- 1 2
- 3

5

Incorporation of *Spirulina Platensis* in Traditional Egyptian Cookies as a Source of Natural Bioactive Molecules and Functional Ingredients:

Development and Sensory Evaluation of Nutrition Snack for School Children

ABSTRACT

6 Spirulina platensis is very rich in protein, amino acids, omega 3, 6, 7 and 9 oils, vitamins and minerals and its incorporation into cookies will enrich their nutritional values. The objectives of this study 7 8 were to evaluate the acceptability of adding *spirulina* to traditional Egyptian cookies as a source of 9 natural bioactive molecules and to assess the effect of the amount of added *spirulina* on the sensory 10 evaluation parameters (texture, shred, color, odor and taste) using a panel of 10 members. The results indicated that addition of spirulina to the cookies affected the texture, the mouth feel, the easiness with 11 12 which breaking a cookie was made, the fragmentation and the appearance of the break line. The cookies that received no spirulina had smoother texture and moist-smooth mouth feel whereas those received 13 14 spirulina had more sandy-course texture and heavy-chewy mouth feel. Increasing the spirulina content from 5 to 15% made the cookies more firm and harder to beak. Irregular large parts and continuous break 15 lines were observed with the cookies that received no spirulina while more granules and smaller parts 16 17 with irregular line were observed with all the cookies that received spirulina. The results showed that 18 adding spirulina to cookies may help maintain their integrity and reduce breakage during packaging and 19 distributions. The color of the control sample (0% spirulina) was yellow to yellow-orange and that of the samples that received 5 and 10% spirulina was tallow-green to green-yellow-green while that of the 20 sample that received 15% spirulina was green-yellow-green to green-blue-green. All the baked cookies 21 22 had a noticeable smell and the odor intensity ranged from faint (4.06-4.89) to strong (8.19-8.69). The weighted average for the odor intensity was 6.11, 5.53, 6.02 and 6.63 for cookies receiving 0, 5, 10 and 23 15% spirulina, respectively; all of which are within the odor intensity range of weak odor. Increasing the 24 25 amount of spirulina from 5 to 15% (3 fold) only increased the odor intensity by 19.6 % (from 5.33 to 26 6.63). The nature of the smell of the cookies that received 0 and 5% spirulina was pleasant while that of the cookies that revived 10 and 15% spirulina was musty-seawater and fishy-seawater, respectively. 27 28 Adding 5% spirulina did not affect the odor but with higher concentrations (10-15%) of spirulina, the addition of a strong aromatic compound to the cookies may be required to musk the smell of spirulina. 29 30 The addition and/or increasing the amount of spirulina affected both the taste and the degree of 31 acceptance. The taste of the cookies that received no spirulina was rated sweet-delicious with a high degree of acceptance while the taste of the cookies that received spirulina varied from sweet-sour to 32 33 bitter-fishy with lower degree of acceptance. Adding 5% spirulina did not affect the taste. However, 34 addition of a flavoring agent to cookies receiving higher concentrations of *spirulina* (10-15%) may be 35 required to musk the taste of spirulina. The results showed that addition of spirulina enhanced the 36 nutritional value of the cookies by increasing the protein content of the cookies and enriching them with 37 vitamins, mineral, omega 3. 6, 7 and 9 fatty acids and amino acids, all of which have significant health benefits to school children. Therefore, a further work should be directed towards improving the smell and 38 39 the taste.

40 41 42

Keywords: Anemia, Obesity, Stunting, Spirulina, Cookies, Nutrition, Amino Acids, Omega 3 and 6 Oils, Vitamin, Minerals Sensory Evaluation, Cookies, Texture, Shred, Color, Odor, Taste

43 44

45

INTRODICTION

Comment [KA1]: Introduction

Egypt has about 12.5 million school children in the age range of 5-18 [1]. A significant number of
these children suffer from malnutrition specially those of low socioeconomic standard which resulted in
several diseases including anemia, obesity and stunting.

Anemia is a condition in which the amount of red blood cells in the body is decreased below normal and it can make the child appear pale in color and feel cranky, tired and weak. Studies have indicated that anemia is a major public health problem among Egyptian school children [2- 4]. Iron deficiency anemia was found to be the most common cause of anemia among Egyptian children affecting 30-43% of children under 6 years of age [5] whereas the prevalence of anemia among children in the age group of 6-12 years was found to be 12% [6-7].

55 Obesity is an excessive accumulation of fat that adversely affects well-being and health [8]. 56 Obesity is a major public health problem that affects nearly 35 % of adults and 18% of teenagers in Egypt 57 [9-11], the highest in the world. Obesity is more prevalent in children between 6 and 9 years of age and is 58 more prevalent in girls than in boys [12-14]. Egypt is a country where most citizens receive enough food 59 to silence their hunger but not enough to nourish their bodies, a phenomenon that would negatively affect 50 the country's development. There is an urgent need to spread awareness about obesity, its consequences 51 and find ways of prevention, especially among young children [15].

Stunting is the impaired growth and development (low height-for-age) that children experience 62 from poor nutrition and inadequate psychosocial stimulation. Children are defined as stunted if their 63 height-for-age is more than two standard deviations below the WHO Child Growth Standards Median 64 65 [16]. Stunting remains a very important problem in Egypt, as one-third of children under 5 years of age are affected [16-17]. According to the United Nations Children's Fund (UNICEF), the largest number of 66 67 stunted children (about 2.7 million) in the Middle East was in Egypt due to the socioeconomic conditions 68 of a country [17]. Stunting in early life of child has adverse functional consequences on the child 69 including: (a) poor cognition and poor school performance, (b) when stunting is accompanied by 70 excessive weight gain later in childhood, it results in increased risk of nutrition-related chronic diseases in 71 adult life such as diabetes, hypertension, and obesity and (c) lost productivity and reduced earnings later 72 in life [18-19].

Household food security in Egypt is very fragile and fluctuating food prices can cause severe shocks resulting in malnutrition among the low-income families. Hunger and malnutrition can drive children away from schools. Malnutrition among Egyptian children results in: (a) 11% of children deaths, (b) 33% stunted children (age 6-18 years.) and their ability to comprehend and concentrate during class are impacted, (c) 2% of these children are likely to fail in education and (d) 6 % repetition rate in primary governmental schools [19]. Therefore, the current Government of Egypt invests USD 110 million per year on the National School Feeding Programme which reaches 12.5 million pupils. The goals of this program are: (a) enhancing students' health by providing nutritious meals on a daily basis to increase
 their concentration in class, (b) educating the students and parents about the importance of the healthy
 nutritious meals and (c) motivating students to attend their classes and decrease school dropout rates
 and absences. However, the nutritional composition of theses meals must be enhanced [20].

84 Spirulina is a blue-green alga that has a great potential for use in food and food products because of its high nutritional composition (Table 1). The dark green color of Spirulina comes from the high 85 amount of chlorophyll (plant blood) which is only one molecule different from the hemoglobin (human 86 blood). No one fruit, vegetable or meat can provide all the nutrition elements the human body demands as 87 88 Spirulina. Spirulina contains over 100 nutritional and bioactive compounds, is free of cholesterol, has only 2-4 cal/g, has a high digestibility (95%) and has an alkali pH which can protect the human body from 89 the diseases resulting from acidic foods such as meat, sea food and cereals. The protein content in 90 91 Spirulina is about 65-72% which is higher than that in the soybean and is easier to digest. Spirulina 92 contain all the essential and non-essential amino acids (Table 2) which are 3-4 times those in fish and 93 meat and 29 times those in soybeans. Spirulina contains more than 2000 enzymes that are beneficial for 94 human health [25, 29-30]. The fatty acids (Table 3) contain omega 3 (alpha linolenic and 95 docosahexaenoic) omega 6 (linolenic, gamma linolenic and dihomo-gamma linolenic), omega 7 (palmitoleic) and omega 9 (oleic and auric) oils [22, 28, 30]. Spirulina is very rich in mineral content 96 (Table 4) including: calcium, phosphorus, iron, sodium, magnesium, potassium, manganese, zinc, boron, 97 98 copper and molybdenum [23, 28]. The mineral contents in Spirulina are 28 and 58-fold of those in beef liver and spinach, respectively [31,32]. Spirulina contain several vitamins (Table 5) including: beta-99 carotene (vitamin A), thiamine (vitamin B1), riboflavin (vitamin B2), niacin (vitamin B3), pyridoxine 100 (vitamin B6), cyanocobalamin (vitamin B12), Da-tocopherol (vitamin E), biotin (vitamin H), folic acid, 101 pantothenate and inositol [21-23,25-26]. The vitamin contents in spirulina are higher than those in liver, 102 103 carrot, spinach and many vegetables [33].

In recent years, novel attractive healthy foods have been prepared from *spirulina* [30,33-35]. Traditional foods such as salad dressings, dips, puddings, gelled desserts, biscuits, cookies, bread, noodles, pasta, smoothies, ice cream and health drinks such as micro-algal sour milk and micro-algal green tea were supplemented with *Spirulina* to add coloring and functional attributes, making the products more sensorial attractive with health benefits due to the high content of carotenoids, polyunsaturated fatty acids, antioxidant and anti-inflammatory compounds [22,30, 34-37].

Spirulina is a fast-growing microorganism and has high biomass growth and high protein yield (Table 6). For a given area, the harvest yield of *Spirulina* is 10 times that of soybeans, 20 times that of corn and 200 times that of beef cattle [37]. It can be grown to produce protein and bioactive and function compounds.

115 Table 1. General composition of fresh dried spirulina [21-27].

Content	Value
Energy (Cal/g)	2.90
Moisture (%)	4 -5
Protein (%)	65 -72
Carbohydrate (%)	15 -25
Fibers (%)	3 -7
Lipids (%)	4 -7
Minerals (mg/g)	6 -12

Table 2. Amino acids in fresh dried spirulina [22, 24, 28].

	A ' A '1	W I
	Amino Acids	Value
		(mg/g)
	Alanine	7.7-46.6
	Arginine	7.9-47.6
	Aspartic Acid	12.1-72.8
	Cysteine	0.9-5.6
	Glutamic Acid	4.1-84.4
	Glycine	5.3-31.9
	Histidine	2.5-15.0
	Isoleucine	5.4-32.6
	Leucine	8.2-48.9
	Lysine	4.4-26.2
	Methionine	2.2-13.3
	Phenylalanine	4.5-26.1
	Praline	4.1-24.7
	Serine	4.4-26.5
	Threonine	4.7-28.1
	Tryptophan	1.4-8.5
	Tyrosine	4.0-23.8
	Valine	6.2-37.4
119		
120		
120		
121		

Table 3. Fatty acids in fresh dried spirulina [22, 28, 30].

Fatty Acids	Value
Omega 3	
Alpha Linolenic	0.04 mg/g
Docosahexaenoic	0.04 mg/g
Omega 6	
Linolenic	33.0 mg/g
Gamma Linolenic	30.0 mg/g
Dihomo-gamma Linolenic	1.59 mg/g
Omega 7	
Palmitoleic	5.90 mg/g
Omega 9	
Oleic	0.50 mg/g
Erucic	0.07 mg/g

Table 4. Minerals in fresh dried spirulina [23,28].

