results show	
144	that varied exine ornamentation with the other characters on SEM observation as useful	
145	taxonomic characters in section level.	
146		
147	Our research on the genus Allium confirms previous palynological research on pollen wall	Comment [f13]: How?
147 148	Our research on the genus <i>Allium</i> confirms previous palynological research on pollen wall structure on <i>Codonoprasum</i> , <i>Allium</i> and <i>Rhizirideum</i> sections [9, 12].	Comment [f13]: How?
		Comment [f13]: How?
148		Comment [f13]: How?
148 149	structure on Codonoprasum, Allium and Rhizirideum sections [9, 12].	Comment [f13]: How?
148 149 150	structure on <i>Codonoprasum</i> , <i>Allium</i> and <i>Rhizirideum</i> sections [9, 12]. The perforate-striate exine surface ornamentation for two species including <i>A. fetisowii</i> and	Comment [f13]: How?
148 149 150 151	structure on <i>Codonoprasum</i> , <i>Allium</i> and <i>Rhizirideum</i> sections [9, 12]. The perforate-striate exine surface ornamentation for two species including <i>A. fetisowii</i> and <i>A. rosenbachianum</i> belong to the subgenus <i>Melanocrommyum</i> was alike; but, these two	Comment [f13]: How?
148 149 150 151 152	structure on <i>Codonoprasum</i> , <i>Allium</i> and <i>Rhizirideum</i> sections [9, 12]. The perforate-striate exine surface ornamentation for two species including <i>A. fetisowii</i> and <i>A. rosenbachianum</i> belong to the subgenus <i>Melanocrommyum</i> was alike; but, these two species were different in the exine ornamentation on sulcus edge, the number of exine	Comment [f13]: How?
148 149 150 151 152 153	structure on <i>Codonoprasum</i> , <i>Allium</i> and <i>Rhizirideum</i> sections [9, 12]. The perforate-striate exine surface ornamentation for two species including <i>A. fetisowii</i> and <i>A. rosenbachianum</i> belong to the subgenus <i>Melanocrommyum</i> was alike; but, these two species were different in the exine ornamentation on sulcus edge, the number of exine surface lumina, the state of pollen grain apex and the size of lumina and muri.	Comment [f13]: How?
148 149 150 151 152 153 154	structure on <i>Codonoprasum</i> , <i>Allium</i> and <i>Rhizirideum</i> sections [9, 12]. The perforate-striate exine surface ornamentation for two species including <i>A. fetisowii</i> and <i>A. rosenbachianum</i> belong to the subgenus <i>Melanocrommyum</i> was alike; but, these two species were different in the exine ornamentation on sulcus edge, the number of exine surface lumina, the state of pollen grain apex and the size of lumina and muri. The variations of exine ornamentation on the surface and sulcus edge for the other species	Comment [f13]: How?
148 149 150 151 152 153 154 155	structure on <i>Codonoprasum</i> , <i>Allium</i> and <i>Rhizirideum</i> sections [9, 12]. The perforate-striate exine surface ornamentation for two species including <i>A. fetisowii</i> and <i>A. rosenbachianum</i> belong to the subgenus <i>Melanocrommyum</i> was alike; but, these two species were different in the exine ornamentation on sulcus edge, the number of exine surface lumina, the state of pollen grain apex and the size of lumina and muri. The variations of exine ornamentation on the surface and sulcus edge for the other species were in agreement with the performed sections classification. Moreover, the number of	Comment [f13]: How?

