STAKEHOLDERS' VIEW OF SUSTAINABILITY OF PUBLIC WATER SUPPLY SCHEMES IN A RURAL AREA: THE CASE OF MUYUKA SUBDIVISION, CAMEROON

ABSTRACT

11

1

2

3

4 5 6

Background and aim: It is certain that without readily available water in sufficient quantity, and free of pathogens, man's progress is tremendously hindered. In Muyuka, Cameroon, though there exist public taps littered "here and there", the population most often find themselves fetching water from nearby streams raising to surface the question of sustainability of the available water systems which was the aim of this study.

Methods: This was a cross-sectional, analytic study targeting household heads and water committee members in the rural communities of Muyuka. Three communities were randomly selected and from each, five quarters were randomly selected. In the quarters, convenience sampling technique was used for the household heads while snowball sampling technique was used to get the water committee members. An interviewer administered questionnaire was used and data analyzed using R.

Results: A total of 371 persons participated in the study. The average number of years lived in the community was 22.08 (SD=10.61) and ranged from 10 to 66. Only 13.00% of the participant didn't see the water system as challenging while 81.5% finds it to be severely problematic. Utilization of water averaged far less than the 50L/person/day and the situation worsened as the household size increased. Close to half (49.6%) of participants did not participate at any stage in the development of the water system. According to the participants, water systems breaks down averagely 3 times in a year and last for about 67 days before being repaired. Water committee members reported difficulties in accessing spare parts and inadequacy in their training.

Conclusion: Frequent breakdown of the water schemes compounded by the unavailability of spare parts and hence delays in repairs, and in expansion, user dissatisfaction and unwillingness to pay their bills; inadequacy in training of water committee members, has resulted in poor sustainability of the water system.

12 13

Keywords: Sustainability, Public Water Supply Schemes, Rural Area, Muyuka, Cameroon

14 15

1. INTRODUCTION

16 17

18 Introduction

19 It is certain that without water there would be no life of any kind on earth and that, without 20 readily available water in sufficient quantity, and free of disease-causing agents, man's 21 progress is tremendously hindered. Safe water is the first aspect of public health that has 22 enormously reduced disease morbidity and mortality. Access to water and sanitation is an 23 important ingredient of quality of life and is also crucial to many other public health indicators 24 like poverty rate, infant mortality and maternal health. Although actual count is impossible, 25 billions of man-days of labour are undoubtedly lost annually because of illness and death 26 from water-related diseases. Unfortunately, the areas which can least afford this economic 27 loss are the places where such sickness and death are most rampant [1]. Being fully aware 28 of the importance of water, public health authorities have exerted huge efforts to get water to 29 the population in rural areas. During the past two to three decades there has been relative 30 success in providing new rural water infrastructure - building the physical systems - and driving increased coverage levels [2]. However, despite this positive trend, there has to a 31 32 large extent been a failure to achieve sustainable solutions. Tens of millions of rural people 33 face continuing problems with systems that fail prematurely, leading to wasted resources and false expectations. For many of those who supposedly already enjoy an improved 34 35 service, the reality is one of poor continuity, poor quality and premature failure [2, 3].

36 Although the MDG target for drinking water was met in way back in 2010[4], the 37 improvement in water supply has greatly been uneven[5] with eight out of ten people without 38 improved drinking water sources living in rural areas [4] and majority of people in the world 39 without improved water supply services have remained practically the same over the past 40 two decades[6]. For example, between 1990 and 2006, the absolute number of un-served 41 people across 19 sub-Saharan African countries increased from 29 million to 272 million [7]. 42 In part this is due to population growth, but many of those who supposedly count as having 43 been 'served' actually have systems that are now not working properly or have failed 44 completely. Both population expansion and migration patterns have led to more 45 urbanization, but also an increase in more densely populated rural areas, with accompanying increased demand for higher levels of service. However, it is still the rural 46 47 population that continues to suffer most from poor services; the Joint Monitoring Program (JMP) reports that 84% of people without access to improved drinking water sources live in 48 49 rural areas [8].

In the early 1990s, estimates suggested that at any given moment, 30-40% of rural water 50 supply systems in developing countries were not working [9]. This rate has not changed 51 52 much since then and although figures vary, studies from different countries indicate that 53 somewhere between 30% and 40% of systems, particularly hand pumps, still either do not 54 function at all or are working at sub-optimal levels[7]. A study by Water Aid in Tanzania 55 indicated that only two years following installation 25% of systems are already non-functional [10]. Failures on this scale represent significant levels of wasted investment, probably many 56 57 hundreds of millions of dollars over the last 20 years.

58 Sustainability in water supply management is becoming more crucial because new sources 59 of water are becoming more scare, more expensive to develop, requires more expertise and 60 technology for planning, design, implementation and operation and are contributing to more 61 social and environmental disruption[11]. Poor sustainability of water supplies has been recognized for some time, and a number of management approaches have come and gone 62 63 with the aim of addressing these problems; the predominant model of community management has been adopted as formal sector policy in many countries [5]. Successful 64 65 operation and maintenance of widely dispersed rural water systems cannot be done without 66 the full involvement and commitment of the users[12]. As presented in figure 1 and adapted from Lockwood et al., [13] the involvement of all stakeholders from conception of the project 67 68 is paramount to its sustainability. However, donors usually do support the implementation of 69 water supply systems, whilst at the same time paying insufficient attention to sustained 70 institutional support.