	Minerals	Value	
	Calcium	168.00 mg/g	
	Magnesium	2.55 mg/g	
	Iron	0.52 mg/g	
	Phosphorous	9.18 mg/g	
	Potassium	18.30 mg/g	
	Sodium	10.98 mg/g	
	Manganese	19.00 μg/g	
	Zinc	2.00 µg/g	
	Boron	30.00 µg/g	
	Copper	3.00 µg/g	
	Molybdenum	30.00 µg/g	
	Selenium	5.00 µg/g	
133			
134			
135			
136			
137			
138			
139			
140			

Table 5. Vitamins in fresh dried spirulina [21-23,25-26].

Vitamins	Value	
Water soluble vitamins		
B-complex vitamins		
Vitamin B1 (Thiamine)	238.00 mg/g	
Vitamin B2 (Riboflavin)	99.00 mg/g	
Vitamin B3 (Niacin)	3.67 mg/g	
Vitamin B5 (Pantothenic Acid)	3.4 mg/g	
Vitamin B6 (Pyridoxine)	13.20 mg/g	
Vitamin B9 (Folate)	94.00 μg/g	
Vitamin B12 (Cyanocobalamin)	6.60 µg/g	
Vitamin H (Biotin)	1.00 mg/g	
Choline	66.00 mg/g	
Vitamin C	58.80 mg/g	
Fat soluble vitamins		
Vitamin A (as Beta Carotene)	29.00 μg/g	
Vitamin E (Da-tocopherol)	5.0 mg/g	
Vitamin K	25.20 μg/g	
Alpha Carotene	7.50 µg/g	
Beta Carotene	1900.00 µg/g	
Lutein and Zeaxanthin	126.00 µg/g	

	145	Table 6. Biomass and	protein yields and	l environmental	growth conditions of S	pirulina [31-36].
--	-----	----------------------	--------------------	-----------------	------------------------	-------------------

146	
-----	--

Parameter	Value	
Biomass yield (g/L)	4.30	
Protein yield (g/L)	2.71	
Temperature (C ^o)	30.00	
pH	9.00	

OBJECTIVES

161	OBJECTIVES	
162		
163	The main aim of this study was to evaluate the acceptability of traditional Egyptian cookies	
164	containing spirulina as a source of natural bioactive molecules The specific objectives were: (a) to	
165	determine the cookies characteristics (odor/smell, taste, color, texture and shred) using sensory	
166	evaluations, (b) to establish the most acceptable amount of spirulina that can be added to the cookies and	
167	(c) determine the nutritional value of the cookies.	Comment [KA2]: Merge to intro
168		
169	MATERIALS AND METHODS	
170	Preparation of Cookies	
171	The following ingredients were used: soft butter (100 g), sugar (100 g), wheat flower (280 g), 2	
172	eggs (109 g), baking powder (10 g), salt (1 g), vanilla (1 g) and desired amount of spirulina (0, 5, 10 and	
173	15% by weight of the wheat flower or 0, 14, 28 and 42 g of spirulina as replacements for wheat flower).	
174		
175	The butter and sugar were placed in the large bowl of a bowl-lift stand mixer (Model No.	
176	4KV25HOXER, Kitchen Aid, Mississauga, Ontario, Canada) and beaten until became fluffy. The eggs	
177	and vanilla were added to the butter-sugar mixture. The wheat flower, baking powder, salt and the desired	
178	amount of spirulina were first mixed together and then added to the butter-sugar-eggs-vanilla mixture and	
179	mixed with continuous stirring. Four portions of 601g each were made. No spirulina was added to the	
180	first portion (control), 14 g spirulina were added to the second portion (5%), 28 g spirulina were added to	
181	the third portion (10%) and 42 g spirulina were added to the fourth portion (15%).	
182		
183	The oven was heated to 180°C (350°F). From each portion, cookies were made, each was about 5	
184	cm in diameter and 0.5 cm in height. The cookies were placed on a cooking sheet placed in a baking tray.	
185	The baking trays were place in a convention countertop oven (Model No. TO4211SKT, Black & Dekker,	
186	Rayovac, Argentina) and the cookies were baked for 14 min. Each backed cookie weighed approximately	
187	30 g.	
188		
189	Sensory Evaluation	
190	Sensory evaluations were carried out on the baked cookies to determine some of the physical	
191	properties (texture and shredding/breaking) and to evaluate the acceptability of color, smell and taste of	
192	the cookies. The procedure described by Ghaly et al. [38] was followed. A panel of 10 evaluators was	

formed from among technicians, undergraduate and graduate students and professors in the Agricultural 193 Engineering Department, Faculty of Agriculture, Cairo University. The panel included males and females 194

who varied in age from 18 to 55 years. The sensory evaluation sheets used in this study (Figures S-1-5) inappendix were those developed by Ghaly et al. [38].

197

203 204

198 Nutritional Value

The nutritional contents of the cookies were analyzed. The analyses include the determination of energy, protein, amino acids_carbohydrate, fat, vitamins and mineral contents. These analyses were performed according to the procedures described in Official Methods of Analyses of the Association of the Official Chemists [39].

RESULTS AND DISCUSSION

205 Texture

The results of the texture appearance and mouth feel of the cookies are presented in Table 7. The addition of *spirulina* to the cookies affected both the texture and mouth feel compared to the control (0% spirulina). The cookies that received no *spirulina* (control samples) had smoother texture and moist-smooth mouth feel whereas those received *spirulina* had sandycourses texture and heavy-chewy mouth feel. Increasing the percentage of spirulina made the surface of the cookies more sandy-courses and made the mouth feel more firmer and chewier.

212 Salehifar et al. [40] reported that the addition of 0.5-1.5% spirulina into traditional Iranan cookies did not alter the texture of the cookies. Lyer et al. [41] found that increasing spirulina content from 2 213 214 to10% did not significantly alter the texture of biscuits. Sharma and Dunkwal [42] reported that the 215 incorporation of 10% spirulina into biscuits did not have any significant effect on the biscuits texture. 216 Lemes et al. [43] noted no statistical differences in the textures of pasta samples containing spirulina at concentrations of 0, 5 and 10%. However, Morsy et al. [44] reported that the addition of 2.5-7.5% 217 spirulina to several extruded products did not significantly alter the texture of products but concentrations 218 above 7.5 % had a significant effect on the texture of these products. Vijayarani et al. [44] noticed slight 219 220 differences in the texture of extruded products when the *spirulina* content was increased from 5% to 15%. trey. Ghaly et al. [38] reported that the addition of spirulina to chocolate chip oatmeal cookies affected 221 their texture and mouth feel as compared to the original cookies (no spirulina added) but increasing the 222 223 percentage of spirulina from 3 to 9% did not show any significant differences.

- 224
- 225
- 226
- 227

228 Table 7. Effect of *spirulina* on the texture and mouth feel of cookies.

2	2	n
	/	ч

Spirulina (%)	Texture Appearance	Panelists	Mouth Feel	Panelists
0	Smooth	6	Moist and Smooth	10
	Sandy	2		
	Course	2		
5	Smooth	4	Moist and Smooth	6
	Sandy	2	Heavy and Chewy	4
	Course	4		
10	Smooth	3	Heavy and Chewy	7
	Sandy	3	Firm & Chewy	3
	Course	4		
15	Smooth	2	Firm & Chauge	8
13			Firm & Chewy	
	Sandy	3	Rough and Chewy	2
	Course	5		

230 Texture is appearance, finish or consistency of the surface of a cookie

231 Mouth fell is the feeling of moistness and dryness or chewiness and smoothness of a substance in the mouth.

232

233

234 235

236

237

238 Shred/Fragmentation/Beak Line

The toughness (the degree of easiness with which breaking cookies is made), fragmentation 239 (appearance of the broken parts) and the appearance of the break line were evaluated for the cookies 240 241 receiving different amounts of spirulina. The results are presented in Table 8. The addition of spirulina affected the easiness with which breaking a cookie was made, the fragmentation and the appearance of 242 the break line. Increasing the spirulina content made the cookies more firm and harder to beak. However, 243 the addition of 5% spirulina did not affect the toughness of the cookies. The panel reported a toughness 244 245 rating of soft-easy to beak for both 0 and 5% spirulina and firm-easy to beak to firm-hard to break for the 246 cookies that received 10 and 15% spirulina, respectively

Also, higher content of spirulina affected the fragmentation and the appearance of the break line. However, irregular large parts and continuous beak lines were observed with the cookies that received no *spirulina* while more granules and smaller parts with irregular line were observed with all the cookies that received *spirulina*. Increasing the percentage of *spirulina* made the parts firmer and stickier. The results showed that adding *spirulina* to cookies may help maintain their integrity and reduce breakage during packaging and distributions.

Salehifar et al. [40] reported that the addition of 0.5-1.5% *spirulina* into cookies did not alter their brittleness. Morsy et al. [44] reported that the addition of 2.5-7.5 *spirulina* did not significantly alter the brittleness and the firmness of the extruded products but concentrations above 7.5% significantly altered the firmness and the brittleness of these products. Ghaly et al. [38] reported that the addition of 3- 9% spirulina to chocolate chip oatmeal cookies affected the easiness with which the cookies were broken but did not affect their fragmentation nor the appearance of the break line.

259

260 Color


The color of the baked cookies is shown in Figure 1 and the color rating results are presented in Table 9. The sensory panel members described the color of the control sample (0% spirulina) as yellow and yellow-orange and the samples that received the 5 and 10% spirulina as green, tallow-green and green-yellow-green while the sample that received 15% spirulina as green, tallow-green, green-yellowgreen and Green-blue-green. The color shifted from dark green to bluish green with the increase of spirulina content.

The intensity or saturation of the color was rated in scale of 1:10 with 1 considered dull color and 10 considered vivid color. The intensity rating of the color by the sensory panel varied from 6.88±0.89 for the yellow-orange color to 10.00±0.00 for the green-yellow-green color. The results obtained from the sensory panel showed that increasing the amount of *spirulina* in the cookies increased the vividness of their color.

- 272
- 273

274	Table 8. Effect of <i>spirulina</i> on the toughness, fragmentations and breaking line of cookies.
275	

Spirulina	Toughn	ess	Fragm	ent	Breakin	g Line
Content (%)	Description	Panelists	Туре	Panelists	Description	Panelists
0	Soft and easy	10	Irregular parts	4	Continuous	6
	to break		Large parts	6	Irregular	4
5	Soft and easy to break	10	Granules	5	Continuous	3
			Large parts	5	Irregular	7
10	Firm and easy to break	8	Granules	4	Continuous	3
			Large parts	4	Irregular	7

Spirulina	Saturation	Color	Panelists	
(%)	Rating			
0	7.00±0.00	Yellow	2	
	6.88±0.89	Yellow-Orange	8	
5	7.00±0.00	Green	1	
	7.66±0.67	Yellow-Green	2	
	8.37±0.38	Green-Yellow-Green	7	

10	7.86±0.87 7.33±0.33 7.83±0.87	Green Yellow-Green Green-Yellow-Green	4 3 3	
15	9.50±0.21	Green	4	
	8.00 ± 0.00	Yellow-Green	1	
	10.00±0.0	Green-Yellow-Green	1	
	9.10±0.29	Green-Blue-Green	4	
The saturation of the color is the intensity of the color in a scale of 1 (dull): 10 (vivid).				