159 lumina in the exine surface. In the studied species in Iran, the exine surface ornamentation without lumina was observed in the subgenus Reticulatobulbosa in section Campanulata 160 and also in the subgenus Polyprason in section Falcatifolia [11]. Therefore, the exine 161 surface ornamentation without lumina can be defined as a useful micromorphological 162 character in the subgenus Polyprason and its related sections. In flora of Pakistan A. 163 164 rosenbachianum on section Megaloprason, A. schoenoprasum belongs to section Schoenoprasum and A. roylei in section Oreiprason were placed on A. roylei types based 165 on the pollen grain morphology [14]. 166

167

The dendrogram of the palynological pollen characters analysis was in agreement with the 168 taxonomical ranking and previous phylogram by [1] on these taxa in subgenus and section 169 170 levels. The phylogram of the studied species were distinguished based on [1] research. [1] These authors had done the extensive phylogenetic analysis by molecular data (ITS 171 nuclear marker and rps16 chloroplast marker) on Allium genus. The final dendrogram of 172 our palynological investigation was in agreement with the obtained phylogram by [1] 173 research. According to the pollen grain-dendrogram obtained from analysis by SEM 174 175 observations in subgenus Melanocrommyum, A. fetisowii introduced as a sister group with the other species in this subgenus. In clade Melanocrommyum, A. fetisowii in section 176 Longibidentata determined as the sister group of the remaining species of the subgenus 177 Melanocrommyum based on the phylogenetic information of molecular markers [1]. A. 178 schoenoprasum belongs to subgenus Cepa and section Schoenoprasum was different from 179 180 the other species in SEM observation, although in the state of pollen grain apex was similar to A. fetisowii. The results also indicated that A. altissimum, A. backhousianum and A. 181 karataviense species with similar size in lumina were placed in the subgenus 182

Melanocrommyum. The palynological dendrogram in this study put the species *A.* altissimum and *A. backhousianum* from subgenus *Melanocrommyum* and in sections *Procerallium* and *Acmepetala* together. Moreover, according to the molecular studies, these two sections were put together [1].

188 4. CONCLUSION

The dendrogram of palynological analysis data in the related species was in parallel with the divisions of sections and subgenera taxonomical rank and the phylogram of phylogenetic studies. Also, our research on the genus *Allium* confirms some previous palynological research.

The authors of this manuscript declare that they have no competing interests.

194

187

189

195

196 COMPETING INTERESTS

197 198

199 200

203

201 202

REFERENCES

- Li QQ, Zhou SD, He XJ, Yu Y, Zhang YC, Wei XQ. Phylogeny and biogeography of *Allium* (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Ann Bot. 1990; 106:709-33.
 Özhatay N, Kocyigit M. Pollen morphology of *Allium* species (Lilliaceae) in European Turkey and around Istanbul. Phytol. 2009;15(2):199-208.
- 3. Fritsch RM, Abbasi M. Taxonomic Review of *Allium* subg. *Melanocrommyum* in Iran, Germany,
- 210 Leibniz-Institut fur Pflanzengenetik und Kulturpflanzenforschung Gatersleben, 2013.

- 4. Klaas M. Applications and impact of molecular markers on evolutionary and diversity studies in the
 genus *Allium*. Plant Breed. 1998;117:297-308.
- 5. Fritsch RM, Friesen N. Evolution, domestication and taxonomy. In: Rabinowitch, H. D. & Currah L.
 (eds.): *Allium* crop science: recent advances, Wallingford, New York, 5–30, 2002.
- 6. Kosenjo VN, Kudryashova GL. Palynomorphology of the family Alliaceae, Bot. Zhurnal (st.
 Petersburg), 1995; 80(6):5-17.
- 7. Radulescu D. Recherches morpho-palynologiques sur la famille Liliaceae, Acta Bot. Horti. Bucur.
 1973; 133-248.
- 8. Harley MM, Zavada MS. Pollen of the monocotyledons: Selecting characters for cladistic analysis.
 In: Monocots: Systematics and Evolution, K.L, Melbourne, Wilson and D.A Morrison (Eds).
 CSIRO. 2000; 194-213.
- 9. Güler U, Pehlivan S. Pollen morphology of some species belonging to *Codonoprasum* and *Allium* sections of *Allium* (Liliaceae-Alliaceae) genus, Biologia. 2006; 61(4):449-55.
- 10.Neshati F, Fritsch RM, Zarre S. Pollen morphology of some Allium L. species (Alliaceae) from Iran.
- Plant Diversity and Evolution. 2009; 127 (4): 433–451.
- 11.Namin HH, Mehrvarz SS, Zarre S, Fritsch RM. Pollen morphology of selected species of *Allium* (Alliaceae) distributed in Iran, Nordic J. Bot.2009;27(1):54-60.
- 12.Özler H, Pehlivan S. Pollen morphology of *Allium* L. (Lilliaceae) taxa in Turkey, Bangladesh J. Bot.
 2010; 39(1):37-46.
- 13.Bareemizadeh F, Maassoumi SM, Ghasempour H, Karimi N. Pollen morphology of the genus Allium
- in comparison with genus *Calochortus* of order Liliales, Int. J. Biosci. 2014; 4(12):237-43.
- 14.Perveen A, Qaiser M. Pollen flora of Pakistan–lxviii. Alliaceae, Pak. J. Bot. 2015; 47(1): 263-68.