- 71 72 Figure 1: Sustainability framework developed from Lockwood et al., [13]
- 73

74 Generally, the Cameroon government's policy concerning the provision of potable water to 75 its citizens has been largely tilted towards urban areas with virtual negligent of rural areas as 76 is with the case with Ekondo Titi in the South West region[11]. This has generated the problem of water scarcity in these areas especially as financial inadequacy stands as an 77 impediment to the sustenance of community water supply schemes. Muyuka is another rural 78 area in the South West region of Cameroon. It is about 45 meters above sea level with a 79 very hot climatic condition. Though there exist public taps littered "here and there" in 80 81 Muyuka, the population most often find themselves fetching water from nearby streams. The 82 consequences of this are obvious as the medical record in the health facilities of Muyuka tell 83 it all. Do we continue to create new water systems; an investment that often appears to be at 84 the expense of the sustainability of services already in place? This study seeks to investigate 85 the sustainability of water systems in the Muyuka Sub-Division of Cameroon.

86 87

2. MATERIAL AND METHODS

88 89

2.1. Study design

90 This study was a cross-sectional, analytical study where a questionnaire was designed 91 getting inspiration from Lockwood et al., [13] to evaluate local stockholders' view on the 92 sustainability of the water scheme in place. 93

2.2. Study setting and procedure

94 Muyuka subdivision is made up of rural and semi urban areas. Since this study focused on 95 rural water system, three of the rural communities were randomly selected. There were: 96 Ikata, Bafia and Munyenge communities. In these communities, heads of household and 97 water committee members who could read and write were targeted.

- 98 Immediately after the sorting of potential participants, informed consent was obtained and 99 then administration of the questionnaire to those who consented to be part of the study. The 100 questionnaires were interviewer administered by trained data collectors. There were two set
- of questionnaires, one for household heads and the other for water committee members 101

102 2.3. Sample size determination 103 The following formula was used to estimate the sample size of the study[14].

$$N = \frac{4(Zcrit)^2 \left(P(1-P)\right)}{D^2}$$

104 Where N is the desired sample size, Z_{crit} is the value of α at 95% level of confidence of a 105 standard normal distribution. P is the pre-study estimate of the prevalence and since no such 106 studies in similar conditions is easily traceable, P is assumed to be 50%. D is the total width 107 of the expected confidence interval. In this case the width is desired to be ±5%, making 108 D=10%

$$N = \frac{4(1.96)^2 (0.5(1-0.5))}{0.1^2}$$

N= 384

109

To add a non-response fraction, 10% of the total sample size was added to it to give N=384+38=422.

112 **2.4. Sampling technique**

A multistage sampling technique was used. First the three rural communities in the Muyuka Subdivision were randomly chosen from the available list of rural communities. Then, random sampling technique was used where the names of the quarters making up the each of the three communities were written and put in a basket and raffle draw was made to determine the five quarters to be sampled. Into the quarters, convenience sampling technique was used to sample household heads. For the water committee members, a purposive sampling technique was used.

120 **2.5. Study procedure**

121 Immediately after the sorting of potential participants, informed consent was obtained and 122 then administration of the questionnaire to those who consented to be part of the study. The 123 questionnaires were interviewer administered by trained data collectors. There were two set 124 of questionnaires, one for household heads and the other for water committee members.

125 **2.6. Data management and analysis**

Data collected from households and water committee members using the structured questionnaire was organized and analyzed using R software and MS excel. Descriptive statistics based on percentages, mean, and standard deviations was used to analyze findings. Test of association was done using the chi square test at a 5% level of error.

130 **2.7. Ethical approval**

Ethical review was done and approved by the Biaka University Institute of Buea InstitutionalReview Board (BUIB-IRB).

133

135

134 3. RESULT AND DISCUSSION

3.1. Results

This study was carried out in Muyuka Sub-Division of the South West Region, Republic of Cameroon. A total of 371 persons participated in the study. The average number of years lived in the community by the participants was 22.08 (SD= 10.61) and ranged from 10 to 66 years. Respondents age ranged from 21 years to 85 years with a mean age of 40.59 (SD= 9.92) years. Close to half of the respondent 175(49.30%) had just First School Living Certificate (FSLC) while 148 (39.80%) earned between 51 and 100 USD per month as presented in table 1.