²⁹⁸ 299

- 301
-
- 302
- 303 304

Salehifar et al. [40] reported that the addition of 0.5-1.5% spirulina into traditional Iranian 305 306 cookies did not alter their color compared to that of the original cookies. Morsy et al. [44] reported that 307 the addition of 2.5% spirulina to several extruded products did not change their color, but the addition of 308 5-12.5% spirulina to these products significantly altered their color. Lemes et al. [43] noted that the 309 addition of 5% spirulina to pasta did not change its color from that of the original pasta, but the addition 310 of 10% altered the color of the pasta. Vijayarani et al. [45] noticed slight change of the color of extruded 311 products when the spirulina content was increased from 5 to 15%. Sharma and Dunkwal [42] found change in the color of biscuits due to the addition of 10% spirulina. Lyer et al. [41] found that increasing 312 313 the content of spirulina from 2 to 10% in Indian biscuits decreased the color appearance acceptance and concluded that addition of up to 5% of spirulina may be acceptable. Ghaly et al. [38] reported a change 314 315 of the color of chocolate chip oatmeal cookies when spirulina was added to the cookies and increasing the spirulina content from 3 to 9% increased the vividness of the color. They stated that the color of the 316 317 cookies was acceptable as reported by the members of the sensory panel.

319 **Odor**

318

All the baked samples had a noticeable smell. The odor intensity was measured on a scale of 0: 10 (0= no odor and 10= very strong odor) and the results are shown in Table 10. The results indicated that the odor intensity ranged from faint (4.06-4.89) to strong (8.19-8.69) for the all cookies. However, the number of panelists who reported strong odor increased with increasing the spirulina content. The weighted average for the odor intensity was 6.11, 5.53, 6.02 and 6.63 for the cookies receiving 0, 5, 10 and 15% spirulina, all of which are rated weak odors. Increasing the amount of *spirulina* from 5 to 15% (3 fold) only increased the odor intensity by 19.6 % (from 5.33 to 6.63). The nature of the smell (Hedonic Tone) was also rated on a scale of 1:10 with a score of 1-2 considered as extremely pleasant odor and a score of 10 considered as intolerable odor. The sensory panel rating for the Hedonic Tone was 4.06, 4.63, 5.78 and 6.33 for the cookies that received 0, 5, 10 and 15 % spirulina, respectively. The nature of the smell of the cookies that received 0 and 5% spirulina was pleasant (cookies smell and sweat-yeast smell, respectively) while that of the cookies that revived 10 and 15% spirulina was must-seawater and fishy-seawater, respectively. The weighted average for the Hedonic Tone was 2.97, 3.88, 4.69 and 4.74 for the cookies receiving 0, 5, 10 and 15% spirulina, all of which are within the pleasant odor range. Increasing the amount of spirulina from 5 to 15% (3 fold) increased the Hedonic Tone by 18.14 % (from 3.88 to 4.74). The results showed that adding 5% spirulina did not affect the odor and the addition of a strong aromatic compound to musk the smell of spirulina may be required with higher concentrations (10-15%) of spirulina.

339 Table 10. Effect of *spirulina* on the odor of cookies.

Spirulina Content	Odor Intensity	Panelists	Hedonic Tone	Panellists	Odor Description
(%)					
0	4.89±0.16 (Faint)	4	2.66±0.32 (Extremely Pleasant)	8	Cookie
	6.57±0.76 (Weak)	5	4.06±0.12 (Pleasant)	2	
	8,69±0.00 Strong)	1			
5	4.06±0.24 (Faint)	4	2.43±0.11 (Extremely Pleasant)	6	Sweet-Yeast
	6.17±0.56 (Weak)	5	4.05±0.22 (Pleasant)	2	
	8,19±0.00 Strong)	1	8.06±0.18 (Unpleasant)	2	
10	4.28±0.22 (Faint)	3	2.18±0.15 (Extremely Pleasant)	4	Musty-Seawate
10	6.32 ± 0.56 (Weak)	5	4.06 ± 0.19 (Pleasant)	3	masty beawate
	8,29±0.32 Strong)	2	8.66 ± 0.14 (Unpleasant)	3	
15	4.38±0.19 (Faint)	2	2.33±0.09 (Extremely Pleasant)	3	Fishy-Seawater
	6.47±0.56 (Weak)	5	4.41±0.12 (Pleasant)	3	
	8,41±0.32 (Strong)	2	9.06±0.32 (Unpleasant)	1	

Sharma and Dunkwal [42] found that the addition of 10% spirulina into biscuits did not 351 significantly alter the smell of the biscuit as compared with the biscuits without *spirulina*. Lemes et al. [43] noted no difference in the odor of pasta containing 5-10 % spirulina. Vijayarani et al. [44] found no 352 353 significant differences in the odor of extruded products containing 5-15% spirulina. Ghaly et al. [38] 354 reported no change of the smell of chocolate chip oatmeal cookies when spirulina was added to the 355 cookies at 3% and increasing the spirulina content from 3 to 9% increased the smell of spirulina and stated that a strong aromatic compound may be require to musk the smell of spirulina. 356

357

349

Taste 358

359 The sensation of flavor perceived in the mouth and throat on contact with pieces of cookies was 360 evaluated by the sensory panel. The degree of acceptance of the taste was also rated on a scale of 1 361 (nasty): 10 (delicious). The results are presented in Table 11. The addition and/or increasing the amount 362 of spirulina affected both the taste and the degree of acceptance. The taste of the cookies that received no 363 spirulina was rated sweet/delicious with a degree of acceptance between 8.33 and 10.00 (sweet and 364 delicious). The taste of the cookies that received spirulina varied from sweet to sour or sour-fishy or 365 bitter-fishy and the degree of acceptance also varied from 8.06 (Sweet) to 4.16 (unpleasant) for the 366 cookies receiving 5% spirulina to from 8.09 (Sweet) to 2.38 (bad) for the cookies receiving 15% 367 spirulina. The results showed that adding 5% spirulina did not affect the taste but addition of a flavoring agent to the cookies to musk the taste of spirulina may be required with higher concentrations of spirulina 368 (10-15%). 369

370 Lyer et al. [41] reported that increasing spirulina content in Parathas bread and biscuits from 2 to 371 10%) changed the taste but remained acceptable. Sharma and Dunkwal [42] found that the addition of 372 10% spirulina into biscuits did not result in any significant change in the taste. Lemes et al. [43] noted 373 differences in the taste of pasta containing 5% spirulina compared to the pasta containing no spirulina. 374 Morsy et al. [44] reported that the addition of 2.5% spirulina did not significantly alter the taste of the 375 extruded products, but higher concentrations of 5-12.5% resulted in an undesirable taste. Ghaly et al. [38] 376 reported the addition of 3% spirulina to chocolate chip oatmeal cookies did not change their taste but 377 increasing the spirulina content in the cookies from 6 to 9% may require a strong aromatic compound to 378 musk the smell of spirulina.

379

Nutritional Content 380

The nutritional values of 30 g cookies containing different amounts of *spirulina* are shown in Table 12. The addition of *spirulina* has enhanced the nutritional value of the cookies by increasing the protein and adding vitamins, mineral, omega 3. 6, 7 and 9 fatty acids and amino acids. *Spirulina* is much better

385

386 Table 11. Effect of *Spirulina* on the taste of the cookies.

Spirulina (%)	Taste	Degree of Acceptance	Panellists
	Sweet	8.33±0.35 (Pleasant)	6
	Delicious	10.00±0.00 Delicious	4
5	Sweet	8.06±0.34 (pleasant)	6
	Sour	6.66±0.14 (Tasteless)	2
	Bitter	4.16±0.38 (Unpleasant)	2
10	Sweet	8.11±0.26 (Pleasant)	5
	Sour and Fishy	4±0.34 (Unpleasant)	2
	Bitter and Fishy	2±0.44 (Bad)	3
15	Sweet	8.09±0.18 (Pleasant)	4
	Sour and Fishy	4±0.54 (Unpleasant)	3
	Bitter and Fishy	2±0.38 (Bad)	3

Taste is the sensation of flavor perceived in the mouth and throat on contact with a substanc
The degree of acceptance is the rating of taste on a scale of 1 (nasty): 10 (delicious)

The degree of acceptance is the rating of taste on a scale of 1 (nasty): 10 (delicious)

505

391	Table 12. Nutritional facts for cookies with different spirulina contents.
-----	--

A mount por corving	Spirulina (%)			
Amount per serving	0	3	6	9
Calories (Cal)	145.000	147.100	149.200	151`.300
Carbohydrate (g)	19.400	19.540	19.680	19.820
Fat (g)	4.990	5.039	5.088	5.137
Omega 3 (mg)		6.550	13.100	19.650
Omega 6 (mg)		45.213	90.426	135.639
Protein (g)	5.440	5.930	6.420	6.910
Alanine (mg)		21.700	43.400	68.100
Arginine (mg)		21.000	42.000	63.000
Aspartic Acid (mg)		29.400	58.800	88.200
Cysteine (mg)		2.100	4.200	6.300
Glutamic Acid (mg)		30.100	60.200	90.300
Glycine (mg)		13.300	26.600	39.900
Histidine (mg)		14.000	28.000	42.000
Isoleucine (mg)		15.400	30.800	46.200
Leucine (mg)		25.000	50.000	57.000
Lysine (mg)		11.200	22.400	33.600
Methionine (mg)		3.600	7.200	10.800
Phenylalanine (mg)		7.000	14.000	21.000
Praline (mg)		10.500	21.000	31.500
Serine (mg)		11.900	23.800	35.700
Threonine (mg)		12.600	25.200	37.800
		3.500	23.200	
Tryptophan (mg)				10.500
Tyrosine (mg)		8.400	16.800	25.200
Valine (mg)		16.100	32.200	48.300
Vitamin		20.200	10.600	(0.000
A (µg)		20.300	40.600	60.900
B1 (mg)		166.600	333.200	499.800
B2 (mg)		69.300	138.600	207.900
B3 (mg)		2.569	5.138	7.707
B5 (mg)		2.380	4.760	7.140
B6 (mg)		9.240	18.480	27.720
B9 (µg)		65.800	131.600	197.400
B12 (µg)		4.620	9.240	13.860
C (mg)		41.160	82.320	123.480
E (mg)		3.500	7.000	10.500
H (mg)		0.700	1.400	2.100
K (μg)		17.640	35.280	0.198
Alpha Carotene (µg)		5.250	10.500	15.750
Beta Carotene (mg)		1.330	2.660	3.990
Lutein and Zeaxanthin (µg)		88.200	176.400	264.600
Choline (mg)		46.200	92.400	138.600
Folic Acid (µg)		0.027	0.054	0.081
Pantothenic Acid (µg)		0.004	0.007	0.0108
Minerals				
Calcium (mg)		117.600	235.200	352.800
Magnesium (mg)		1.785	3.570	5355
Iron (mg)		0.364	0.728	1.092
Phosphorous (mg)		6.426	12.852	19.278
Potassium (mg)		12.810	25.620	38.430
Sodium (mg)	157.363	165.049	172.735	180.421
Manganese (µg)		1.400	2.800	4.200
Zinc (µg)		13.300	26.600	39.900
Boron (µg)		27.300	54.600	81.900
Copper (µg)		2,100	4.200	6.300
Molybdenum (µg)		21.000	42.000	63.000
Selenium (µg)		3.500	7.000	10.500

Cookie Weight = 30 gCookie Size = 5 cm diameter x 0,5 cm height

source of protein (65%) than milk (4.3%), eggs (13.3%), pulses (24%) and soybean (43.2%). The beta carotene in *spirulina* (1900 μ g/g) is much higher than that in carrots (18.9 μ g/g), spinach (55.8 μ g/g) and mango (27.4 μ g/g). The iron content in *spirulina* (0.522 mg/g) is also higher than spinach (0.109 mg/g) and soybean (0.115 mg/g). Table 13-17 show the health benefits of amino acids, water soluble and fatsoluble fatty acids, minerals and vitamins found in *spirulina*.