233	15.Wronska-Pilarek D.	Halbrither H, Kra	zyminska A, Rz	vminska L,	Bednorz J. E	Bocianowskij J. Pollen

234	morphology of selected	European species	of the genus A	<i>llium</i> L.	(Alliaceae), Acta	Sci. Pol. Hortorum
-----	------------------------	------------------	----------------	-----------------	-------------------	--------------------

235 Cultus. 2016; 15(4):65-84.

- 16.Eerdtman G. The acetolysis technique: a revised description, Svensk Botanisk Tidskrift, 1960;
 54:561-64.
- 238 17. Tokarev P. Morphology and ultrastructure of pollen grain. Moscow, KMK Sci, Press Ltd., 2003.
- 239 18.Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A. Glossary of pollen and spore terminology,
- 240 Rev. Palaeobot. Palynol. 2007; 143:1-81.
- 241 19. Hesse M. Pollen Terminology (An illustrated handbook). Vienna, Springer, 2009.
- 242 20.Rohlf FJ. NTSYS-PC: Numerical Taxonomy and Multivariate Analysis System. Exeter Software,
 243 Setauket, NY, USA, 1993.
- 244 21.Reynalds ES. The use of lead citrate at high pH as an electron opaque stain in electron microscopy.

245 Journal of cell biology. 1963; 17: 208–212.

246 22. Weakley BS. A Beginner's Handbook in biological Electron Microscopy. Churchill Livingstone,

Edinburg, 252 pp, 1972.

- 248
- 249

250

- 251

252

253

Comment [f14]: HESSE, M.; ZETTER, R.; HALBRITTER, H.; WEBER, M.; BUCHNER, R.; FROSCHRADIVO, A.; ULRICH, S. 2009. Pollen Terminology: an illustrated handbook. Wien: Springer. WOLFR

256	Table 1. Taxonomic relationships and collecting	data from the studied species	of Allium (Amaryllidaceae). [1].
-----	---	-------------------------------	----------------------------------

Taxon	Section	Subgenus	Collector and date of collecting
Allium altissimum Regel.	Procerallium	Melanocrommyum	E. Kalikov, 30.5.2003, gathering from MHA
Allium fetisowii Regel.	Longibidentata	Melanocrommyum	E. Kalikov, 30.5.2003, gathering from MHA
Allium backhousianum Regel.	Acmepetala	Melanocrommyum	E. Kalikov, 10.6.2003, gathering from MHA
Allium karataviense Regel.	Miniprason	Melanocrommyum	E. Kalikov, 30.5.2003, gathering from MHA
Allium obliquum L.	Oreiprason	Polyprason	E. Kalikov, 30.5.2003, gathering from MHA
Allium rosenbachianum Regel.	Megaloprason	Melanocrommyum	E. Kalikov, 30.5.2003, gathering from MHA
Allium schoenoprasum L.	Schoenoprasum	Cepa	E. Kalikov, 30.5.2003, gathering from MHA

Formatted: Font: Italic
Formatted: Font: 10.5 pt
Formatted: Font: (Default) Helvetica, 10.5 pt, Bold, Portuguese (Brazil)
Formatted: Font: 10.5 pt
Comment [f15]: Cite collector's numbers, or herbarium ones. A number is needed!

257	
258	
259	
260	
261	
262	
263	
264	
265	
266	

272 | Table 2. The obtained pollen data from the Light Microscopy studies Pollen -measurements of the studied species of

273 Allium (Amaryllidaceae).

Formatted: F	ont: Italic
--------------	-------------

	Pollen size	Polar axis (µm)	Equatorial axis (µm)		Pollen	Pollen	Comment [f17]: Smaller or bigger?
Taxon	(µm)	Min-Mean±SD-Max	Min-Mean±SD-Max	P.E	shape	typesize	Comment [f16]: Pollen size is the greater value of a diameter (equat or polar one). In case of monosulcate pollen, there are 2 equatorial diamenters (a smaller and a bigger) and one pollen diamenter.
A. altissimum	35.18±6.52	17.00-18.28±1.24-21.00	27.50-35.18±6.52-46.00	0.5	Oblate	Medium	So, I don't know what POLLEN SIZE means here!
. fetisowii	30.74±5.13	15.00-16.16±1.51-20.00	22.50-30.74±5.13-37.50	0.5	Oblate	Medium	Comment [f18]: No applied in this case! See comments about pollen size.
	0011 120.10	10.00 10.1021.01 20.00	22.00 00.1 120.10 01.00	0.0	Oblato	Modiali	Comment [f19]: The same
. backhousianum	29.97±2.34	12.00-16.22±1.79-17.50	27.50-29.97±2.34-35.00	0.5	Oblate	Medium	Formatted: Left
	20.07 12.01		21.00 20.01 22.01 00.00	0.0	Oblato	Modiali	Formatted: Left
, karataviense	31.39±4.92	12.00-16.84±2.03-20.00	22.50-31.39±4.92-41.00	0.5	Oblate	Medium	Formatted: Left
	01.0011.02	12.00 10.0 122.00 20.00	22.00 01.0021.02 11.00	0.0	Oblato	Modian	Formatted: Left
A. obliquum	31.56±6.09	12.50-16.16±1.60-20.00	25.00-31.56±6.09-41.00	0.5	Oblate	Medium	Formatted: Left
A. rosenbachianum	33.70±1.92	14.00-19.60±3.63-25.00	30.00-33.70±1.92-37.50	0.6	Oblate	Medium	Formatted: Left
. schoenoprasum var. sibiricum	30.82±5.08	15.00-16.46±2.24-20.00	25.00-30.82±5.08-39.00	0.5	Oblate	Medium	Formatted: Left

280	
281	
282	
283	
284	
285	
286	
287	
288	
289	
290	

291 Table 3. The obtained pollen data from the Scanning Electron Microscopy from Pollen data of the studied species of

292 <u>Allium (Amaryllidaceae)</u>.

Taxon	Exorn	Sd	S	L	М	Р
A. altissimum	Striate	Striate	Obtuse	0.06-0.13	0.13-3.46	4
A. fetisowii	Perforate-striate	Perforate	Acute	0.06-0.20	0.13-0.86	30
A. backhousianum	Striate-perforate	Striate	Obtuse	0.06-0.13	0.13-0.40	31
A. karataviense	Macrostriate	Macrostriate	Obtuse	0.06-0.13	0.06-0.40	12
A. obliquum	Striate-psilate	Psilate-striate	Obtuse	-	-	-
A. rosenbachianum	Perforate-striate	Psilate	Obtuse	0.06-0.26	0.06-1.20	27

Comment [f20]: But if it is MACROSTRATE, it hasn't lumina!

	n, Sd: Sulcus edge ornamer	ntation, S: The state of pollen grain apex	k, L: Lumina size, M294uri	Comment [f21]: Do you mean sulcus memb ornamentarion? Or margin?
size, P: The number of exi	ne surface lumina.		295	Comment [f22]: Width?
				Comment [f23]: Number, how? Do you mean density? Lumna by area? I can't understand!
		0		
	0			
		V		
	2			
	der 1			
	OFR'			
S				
Table 4. The pollen traits f	rom Scanning Electron Mi	croscopy and coding of these charac	ters by the analysis with	