402 Because of its high contents of highly valuable bioactive compounds, *spirulina* has been used to 403 stimulate the immune system by enhancing the production of antibodies and cytokines and, thus, improving the resistance to infections in humans. Spirulina preparations have proved to be effective 404 405 against HIV, herpes virus, cytomegalovirus and influenza virus as well as preservation of the resident 406 intestinal micro flora (especially lactic acid bacilli and bifid bacteria) and decreasing of Candida albicans 407 level. Many of the phytonutrients in spirulina function as antioxidants and anti-inflammatory nutrients (Table 18) working together in synergistic fashion to provide cardiovascular benefits. Because of this 408 409 unique combination of antioxidant and anti-inflammatory nutrients, Spirulina has several health benefits including: cardiovascular support and prevention of cardiovascular diseases, heart, kidney and liver 410 411 disease, obesity, neurodegenerative disease, arthritis, allergies, prevention of breast, cervical, colon and 412 esophageal cancers, cholesterol control and improved regulation of blood sugar [21-25,28-30,34,46,61-63].

413

414 415

CONCULOSION

The incorporation of *spirulina* into cookies will enrich their nutritional values by increasing the protein content and adding vitamins, minerals, omega 3 and omega 6 oils and amino acids. *Spirulina* is a good source of protein, beta carotene and iron. The protein content in *spirulina* (65%) is much higher than that in milk (4.3%), eggs (13.3%), pulses (24%) and soybean (43.2%). The beta carotene in *spiruina* (1900 μ g/g) is much higher than that in carrots (18.9 μ g/g), spinach (55.8 μ g/g) and mango (27.4 μ g/g). The iron content in *spirulina* (0.522 mg/g) is also higher than spinach (0.109 mg/g) and soy bean (0.115 mg/g). However, adding spirulina to cookies affected their smell, color, appearance, texture and taste.

The addition of *spirulina* to the cookies affected both the texture and mouth feel compared to the control (0% spirulina). The cookies that received no *spirulina* had smoother texture and moist-smooth mouth feel whereas those received *spirulina* had sandy-courses texture and heavy-chewy mouth feel. Increasing the percentage of spirulina made the surface of the cookies more sandy-courses and made the mouth feel firmer and chewier.

428 429

430

431

Comment [KA3]: Conclusion

432 Table 13. Health benefits of amino acids in *spirulina* [46-49].433

Amino Acid	Health Benefits
Amino Acid Alanine	Is a critical player in the body's protein biosynthesis and has certain regulatory functionality, the
	liver absorbs alanine from the blood and converts it into pyruvate to enables a faster and more effective supply of energy to the body. I it supports the immune system and prevents kidney stones which are produced by the body as insoluble toxic compounds, stimulates the production
	of glucagon when blood sugar is too low and supports the generation of glucose from other
	amino acids, protects the prostate gland from an irregular enlargement which cause severe pair during urination, reacts with glucose which leads to an increased production and excretion o
	insulin, increases physical fitness when combined with exercise and protects from cardiovascula illnesses.
Arginine	Reduces blood pressure and improves blood flow, reduces risk of heart disease and type 2
	diabetes, helps increase insulin levels and decrease blood glucose levels in diabetes, stimulates the immune system to act on and destroy pathogens, reduces anxiety, increases stamina
	improves wound healing, maintains memory during aging, increases fertility and fights Aging.
Aspartic acid	Improves muscle strength, increases lean body mass and boosts energy levels, increases natura testosterone production which is needed for building muscles, increases endurance and improves
	performance, regulates hormone production, boosts growth hormones and positively affect
	insulin-like growth factors, enhances the level of nitric oxide which helps increase muscula pumps and vascularity and plays a major role in enhancing memory enhancers and preventing
	depressants.
Cysteine	Neutralizes free radicals that can damage cells and tissues, prevents kidney and liver damage
	prevents side effects of drugs and environmental toxins, improves psychiatric disorders and
	decreases withdrawal symptoms, prevents relapse in cocaine addicts, relieves symptoms o
	respiratory conditions and reduces inflammation in bronchial tubes and lung tissues, improve cystic fibrosis, asthma, pulmonary fibrosis and nasal and sinus congestion, boosts brain health
	and slows the loss of cognitive ability in people with Alzheimer's, improves fertility in men and
	women, stabilizes blood sugar, reduces heart disease and improves immune function.
Glutamic acid	Improves gastrointestinal health such as irritable bowel syndrome, ulcerative colitis
	diverticulosis, diverticulitis, leaky gut, joint pain, autoimmune response, Hashimoto's disease arthritis and skin issues like psoriasis, boosts brain health, improves diarrhea by balancing mucus
	production, promotes muscle growth and decreases muscle wasting, cleanses the body from high
	levels of ammonia, burns fat, helps suppress insulin levels and stabilizes blood glucose.
Histidine	Protects heart, reduces blood pressure, reduces oxidative stress, reduces inflammation, decreases
	insulin resistance, prevents obesity, protects skin from UV radiation, improves brain function
	prevents blood clots, suppresses seizures, protects eyes from inflammation and prevents oxidative stress.
Isoleucine	Is antiaging and anti-inflammation and is important for synthesis of hemoglobin and othe
	proteins. It increases muscle mass, prevents essential amino acid deficiency in individuals or
	protein-restricted diets, treats hot flushes in postmenopausal women, improves vision
	disturbance, dermatitis and diarrhea, detoxifies nitrogen wastes, heals wound, treats erectile
	dysfunction, diabetes, hair losses, inflammation, osteoarthritis, rectal diseases, insomnia, weigh
	loss and cancer, improves blood circulation, reduces cholesterol, boosts the immune system and
Lucien	muscle growth and improves fertility. Helps in weight loss, protects against liver and colorectal cancer, manages blood glucose levels
Luciell	and prevents complications of diabetes, keeps blood pressure and cholesterol within targe
	ranges, prevents heart disease and stroke, helps maintain strong bones and teeth, improves mood
	and memory, improves gut health and helps getting a good night's sleep.
Lysine	Is important for normal growth and muscle turnover. It protects against and treats cold sores by
	blocking arginine, reduces anxiety by blocking stress response receptors, improves calcium
	iron, and zinc absorption and retention, reduces blood pressure, promotes wound healing by
	helping create collagen, helps produce enzymes, antibodies and hormones, supports the immune
	system, treats herpes virus, treats poor concentration, irritability, nausea and red eyes problems treats hair losses and supports hair growth, treats anorexia, prevents bone loss, promotes healthy
	ucats han losses and supports han growth, treats anotexia, prevents bone loss, promotes fielding

growth of skin, prevents plaque buildup in arteries and treats shingles 434 435 Table 13. Continued (Health benefits of amino acids in spirulina). 436 Amino Acid Health Benefits Methionine Provides an important role relating to the growth of new blood vessels, heals wounds, treats drug withdrawal, schizophrenia, radiation, copper poisoning, asthma, allergies, alcoholism and depression, supports the proper function of the immune system, reduces risk of colorectal cancer, lowers tremors in Parkinson's patients, builds bone strength and helps treat the effects of liver disease. Phenylalanine Is direct precursor of tyrosine in the human body and is used as a marker for Parkinson's Disease. It treats depression and pain, treats vitiligo which is a skin condition where the skin loses its colorist, increases natural opioids in the body by inhibiting the enzyme carboxypeptidase which degrades endogenous opioids in the body, alleviates alcohol withdrawal symptoms, enhances the effectiveness of acupuncture anesthesia and improves ADHD symptoms in the short term. Praline Is vital for nerve conduction and brain function, improves digestion, helps with weight loss, reduces the risk of certain cancer, provides anti-Inflammatory and anti-aging benefits, prevents skin problems, stimulates hair growth and prevents hair loss, reduces the risk of coronary heart disease and minimizes the risk of stroke, reduces the risk of breast cancer, promotes colon health and facilitates regular bowel movements, improves bone and teeth health, reduces blood pressure, strengthens the immune system, plays an important role in maintaining good skin, aids in the elimination of toxins and waste from the body and prevents the occurrence of wrinkles and pigmentation Serine Is a precursor to other amino acids like glycine and cysteine and is important in cell communication within the brain. It assists in production of immunoglobulins and antibodies for a healthy immune system, helps in the absorption of creatine that helps build and maintain the muscles, treats brain diseases such as amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome and Alzheimer disease, plays a role in forming of all four bases of DNA and RNA (adenine, guanine, cytosine, thymine, and uracil, assists in production of antibodies (immunoglobulins), plays a central role in information processing, assists in stimulating the nervous system, produces serotonin which ultimately affects mood, digestion and sleep, increases levels of creatine which promotes muscle mass in the body, reduces symptoms of the brain disease (HSAN1) that causes loss of sensation in the legs and feet, treats seizures, increases blood flow to the brain, improves Huntington's disease, slows the appearance of wrinkles and decreased the presence of pre-existing wrinkles, combats depression and schizophrenia and helps relieve anxiety. Threonine Treats various nervous system disorders including spinal spasticity, multiple sclerosis, familial spastic paraparesis and amyotrophic lateral sclerosis, treats different types of depression, makes up elastin, collagen and enamel protein, promotes the proper fat metabolism in the liver, aids the digestive and intestinal tracts to function more smoothly and helps in metabolism in the upper reaches of the small intestine (ileum), produces the mucus gel layer that covers the digestive tract which is a barrier to digestive enzymes that can damage the intestines, produces antibodies to boost the immune system, supports the liver and treats amyotrophic lateral sclerosis (Lou Gherigs Disease) Tryptophan Is a precursor to the brain neurotransmitter serotonin (low serotonin production in the brain leads to depression, anxiety, mood disorders, insomnia, poor cognition). It improve sleep quality and lifts mood, reduces depression and anxiety, helps with recovery from addictions, reduces headaches and migraines, maintain a healthy weight, contributes to the therapy of autism, cardiovascular disease, cognitive function, chronic kidney disease, depression, inflammatory bowel disease, multiple sclerosis, sleep, social function and microbial infections, facilitates the diagnosis of certain conditions such as human cataracts, colon neoplasms, renal cell carcinoma and prognosis of diabetic nephropathy, brings on natural calming effects, induces sleep, fights anxiety, helps burn more body fat, stimulates the release of growth hormones and reduces food cravings for carbohydrates and works in the brain and central nervous system to boost feelings of

37		well-being, connection and safety
38		
39		
40 41 42	Table 13. Contin	nued (Health benefits of amino acids in spirulina).
	Amino Acid	Health Benefits
	Tyrosine	Is a precursor for three important neurotransmitters (dopamine regulates reward and pleasure centers and memory and motor skills, norepinephrine and adrenaline which are responsible for the fight-or-flight response to stressful situations as they prepare the body to "fight" or "flee" from a perceived attack or harm, thyroid hormones which are produced by the thyroid gland and primarily responsible for regulating metabolism, melanin which is the pigment that gives skin, hair and eyes their color, improves mood and addresses mental health disorders like depression, bipolar or obsessive-compulsive disorder. It improves brain function, mood and stress response, helps with regulating mood swings caused by premenstrual syndrome (PMS) or premenstrual dysphoric disorder (PMDD), increases good cholesterol levels and reduces bad cholesterol levels, maintains optimal health of the digestive system, skin, hair and eyes, treats sleep-related conditions like insomnia, sleep apnea and bruxism (teeth grinding), helps relieve facial pain, assists in quitting smoking, aids with attention deficit-hyperactivity disorder (ADHD) and Tourette's syndrome, aids with brain maturation of the infant and plays key roles in the neurobehavioral regulations of food intake, satiation and sleep-wake rhythm.
	Valine	Is needed for proper mental functioning and is vital for the muscle metabolism and the growth of muscle tissues as it assists in maintaining the proper amount of nitrogen in the body, plays an important role in building muscle and helps to decrease muscle soreness, helps in stress management, boosts immune system and healthy growth, improves mental focus during exercise which is thought to result from the fatigue, prevents muscle wasting by supplying the muscles with extra glucose for energy production during intense physical activity, helps with liver and gallbladder diseases as well as damage to these organs caused by alcoholism and drug abuse, treats or even reverses hepatic encephalopathy or alcohol-related brain damage, helps remove potentially toxic excess nitrogen from the liver by transporting nitrogen to other tissues throughout the body as required, promotes normal growth, repairs tissues, regulates blood sugar and provide the body with energy and helps stimulate the central nervous system.
43		
14		
15 16		
10 17		
8		
9		
0		
1 2		
3		
4		
5		
6 7		
/ 8		
9		
0		
1		
52		

Fatty Acid	Health Benefits
Alpha Linolenic	Is an extremely important nutrient for muscles and body growth and is responsible for the production of red blood cells. It improves cognitive function, treats anemi- circulates oxygen, prevents chronic diseases, boosts immune system, treats fatigu- and helps reverse insomnia.
Docosahexaenoic	Important for bone formation, maintenance of bone health and prevention of osteoporosis. It prevents diabetes, maintains heart health, prevents migrain headaches, relieves anxiety and helps with premenstrual syndrome.
Linolenic	Builds and maintains strong bones, helps alleviate back pain, keeps bones in the proper shape, helps muscles function properly, protects against cancer and diabete prevents arthritis and osteoporosis, helps in maintaining optimal body weight in bot males and females, helps the nervous system maintain a proper pressure in arterie suppresses the growth of polyps which has the potential to lead to cancer, protect against premenstrual depression, prevents kidney stones, controls alkaline pH lever regulates blood pressure and protects teeth by keeping the jaw bone strong and sturct throughout your life.
Gamma Linolenic	Improves brain function, reduces osteoarthritis symptoms, prevents and treats yea infections, helps metabolize insulin, helps with kidney stones, supports metabol processes, protects against oxidative stress and prevents vitamin D deficiency.
Dihomo-gamma Linolenic	Enables the body to form red blood cells, helps maintain healthy bones, bloc vessels, nerves and immune function, contributes to iron absorption, preven cardiovascular disease and osteoporosis, lowers cholesterol and high blood pressur maintains proper level of white blood cells or neutrophils which fight off infection maintains proper level of bone mineral density and avoids risk of osteoporosis, play an important role in maintaining collagen, helps prevent or delay arthritis and help reduce the production of free radicals.
Palmitoleic	Promotes good bone health and is good for thyroid health, regulates blood sug level, kick-starts metabolism, protects against diseases, relieves inflammatio combats PMS Syndrome., prevents epileptic seizures, boosts vitamin absorptio supports digestion, improvs cognitive function and serves as a co-enzyme to assis metabolic activities in the human body.
Oleic	Is a good antimicrobial agent and trading allergy. It prevents cardiovascular disease ischemic stroke and osteoporosis, maintains good bone density and prevents cancer.
Erucic	Prevents cardiovascular diseases and prostate cancer, maintains normal bloc pressure, prevents and treats dermatitis and photosensitivity, lung swelling an airway narrowing, allergies, asthma and common cold.

Table 14 Health benefits of fatty acids in *spiruling* [25-26 50-52]

Mineral	Health Benefits
Boron	Improves brain function, reduces osteoarthritis symptoms, prevents and treats yeast infections, helps metabolize insulin, helps with kidney stones, supports metabolic processes, protects against oxidative stress and prevents vitamin D deficiency.
Calcium	Is beneficial to postmenopausal women with an increased risk of low bone density and is responsible for building the bone structure, strong teeth and fetal development, strengthens the jawbones that keep the teeth in position, ensures teeth are strong and less exposed to damage from bacteria and tartar, promotes calcium bone levels in children and adolescents, promotes the maintenance of bone mass in adults, decreases the risk of bone fracture in elderly adults, slows the rate of bone loss, keeps muscles strong, maintains the circulatory system, manages the digestive process, encourages bone growth., treats sarcoidosis, treats kidney failure and lactose intolerance.
Copper	Helps maintain healthy bones, blood vessels, nerves and immune function, contributes to iron absorption, prevents cardiovascular disease and osteoporosis, lowers cholesterol and high blood pressure, maintains proper level of white blood cells or neutrophils which fight off infection, maintains proper level of bone mineral density and avoids risk of osteoporosis, plays an important role in maintaining collagen, helps prevent or delay arthritis and helps reduce the production of free radicals.
Iron	Is an extremely important nutrient for muscles and body growth and is responsible for the production of red blood cells, treats anemia, circulates oxygen, prevents chronic diseases, improves cognitive function, boosts immune system, treats fatigue and helps reverse insomnia.
Magnesium	Is important for bone formation, maintenance of bone health and prevention of osteoporosis. It prevents diabetes, maintains heart health, prevents migraine headaches, relieves anxiety and helps with premenstrual syndrome.
Manganese	Is good for thyroid health and is crucial for promoting good bone health, regulates blood sugar level, kick-starts metabolism, protects against diseases, relieves inflammation, combats PMS Syndrome., prevents epileptic seizures, boosts vitamin absorption, supports digestion, improvs cognitive function and serves as a co-enzyme to assist metabolic activities in the human body.
Molybdenum	Is a good antimicrobial and trading allergy. It prevents cardiovascular diseases, ischemic stroke and osteoporosis, maintains good bone density and prevents cancer.
Phosphorus	Is important for preventing cardiovascular diseases and prostate cancer, maintains normal blood pressure, prevents and treats dermatitis and photosensitivity, lung swelling and airway narrowing, allergies, asthma and common cold.
Potassium	Is good for improving cognitive function and is a gastro protective. It prevents and treats Cohn's disease, heart disease, prostate and colon cancer, leukemia, respiratory disease, oxidative stress, helps in cancer cell prevention and glucose metabolism, modulates antiaging, lowers cholesterol and treats obesity.
Zinc	Protects against breast and colon cancer, leukemia, neural degradation, heart disease, liver fibrosis, obesity, diabetes, antiaging and skin sun damage

Table 15. Health benefits of minerals in spirulina [21,28,53-55].

485	Table 16. Health benefits of water-soluble vitamins in spirulina [21,23,28,53-60].
486	

Vitamin	Health Benefits
Thiamine (B1)	Boosts energy production, safeguards the nerves system, slows the body aging process, stimulates digestion and enhances memory, helps to prevent Alzheimer's disease, improves appetite, boosts body immunity, treats alcoholism and improves mood
Riboflavin (B2)	Helps body growth and overall good health, helps the body break down carbohydrates, proteins and fats to produce energy, allows oxygen to be used by the body.
Niacin (B3)	Reduces risk of heart diseases, improves mental health, treats diabetes, alleviates symptoms of arthritis, lowers levels of triglycerides, improvs skin function and treats impotency, lowers bad cholesterol and regulates digestion.
Pantothenic acid (B5)	Stimulates hormone production, relieves stress, keeps the heart healthy, reduces fatigue and provides stamina to the body, assists in skin and hair care, helps the body generate more hemoglobin, heals wounds and prevents rheumatoid arthritis
Pyridoxine (B6)	Supports healthy skin, detoxifies the liver, enhances the health of blood vessels, improves cognitive function, assists in relieving mood swings, curies anemia, supports eye health, assist in relieving the symptoms of rheumatoid arthritis, prevents diabetes, assist in relieving carpal tunnel syndrome, treats pregnancy related nausea and treats hair loss.
Folate (B9)	Prevents birth defects, premature aging and heart attacks, improvs the working of the human heart by removing homocysteine which is one of the major causes of heart attacks at early ages, controls the cholesterol level in the heart and ensures that the cardiovascular system is saved from various disorders, curs mental disorder, helps the body produce more red blood cells, combats depression, acts as a coenzyme, supports muscle build-up, combats free radicals, prevents cancer and aids fertility.
Cobalamin (B12)	Supports the normal function of nerve cells, assists in red blood cell formation and DNA synthesis, benefits the body by boosting energy, improves memory, helps prevent heart disease, improves heart health by decreasing homocysteine, prevents major birth defects, supports bone health and prevents osteoporosis, reduces risk of macular degeneration, improves mood and symptoms of depression, prevents the loss of neurons and supports healthy hair, skin and nails
Ascorbic acid (C)	Reduces the risk of chronic diseases, helps battle high blood pressure, fights heart disease risk factors, reduces blood uric acid levels, prevents gout attacks, prevents iron deficiencies by improving iron absorption and boosts immunity by helping white blood cells function better
Biotin (H)	Helps maintain p roper metabolic function, controls the level of sugar in the bloodstream, enhances the condition of skin, maintains strong and beautiful nails and healthy hair, treats multiple sclerosis and diabetics, relieves muscle cramps, balances cholesterol levels and assists in obesity, antiaging and ulcer healing
Choline	Prevents breast and colon cancer, leukemia, neural degradation, heart disease, liver fibrosis, obesity, diabetes and skin sun damage.