A. altissimum	Striate (1)	Striate (1)	Obtuse (1)	0.06 (1)-0.13 (1)	0.13 (1)-3.46 (5)	4 (1)
A. fetisowii	Perforate-striate (2)	Perforate (2)	Acute (2)	0.06 (1)-0.20 (2)	0.13 (1)-0.86 (2)	30 (5)
A. backhousianum	Striate-perforate (3)	Striate (1)	Obtuse (1)	0.06 (1)-0.13 (1)	0.13 (1)-0.40 (1)	31 (6)
A. karataviense	Macrostriate (4)	Macrostriate (3)	Obtuse (1)	0.06 (1)-0.13 (1)	0.06 (2)-0.40 (1)	12 (2)
A. obliquum	Striate-psilate (5)	Psilate-striate (4)	Obtuse (1)	(0)	0	0
A. rosenbachianum	Perforate-striate (2)	Psilate (5)	Obtuse (1)	0.06 (1)-0.26 (3)	0.06 (2)-1.20 (3)	27 (4)
A. schoenoprasum	Desferate microstricte (C)	Defersts missestricts (C)	A eutre (2)	0.00 (4) 0.40 (4)	0.05 (2) 4.50 (4)	22 (2)
var. sibiricum	Perforate-microstriate (6)	Perforate-microstriate (6)	Acute (2)	0.06 (1)-0.40 (4)	0.06 (2)-1.60 (4)	22 (3)

311	
312	
313	
314	
315	
316	
317	
318	
319	
320	
321	
322	
323	

Table 5. The similarity coefficients of the studied species of Allium (Amaryllidaceae) compared with the others By lusing the

			NTSYS s	oftware.			
Taxon	а	b	С	d	e	f	g
а	1.00						
b	0.40	1.000	$\langle \rangle$				
с	0.76	0.40	1.00				
d	0.54	0.222	0.66	1.00			
е	0.22	0.00	0.22	0.22	1.00		
f	0.40	0.400	0.40	0.54	0.22	1.00	
g	0.22	0.40	0.22	0.40	0.00	0.40	1.00

- 334 a.A. altissimum, b. A. fetisowii, c. A. backhousianum, d. A. karataviense, e. A. obliquum, f. A.
- 335 rosenbachianum, g. A. schoenoprasum var. sibiricum.

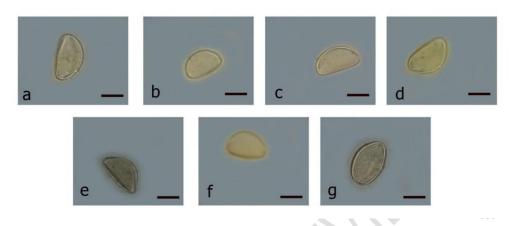


Fig. 1. Light microscopy photographsPollen grains of the studied species of Allium (Amaryllidaceae), seen on
 LM. a. A. altissimum, b. A. fetisowii, c. A. backhousianum, d. A. karataviense, e. A. obliquum, f. A.
 rosenbachianum, g. A. schoenoprasum var. sibiricum. (Light Microscopy, 1000X, scale: 10 µm)

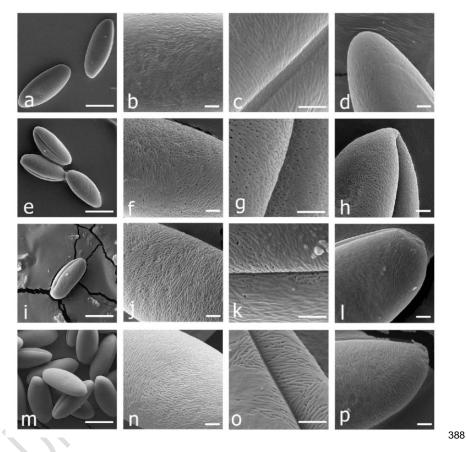


Fig. 2. The Scanning Electron Microscopy micrographs oPollen grains of the studied species of Allium (Amaryllidaceae), on SEM: (for each species, the equatorial view of pollen grain, exine ornamentation, sulcus edge exine ornamentation and the state of pollen grain apex have been determined, respectively). A. altissimum (a-d), A. fetisowii (e-h), A. backhousianum (i-l) and A. karataviense (m-p). (Scale bar: 20 µm for a, e, i & m., scale bar: 2 µm for b, c, d, f, g, h, j, k, l, n, o & p.)

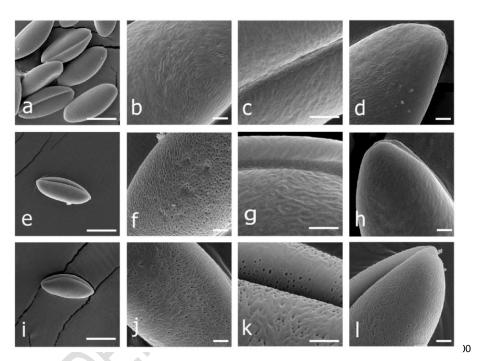
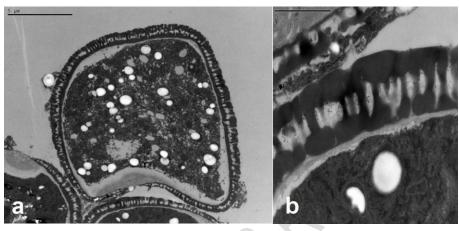
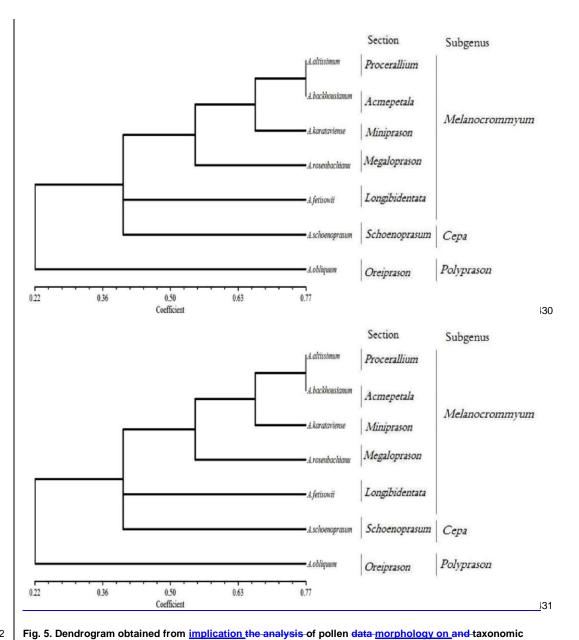




Fig. 3. The Scanning Electron Microscopy micrographsPollen grains of the studied species of Allium (Amaryllidaceae), on SEM: (for each species, the equatorial view of pollen grain, exine ornamentation, sulcus edge exine ornamentation and the state of pollen grain apex have been determined, respectively). A. obliquum (a-d), A. rosenbachianum (e-h) and A. schoenoprasum var. sibiricum (i-l). (Scale bar: 20 µm for a, e & i., scale bar: 2 µm for b, c, d, f, g, h, j, k & l)

-

Fig. 4. The Transmission Electron Microscopy micrographs <u>Ultra-thin section on pollen grain</u> of <i>A.</i> schoenoprasum var, <u>sSibiricum (Amaryllidaceae)</u> : a. Cross section of pollen grain (Scale bar: 5 µm)	415), b: Cr4 \$6 secti	• Formatted: Font: Italic
pollen wal<u>exine structure</u>l (Scale bar: 1 μm).	417	Formatted: Font: Not Italic
		Formatted: Font: Not Italic
	422	
	423	
	424	
	425	
	426	
	427	

relationships of the studied species of <u>Allium</u> (Amaryllidaceae).

WHERE