Table 17. Health benefits of fat-soluble vitamins in Spirulina [21,23,28,53-60].

Vitamin	Health Benefits
Α	Maintains healthy vision, protects eyes from night blindness and age-related decline,
	ensures normal function of immune system and organs, aids the proper growth and
	development of babies in the womb, lowers risk of Hodgkin's lymphoma, cervical,
	lung and bladder cancers, supports a healthy immune system, reduces the risk of
	acne, supports bone health and reduces the risk of fractures.
E	Balances cholesterol, ffights free radicals, prevents disease development, repairs damaged skin, protects against skin cancer from ultraviolet rays, treats scars, acne
	and wrinkles, helps scalp from becoming dry and flakey, makes hair look healthier
	and fresher, balances hormones, maintains a healthy weight, keeps a regular
	menstrual cycle and reduces the cramping, anxiety and cravings, reduces menstrual
	blood loss, decreases the risk of age-related macular degeneration, protects against
	Alzheimer's disease, lowers cancer risk and improve growth and development of
	infants and children.
K	Prevents the calcification of the arteries, maintains the integrity of the bone structure,
	promotes absorption and utilization of calcium, slows down the bone density loss, regulates menstrual cycle and bleeding, reduces inflammation related to cancer, helps
	stabilize patients suffering from liver cancer, helps brain function fully, improvs
	cognitive function, prevents tooth decay, prevents arthritis and osteoporosis, heals
	wounds and keeps digestion and cardiovascular systems up and running.
Alpha	Removes destructive free radicals from the body before they cause the tissue damage
carotene	that can lead to chronic diseases like heart disease and cancer, prevents cancer by
	stimulating cell-to-cell communication and promotes a strong component of a
Beta	longevity and healthy mined.
carotene	Assist in maintaining longevity or healthy mined, helps immune systems, protects against free radicals, lowers the risk of developing cancer and heart diseases,
carotene	prevents the deterioration of cognition and compensates for some of the damage to
	the lungs caused by oxygen free radicals.
Lutein	Prevents eye diseases including age-related macular degeneration (AMD), cataracts
	and retinitis, prevents colon cancer, breast cancer, type 2 diabetes and heart disease,
	reduces inflammation, preserves skin health and filters high-energy wavelengths of
	visible light which slows down the rate of oxidative stress.
Zeaxanthin	Filters harmful high-energy blue wavelengths of light resulting in the protection and
	maintaining healthy cells in the eyes, improves the contrast in the eyes and stimulates a faster recovery process from light damage, increases macular pigment
	density resulting in significant improvements in visual processing speed, supports
	aging eyes, maintains healthy skin growth, improves cognitive functioning and
	supports brain health in older adults,

Table 18. Health benefits of spirulina antioxidant/anti-inflammatory compounds [21-25,28-30,34,46,61-63].

Group	Compound	Health Benefits				
	Cyanidins	Help in treating and preventing liver disease, various types of cancer, diabetes and arthritis, assists in cholesterol modulation and cartilage protection				
Anthocyanins	Pelargonidins	Help in treating and preventing colon and liver cancer, neurodegenerative disorder, parkinsonism, meal induced postprandial inflammation, hepatitis B and gastrointestinal digestion				
	Procyanidins	Help in treating and preventing cardiovascular disease, coronary heart disease, assists in stabilization of collagen in joints, blood vessels and muscles inflammation, provides nutritional support to reduce capillary permeability and antiplatelet aggregation				
	Catechins	Prevents and assists in treating obesity, cardiovascular disease, various types of cancer, myocardial infection, assist in cholesterol modulation,, atherosclerosis and antiplatelet aggregation				
Flavonols	Gallo-catechins	Prevents skin cancer and treats HIV, helps bone metabolism, protect against neurodegenerative disease, UV-B damage, diabetes, melanoma, acts as antimicrobial and antimetastatic				
	Epicatechins	Prevents cardiovascular diseases, periodontal diseases, various types of cancer, hepatitis C and blastocyst. It modulates testosterone secretion, improves insulin resistance and glucose tolerance.				
	Kaempferol	Prevents cardiovascular diseases, ischemic stroke, cancer and osteoporosis. Helps maintain good bone density, acts as an antimicrobial and assists with allergy.				
	Quercetin	Prevents cardiovascular diseases and prostate cancer. It modulates blood pressure, treats dermatitis, lung swelling and airway narrowing, assists and improves allergies and asthma and treats common cold.				
	Ellagic acid	Prevents Cahn's disease, heart disease, prostate and colon cancer, leukemia, respiratory disease and oxidative stress. Improves glucose metabolism, antiaging, modulates cholesterol, prevent and treats obesity, is a gastroprotective and assists in ulcer healing				
Hydroxy- benzoic acids	Gallic acid	Prevents and treats breast and colon cancer, leukemia, neural degradation, heart disease, liver fibrosis and obesity. Treats diabetes and skin sun damage and modulates aging.				
	Vanillic acid	Protects against ulcerative colitis, oxidative brain damage, colorectal cancer and HIV. Assists with immune system regulation, malaria and ant sickling, and is ai effective antimicrobial.				
\sim	Salicylic acid	Protects and treats colorectal cancer and blood thinning, reduces pain, hep with skin cleansing, removal of warts and corns, curs acne, calluses and dandruff.				
	Cinnamic acid	Protects against lung adenocarcinoma and breast cancer, improves diabetes, assist with obesity, gastrointestinal hormone secretion and mycobacterium tuberculosis, improves mood and cognition, assists with allergy and antimalarial activity, is an effective antifungal.				
Hydroxy- cinnamic acids	Coumaric acid	Prevents heart disease, liver disease, stomach cancer and renal toxicity. Improves diabetes, assists with immune system regulation and cholesterol modulation.				
chinamic actus	Caffeic acid	Prevents liver cancer, HIV, AIDS, neurodegenerative disease, chlamydia pneumonia infection. Assists with hypertension, male fertility and immune system regulation.				
	Ferulic acid	Prevents kidney disease, bone degenerative disease, breast and liver cancer, colon and prostate cancer, tongue and lung cancer. Protects skin from photo damage, prevents and treats diabetes, slows aging, assists with cholesterol modulation and menopausal				

		symptoms		
	Ellagitannins	Prevents heart disease, prostate cancer, inhibits cancer growth, reduces gastric		
Tannins	-	inflammation, lowers blood sugar, assists with obesity and modulates aging.		
Tannins	Gallo-tannins	Prevents colorectal cancer, eye disease, diabetes, assists with abdominal pain, diarrhea,		
		antimicrobial activities		
Stilbenes	Resveratrol	Prevents cardiovascular disease, Alzheimer, inhibits cancer growth, helps with obesity		
Suidenes		and diabetes, lowers high blood pressure and lowers cholesterol.		

510 The addition of spirulina affected the easiness with which breaking a cookie was made, the 511 fragmentation and the appearance of the break line. Increasing the spirulina content made the cookies more firm and harder to beak. However, the addition of 5% spirulina did not affect the toughness of the 512 513 cookies. The panel reported a toughness rating of soft-easy to beak for the cookies that received 0 and 5% spirulina and firm-easy to beak to firm-hard to break for the cookies that received 10 and 15% spirulina, 514 515 respectively. Also, higher content of spirulina affected the fragmentation and the appearance of the break line. Irregular large parts and continuous lines were observed with the cookies that received no spirulina 516 while more granules and smaller parts with irregular line were observed with all the cookies that received 517 518 spirulina. Increasing the percentage of spirulina made the parts firmer and stickier. The results showed 519 that adding *spirulina* to cookies may help maintain their integrity and reduce breakage during packaging 520 and distributions.

The sensory panel members described the color of the control sample (0% spirulina) as yellow and yellow-orange and the samples that received the 5 and 10% spirulina green as yellow-green and green-yellow-green while the sample that received 15% spirulina as green, yellow-green, green-yellowgreen and Green-blue-green. The color shifted from dark green to bluish green with the increase of spirulina content. The intensity rating of the color by the sensory panel varied from 6.88 ± 0.89 for the yellow-orange color to 10.00 ± 0.00 for the green-yellow-green color. Increasing the amount of *spirulina* increased the vividness of the color

All the baked samples had a noticeable smell. The odor intensity ranged from faint (4.06-4.89) to 528 529 strong (8.19-8.69). The weighted average for the odor intensity was 6.11, 5.53, 6.02 and 6.63 for the cookies receiving 0, 5, 10 and 15% spirulina, all of which are within the weak odor range. Increasing the 530 531 amount of spirulina from 5 to 15% (3 fold) only increased the odor intensity by 19.6 % (from 5.33 to 532 6.63). The sensory panel rating for the Hedonic Tone was 4.06, 4.63, 5.78 and 6.33 for the cookies that 533 received 0, 5, 10 and 15 % spirulina, respectively. The nature of the smell of the cookies that received 0 534 and 5% spirulina was pleasant while that of the cookies that revived 10 and 15% spirulina was must-535 seawater and fishy-seawater, respectively. The weighted average for the Hedonic Tone was 2.97, 3.88, 4.69 and 4.74 for the cookies receiving 0, 5, 10 and 15% spirulina, all of which are within the pleasant 536 odor range. Increasing the amount of spirulina from 5 to 15% (3 fold) increased the Hedonic Tone by 537 18.14 % (from 3.88 to 4.74). The results showed that adding 5% spirulina did not affect the odor and the 538 539 addition of a strong aromatic compound to the cookies to musk the smell of spirulina may be required 540 with higher concentrations (10-15%) of spirulina.

The addition and/or increasing the amount of *spirulina* affected both the taste and the degree of acceptance. The taste of the cookies that received no *spirulina* was rated sweet/delicious with a degree of acceptance between 8.33 and 10 while the taste of the cookies that received *spirulina* varied from sweet-

sour to bitter-fishy and the degree of acceptance also varied from 8.06 (Sweet) to 4.16 (unpleasant)a for 544 545 the cookies receiving 5% spirulina to from 8.09 (Sweet) to 2.38 (bad) for the cookies receiving 15% spirulina. The results showed that adding 5% spirulina did not affect the taste and the addition of a 546 flavoring agent to musk the taste of spirulina may be required with higher concentrations of spirulina 547 (10-15%). 548 549 REFERENCES 550 1. CAPMAS. 2019. Number of students enrolled in schools under the Ministry of education. Central 551 Agency for Public Mobilization and Statistics, Ministry of Education, Egypt. 552 Soliman, G., M. Azmi and S. El Said. 2007. Prevalence of anemia in Egypt (Al-Gharbia 553 554 Governorate). Egyptian Journal of Hospital Medicine, 28(2):395-305. 3. El Sayed, N. A., A. Gad and A. Nofal. 1999. Assessment of the prevalence and potential 555 556 determinants of nutritional anemia in Upper Egypt. Food Nutrition Bulletin, 20(2):417-421. 4. Elalfy, M. S., M. Hamdy and S. Abdel Maksoud. 2012. Pattern of milk feeding and family size as 557 risk factors for iron deficiency anemia among poor Egyptian infants 6 to 24 months old. Nutrition 558 559 Research, 32(1):93-99. 5. Mansour, P., A. S. Barduagni and F. Ahmed. 2004. Anemia among schoolchildren in Qena 560

5. Mansour, P., A. S. Barduagni and F. Ahmed. 2004. Anemia among schoolchildren in Qena Governorate, Upper Egypt East Mediterranean Health Journal, 10(8) :916-920.

561 562

563

564

565

566

567

568 569

570

571 572

573 574

575

576

577

578

579

580

581

582

583 584

585

586

587 588

- 6. Mohamed, A., and A. Abo-donia. 2011. Contributing factors of iron deficiency anemia among children under two years attending family health centers in Alexandria. New York Science Journal, 4(1):35.
- Selmi, A. S. and A. Al-Hindi. 2011. Anemia among school children aged 6-11 years old in Gaza Strip, Palestine. Annals of Al-Quds Medicine, 7(1):27-32.
- 8. Kanagalingam, M. G., N. G. Forouhi and I. A. Greer. 2005. Changes in booking body mass index over a decade: retrospective analysis from a Glasgow Maternity Hospital. British Journal of Obstetrics and Gynaecology, 112(12):1431-1433.
- 9. Ogden, C. L., M. D. Carroll, L. R. Curtin, M. M. Lamb and K. M. Flegal. 2010. Prevalence of high body mass index in US children and adolescents, 2007-2008. Journal of the American Medical Association, 303(2):242-249.
- **10.** El-Masry, S. A. 2007. Nutritional assessment of Egyptian children. Egyptian Medical Journal, 6(1):40-49.
- Shaaban, S. Y., S. A. El-Masry, N. T. Younis and H. H. Mohamed. 2008. Malnutrition among preschool children in Cairo. Egyptian Pediatric Association Gazette, 56(1):26-34.
- 12. El-Shafie, M. A., M. H. Bahbah and A. M. Randa. 2011. Recent advances in pathophysiology and management of childhood obesity. Master essay, Menoufia: Faculty of Medicine Menoufia University, Menoufia, Egypt.
- **13.** Hafez, A. S., M. Y. EI-Awady and N. E. Hassan. 2000. Obesity profile among primary school children in Cairo. Egypt Journal of Community Medicine, 18(1):99-119.
- 14. El-Shaffe, A. M. and A. A. Sleem. 2013. Prevalence of obesity in primary school children living in Mit-Ghamr State, Dakahlia Governorate. Master Tesis in Pediatrics, Menoufia: Faculty of Medicine, Menoufia University, Menoufia, Egypt.
- **15.** Ismail, G. 1998. Study of the problem of obesity among primary school children in Alexandria. High Institute of Public Health, Alexandria, Egypt.
- 16. Giroux, S. 2008. An evaluation of infant growth: the use and interpretation of anthropometry in infants. WHO Working Group on Infant Growth. Bulletin of the World Health Organization, 73:165–174.

17. UNICEF. 2003. Child rights report, United Nation Children's Fund, New York, New York, USA. Accessed March 2019 from : <u>http://www.unicef.org.uk//</u>.

590

591

592

593 594

595

596

597

598

599 600

601 602

603

604

605

606 607

608 609

610

611

612 613

614

615

616 617

618

619 620

621

622

623

624 625

626 627

628

629 630

631

632

633 634

635 636

637

638 639

- **18.** El-Zanaty, F. and A. Way. 2009. Egypt demographic and health survey. National Population Council, Ministry of Health and Population, Cairo, Egypt, pp: 12–13.
 - El-Gillany, A., A. El-Wehady and M. El-Wasify. 2012. Updating and validation of the socioeconomic status scale for health research in Egypt. East Mediterranean Health Journal, 18(9):962–968.
- UNWFP. 2109. World Food program Report, United Nations, Rome, Italy. Accessed March 2019 from : <u>https://sustainabledevelopment.un.org/partnership/partners/?id=75</u>.
- Becker, E. W. 2004. Microalgae in human and animal nutrition. In Handbook of microalgal culture, A. Richmond (Ed), Oxford: Blackwell), pp: 312-351.
- 22. Batista, A. P., L. Gouveia, N. M. Bandarra, J. M. Franco and A. A. Raymundo. 2013. Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Research, 2(2):164–173.
- Brown, M., R. Mular, M. Miller, I. Farmer and C. Trenerry. 1999. The vitamin content of microalgae used in aquaculture. Journal of Applied Phycology, 11(2): 247-255.
- Gami, B., A. Naik and B. Patel. 2011. Cultivation of *Spirulina* species in different liquid media. Journal of Algal Biomass Utilization, 2(1): 15–26.
- Bandarra, N. M., P. A. Pereira, I., Atista and M. H. Vilela. 2003. Fatty acids, sterol α-tocopherol in *Isochrysis galbana*. Journal of Food Lipids, 18(1): 25-34.
- Donato, M., M. H. Vilela, and N. M. Bandarra. 2003. Fatty acids, sterols, α-tocopherol and total carotenoids composition of *Diacronema vlkianum*. Journal of Food Lipids, 10(2):267-276.
- Molina-Grima, E., E. H. Belarbi, F. G. Acien-Fernandez, A. Robles-Medina and C. Yusuf. 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 20(7–8):491–515.
- 28. Khan, Z., O. bhadouria and P. Bisan. 2005. Nutrition and therapeutic potential of *spirulina*. Current Pharmaceutical Biotechnology, 6(3):373-379
- McCarty, F. M. 2007. Clinical potential of *spirulina*: A source of phycocyanobilin. Journal of Medical Food, 10(4):566-570
- Gouveia, L., C. Coutinho, E. Mendonça, A. P. Batista, I. Sousa, A. Bandarra, N. M. Raymundo. 2008. Functional biscuits with PUFA-ω3 from *Isochrysis galbana*. Journal of the Science of Food and Agriculture, 88(5): 891–896.
- Spolaore, P., C. Joannis-cassan and E. Duran. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2): 87-96.
- 32. Priyadarshani, I. and B. Rath. 2012. Commercial and industrial applications of microalgae- A review. Journal of Algal Biomass Utilization, 3(4):89-100.
- Gouveia, L., A. E. Marques, J. M. Sousa, P. Moura and N. M. Bandara. 2010. Microalgae source of natural bioactive molecules as functional ingredients. Food Science & Technology Bulletin: Functional Foods 7(1): 21–37.
- 34. Chen, Y.Z. and Y.M. Li. 1999. Development of nutritious *Spirulina* noodle. Zhongguo Liangyou Xuebao, 14(4): 13-15.
- 35. Fradique, M., A. Batista, M. Nunes, L. Gouveia, N. Bandarra and A. Raymundo. 2010. Incorporation of Chlorella culgaris and Spirulina maxima biomass on pasta products. Part 1: preparation and evaluation. Journal of Science, Food and Agriculture, 90(12): 1656-1664.
- 36. Feng, C. F. and S. P. Peng. 1991. Production method of blue-bacteria- *Spirulina* drink. Chinese Patent, CN1035425A.
- Adiba, B. D., B. Salem, S. Nabil and M. Abdelkim. 2011. Preliminary characterization of food tablets from date phoenix dactylifera and *Spirulina (Spirulina sp.)* powders. Powder Technology, 208:725-730.
- Ghaly, A., A. Hamouda and A. Alhatab. 2015. Developmebt and sensory evaluation International Journal of Bioprocesse and Biotechnological Advances 1(2):63-73

 AOAC, 2012. Official Methods of Analysis. Association of Analytical Chemists, Rockville, Maryland.

641 642

643

644

645

646

647

648

649

650

651

652

653

654 655

656

657 658

659

660 661

662

663 664

665

666

667

668

669 670

671

672

673 674

675

676 677

678 679

680 681

682

683

684 685

- 40. Salehifar, M., S. Shahbazizadeh, K. Khosravi Darani, H. Behmadi and R. Ferdowsi. 2013. Possibility of using microalgae *Spirulina Platensis* powder in industrial production of Iranian traditional cookies. Iranian Journal of Nutrition Sciences & Food Technology, 7(1): 63-72.
- 41. Lyer, U. M., S. A. Dhruv and I. U. Mani. 2007. Spirulina and its therapeutic implications as a food product. In: Gershwin, M.E. and A. Belay. Spirulina in human nutrition and health. CRC Press, Boca Raton, Florida, (pp: 51).
- 42. Sharma, V. and V. Dunkwal. 2012. Development of *Spirulina* based "biscuits": a potential method of value addition. Ethno Medicine, 6(1):31-34.
- 43. Lemes, A. C., K. P. Takeuchi, J. C. M. de Varvalho and E. D. G. Danesi. 2012. Fresh pasta production enriched with *Spirulina platensis* biomass. Brazilian Archives of Biology and Technology, 55(5): 741-750.
- 44. Morsy, O. M., A. M. Sharoba, A. I. El-Desouky, H. E. M. Bahlol and E. M. Abd El Mawla. 2014. Production and evaluation of some extruded food products using spirulina algae. Annals of Agricultural Science, Moshtohor Journal, 54(4): 329-342.
- 45. Vijayarani, V., S. Ponnalaghu and J. Rajathivya. 2012. Development of value-added product using *spirulina*. International Journal of Health Science and Research, 2(4):42-47.
- Foure, A. and D. Bendahan. 2017. Is branched-chain amino acids supplement an efficient nutritional strategy to alleviate skeletal muscle damage: A system review. Nutrients 9(10):1047-1059.
- 47. Nattia, J. S., K. Kamisoglu, M. G. Ierapetriton, I. P. Androulakis and F. Berthiaume. 2013. Branched-chain amino acids supplementation: Impact on signaling and relevant to critical illness. Bio-Medicine, 5(4): 449-460.
- 48. Bifari, F., C. Roucco, I. Decimo, G. Fumagalli, A. Valerio and E. Nisoli. 2017. Amino acids supplements and metabolic health: A potential interplay between intestinal microbiota and system control. Genes and Nutrition, 12(1):12-27.
- Akram, M., H. M. Asif, M. Uzair, N. Akhtar, A. Madni and S. M. A. Saleh. Amio acids: A review article. Journal of Medicinal Plants, 5(17): 33997-4000.
- 50. Swanson, D., R. Block and S. Mousa. 2012. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Advances in Nutrition 3(1): 1-7.
- Pipingas A., R. Cockerell, N. Grima, A. Sinclair, C. Stough, A. Scholey, S. Myers, K. Croft, A. Sali and M. P. Pase. 2014. Randomized controlled trial examining the effects of fish oil and multivitamin supplementation on the incorporation of omega-3 and omega-6 fatty acids into red blood cells. Nutrients, 6(6):1956–1970.
- Stonehouse, W., L. C. 2014. Does consumption of LC omega-3 PUFA enhance cognitive performance in healthy school-aged children and throughout adulthood? Evidence from clinical trials. Nutrients. 6(6):2730–2758.
- 53. Kamangar, F. and A, Emadi. 2012. Vitamins and minerals supplements: Do we really need them? International Journal of Reviews in Medicine, 3(3):221-226.
- 54. Meyer F., P. Galan, P. Douville, I. Bairati, P. Kegle and S. Bertrais. 2005. Antioxidant vitamin and mineral supplementation and prostate cancer prevention in the SU.VI.MAX trial. International Journal of Cancer, 116(1):182–6.
- 55. Lippman, S. M., E. A.Klein, P. J. Goodman, M. S. Lucia, I. M. Thompson and L. G. Ford. 2009. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The Selenium and Vitamin E Cancer Prevention Trial, Journal of American Medical Association, 301(1):39–51.
- 56. ATBC-CPG. 1994. The effect of vitamin E and beta carotene on the incidence of lung cancer and
 other cancers in male smokers. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study
 Group. New England Journal of Medicine, 330(10):1029–1035

690 691 692	57.	Omenn, G. S, G. E. Goodman, M. D. Thornquist, J. Balmes, M. R. Cullen and A. Glass. 1996. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. New England Journal of Medicine, 334(10):1150–1155.
693	58.	Sesso, H. D., J. E. Buring, W. G. Christen, T. Kurth, C. Belanger and J. MacFadyen. 2008.
694		Vitamins E and C in the prevention of cardiovascular disease in men: The Physicians' Health
695		Study II randomized controlled trial. Journal of American Medical Association, 300(11):2123-
696		2133.
697	59.	Gaziano, J. M., R. J. Glynn, W. G. Christen, T. Kurth, C. Belanger and J. MacFadyen . 2009.
698		Vitamins E and C in the prevention of prostate and total cancer in men: The Physicians' Health
699		Study II randomized controlled trial. Journal of American Medical Association, 301(1):52–62.
700	60.	Clarke, R., J. Halsey, S. Lewington, E. Lonn, J. Armitage and J. E. Manson. 2010. Effects of
701		lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause-
702		specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals. Archives of
703		International Medicine, 170(10):1622–1631.
704	61.	Meyers, K. J., C. B. Watkins, M. P. Pritts and R. H. Liu, 2003. Antioxidant and ant proliferative
705		activities of strawberries. Journal of Agricultural and Food Chemistry 51(6): 6887-6892.
706	62.	Olsson, M. E., C. S. Andersson, S. Oredsson, R. H. Berglund and K. Gustavsson. 2006.
707		Antioxidant levels and inhibition of cancer cell proliferation in vitro by extracts from organically
708		and conventionally cultivated strawberries. Journal of Agricultural and Food Chemistry 54(4):
709		1248 - 1255.
710	63.	Becker, E. W. 2007. Micro algae as a source of protein. Journal of Biotechnology Advances,
711		25(2) 207-210.
712	64.	Appendix:
713	65.	
714	66.	Name: Date:
715		
716	67.	The texture is the appearance, finish or consistency of a surface of a substance. It is the
717		characteristic of the physical structure of an object given by the size, shape, arrangement and
718		proportions of its parts. It could also be defined as the way that a food feels in the mouth.
719	68.	
	60	

69. A-Please describe the surface appearance and mouth feel of the samples using the following list 70.

Appearance	Mouth Feel
Coarse	Heavy
Clumpy	Rough
Grating	Dry
Gritty	Firm
Grainy	Chewy
Granular	Sticky
Sandy	Sandy
Smooth	Grainy
Fuzzy	Smooth
Slimy	Moist
Other (Specify)	Other (Specify)

_ _

71.

73. RATING

	73. RATING					
	Sample	Appearance	Mouth Feel			
	1					
	2					
	3					
	4					
25		74. Thank you for your time				
26	75. Figure S-1. Texture e	valuation sheet (adopted from [38].				
27	76.					
28	77.					
9	78.					
0	79.					
81	80. Name:		Date:			
32 33	81 Shredding/breaking is	s a method of cutting or breaking food into sm	all nieces			
34	82.	sumethod of cutting of oreaking food into sh	ini proces.			
5		asiness with which breaking is made, the appe	earance of the broken parts a			
		the samples using the following list.	curanee of the broken parts t			
37	84.	ie sumples using the following list.				
,,						
	Toughness/Easiness	Appearance of Fragments				
		Tipp culture of the gine has	Breaking Line			
	Firm and hard to break	Beaks into granules	Breaking Line Uniform			
	Firm and hard to break Soft and easy to break					
		Beaks into granules	Uniform			
	Soft and easy to break	Beaks into granules Breaks into large parts Breaks into irregular parts	Uniform Smooth			
	Soft and easy to break Sticky and hard to separate	Beaks into granules Breaks into large parts Breaks into irregular parts	Uniform Smooth Irregular			
	Soft and easy to break Sticky and hard to separate Sticky and separate to clumps	Beaks into granules Breaks into large parts Breaks into irregular parts Breaks into sticky parts/clumps	Uniform Smooth Irregular Continuous			
88	Soft and easy to break Sticky and hard to separate Sticky and separate to clumps	Beaks into granules Breaks into large parts Breaks into irregular parts Breaks into sticky parts/clumps	Uniform Smooth Irregular Continuous			
88 89	Soft and easy to break Sticky and hard to separate Sticky and separate to clumps	Beaks into granules Breaks into large parts Breaks into irregular parts Breaks into sticky parts/clumps Other (Specify)	Uniform Smooth Irregular Continuous			
	Soft and easy to break Sticky and hard to separate Sticky and separate to clumps	Beaks into granules Breaks into large parts Breaks into irregular parts Breaks into sticky parts/clumps Other (Specify) 85.	Uniform Smooth Irregular Continuous			
9	Soft and easy to break Sticky and hard to separate Sticky and separate to clumps	Beaks into granules Breaks into large parts Breaks into irregular parts Breaks into sticky parts/clumps Other (Specify) 85. 86. 87. RATING	Uniform Smooth Irregular Continuous			
9	Soft and easy to break Sticky and hard to separate Sticky and separate to clumps Other (Specify)	Beaks into granules Breaks into large parts Breaks into irregular parts Breaks into sticky parts/clumps Other (Specify) 85. 86. 87. RATING	Uniform Smooth Irregular Continuous Other (Specify)			

	3		
	4		
741	88. Thank you for your time		
742	89. Figure S-2. Shred/break evalu	ation sheet (adopted from	[38].
743	90		
744	91.		
745	92.		
746	93.		
747	94.		
748	95. Name:		Date:
749			
750	96. The color is the property of		
751	reflecting light of a		YELLOW GREEN BLUE VIOLET
752	particular wavelength. The	RED ORANGE	YELLOW GREEN BLUE VIOLET
753	distinct colors of the	yell	ow yellow yellow.
754	spectrum are red, orange,	gr	Now yellow orange
755	yellow, green, blue, indigo,	yellow ,	orange
756	and violet. Each of these	Store Contraction of the second	68.4
757	colors is shading into the	28	
758	next as shown in the	J. E.	red
759	diagram.	545	a di a
760	97.	green	a ę ė
761	98.		
762	99.	Birces Provide State	No.
763	100.		
764 765	101. 102.	E BH	A Start Star
765	102.	the blue	woke **
767	103.		hi halo halo halo
768	105.	U1.	oret blue-violet blue violet blue
769	106.)7.
771			
772	108.		
773			ording to the above diagram and rate
774	the saturation of the color u	sing scale of 1:10 (dull	=1 and $v_1v_1d=10$).
775 776	110.	111. RATIN	łG
_	Sample	Color	Saturation

	1			
	2			
	3			
	4			
112.	Thank you	for your time		
113.		-	neet (adopted from [38].	
114.				
115.	Name			Date:
116.		_		
d	er/Smell is the p	roperty of substanc	e that activates the sensory smo	ell. The intensity is th
p p	erceived strength	of odor/smell sensat	ion. Hedonic assessment is the pr	rocess of rating on a scal
ra	nging from extr	emely unpleasant to	extremely pleasant. The charac	cters of the odor are th
-	onity to distinguis	sh the nature of odor.	/smen.	
117.				
118.				
-]	Please rate the same	nples as to the preser	nce of odor/smell (Intensity) and t	the odor/smell Hedonic
	one using the foll			
	one using the foll	owing scale		
<u>119.</u>	•,			
Inter	sity		Hedonic Tone	
No o	dor	0	No Smell	0
Very	Faint	1-2	Extremely Pleasant	1-2
Faint		3-4	Pleasant	3-4
Wea	K	5-7	Neutral	5-7
Stror	0	8-9	Un Pleasant	8-9
Very	Strong	10	Intolerable	10
			120.	· · · · · · · · · · · · · · · · · · ·
121.	P. Dianca	describe the above	acter of the odor/smell of eac	h comple hy giving a
		•	list below. You may use a term of	of your choice which yo
fe	el properly descr	ibes the odor/smell.		
Mold			Veast	
Mold Must			Yeast	
Must			Ammonia	
Must Fish	y		Ammonia Animal feed	
Must Fish Stagr	y ant water		Ammonia Animal feed Sour	
Must Fish Stagr Sea v	y ant water vater		Ammonia Animal feed Sour Rotten cabbage	
Must Fish Stagr Sea v Earth	y ant water vater		Ammonia Animal feed Sour	
Must Fish Stagr Sea v	y ant water vater		Ammonia Animal feed Sour Rotten cabbage	

797			12	23. RATING	
	S	ample	Presence	Hedonic Tone	Odor
			Rating	Rating	Description
		1			
		2			
		3			
		4			
798			124.	Thank you for your t	ime
799	125.		Odor evaluation sheet	(adopted from [38].	
800 801	126.	Name:			Date:
802	127.	Taste is the	e sensation of a flavo	or perceived in the more	th and throat on contact with a
803	subst	ance. The cha	racters of the taste	are the ability to dist	inguish flavors. The Degree of
804	accep	otability is the p	process of rating the ta	ste on a scale ranging fr	om nasty to delicious
805	128.				
806	129.	A-Please rat	te the samples as to th	e characters and the hed	onic tone of flavor.
	Characters		Deg	ree of Acceptance	_
	Sweet		Nasi	ty	1
	Vinegar		Bad		2-3
	Sour			leasant	4-5
	Bitter			eless	6-7
	Salty			sant	8-9
	Coffee Pumpkin		Den	cious	10
	Others (Spec	ially)	0,		
807				130.	
808			13	31. RATING	
	Sample		Taste		Hedonic Tone
	1	$\rightarrow \rightarrow \rightarrow$			
	2				
	3				
	4				
809	132.	Thank you f	for your time		
810	133.		Taste evaluation sheet	(adopted from [38].	
8 11					