143 Table 1: Socio demographic characteristic of study population

	variable	Frequency	Relative frequency (%)
	Farming	204	54.92
Occupation	Business	106	28.69
Cocupation	Hair dressing	15	4.10
	Tailoring	11	3.01

	Teaching	6	1.64
	Others	28	7.65
	A Level	76	21.41
	First School	175	49.30
	O Level	88	24.79
	Others	16	4.51
Sov	Male	244	65.80
Sex	Female	127	34.20
	≤50	112	30.30
Monthly income (USD)	51-100	148	39.80
	101-200	81	21.70
	≥201	31	8.30

144 145

145

3.1.1.<u>Level of Satisfaction of Users for the Water supply systems in Muyuka</u> 3.1.1.1. <u>Severity of problems posed by the current water scheme</u>

As presented in figure 2, only 13.00% of the participant viewed the water scheme in place is
not at all problematic. 42.9% finds it to be a severe problem while 38.60% find it to be a very
severe threat to their survival.

150 151

Figure 2: Perceived severity of problems posed by the current water scheme

3.1.1.1. <u>Consumption pattern and Satisfaction level of respondents</u> The results show that more than 90% of the respondents consume below the standard minimum liter per day, showing that the water scheme in the study area fails to fulfilled the minimum requirement. Further analysis of consumption considered quantity of water consumed and household size. Generally, households averaged less than the 50L/person/day and the situation worsens as the number person per houdehold increase as presented in figure 3.

159 160

161

3.1.2. Level of community participation in the rural water supply systems

162 163 Participants where asked if they participate in any way in the conception, implementation or 164 management of the current water supply scheme. Close to half 183 (49.6%) of respondents 165 did not participate at any stage in the development of the water system. As presented in the table 2, it seems like more educated people participates in the water supply scheme but 166 level of education is not statistically significantly associated to participation with a p value of 167 168 0.5059. Whether or not the site of the water supply scheme was chosen either by community (or local) authority or the site was chosen by government or NGO was 169 170 statistically significantly associated with participation with a chi square (χ^2) value of 7.24 and 171 a p-value of 0,0071. Income level was also association to participation.

172 Table 2: Level of community participation in the rural water supply systems

	variables	Participa	tion	v2	
	Variables	Yes	No	χ2	p-value
	A Level	43	32		
Educational	First School	83	92	2 33	0 5059
level	O Level	43	44	2.00	0.0000
	Others	7	9		
Site choosers	Community and local authority	160	136		
	Government and NGO	26	47	7.24	0.0071
	≤50	48	54		
Monthly income	50-100	57	75	10 11	0.0179
(USD)	101-200	47	26	10.11	0.0175
	>200	17	11		
Source of idea	Community and local authority	6	4	_	0 6850
	Government and NGO	9	4		0.0000

175		
174	3.1.3. <u>Sustain</u> a	ability of the water scheme in Muyuka Sub-Division
175	3.1.3.1.	Number of breakdowns in last year and length of time to repair

176 <u>the breakdown</u>
177 Table 3 shows the results obtained when the water source breaks down. It shows that the
178 water source breaks down averagely three times in a year according to the community
179 members and 2 times a year according to the water committee members. However, ones
180 the system has broken down, it takes averagely 22 days (according to the water committee
181 members) before they can be reprired and 67 days (according to the community

181 members) before they can be repaired and 67 days (according to the community members)
182 before it can be repaired.

183 Table 3: Rate of breakdown of water scheme and duration it takes for them to be repaired, 184 comparing responses of community members to those of water committee members

Sustainability indicators	Community members	Water committee members
Average number of days of breakdown in the previous year (Range)	2.66 (0-30)	2.03 (0-17)
Average number of days it t00k for the breakdown to be repaired (Range)	67.4 (1-700)	22.38 (7-60)

185

470

186 187

3.1.3.2. <u>Evaluation of some indicators of sustainability by local</u> stakeholders

As presented in figure 4, 59.3% of community members reported complete dissatisfaction with the management of the user fee. The result also show that 85.7% water committee members admitted that spare parts are not readily available for the operation and maintenance of the public taps in the rural areas of Muyuka Sub-Division. The training received by the water commute members is of doubtful quality as 67.4% of the water committee members don't think they were sufficiently trained for the sustained management the rural water scheme.

195 196 197

199

197 198

3.2. Discussions

200 It is difficult to imagine any clean and sanitary environment without water. Invariably, the 201 progress of sanitation throughout the world has been closely associated with the availability 202 of water; and, the larger the quantity and the better the quality of the water, the more rapid 203 and extensive has been the advance of public health[1]. Nonfunctional water systems 204 therefore pose problems to the community that range from mild to very severe nature 205 depending on the degree of the mal functioning of the water system. In the Muyuka 206 Subdivision, the rural water supply scheme is clearly unsatisfactory to 81.5% of the 207 community. As Anna et al.,[15]reported, a large majority of community members and even 208 construction agencies literally dissatisfied with the services provided to them as rural water 209 supply systems, since most of the investment in water supply is usually concentrated in the 210 urban areas.

211 Probably one of the most disturbing finding is the quantity of water used by household per 212 day. More than 90% of the respondents consume below the standard 50 liter per day. 213 showing that the water scheme in the study area fails to fulfilled the minimum requirement 214 defined in Mishra and Dubey[16]. Further analysis of consumption considered quantity of 215 water consumed and household size show that generally, households averaged less than 216 the 50L/person/day and the situation worsens as the number person per houdehold 217 increase. Understandbly, respondents also reported dissatisfaction with the quantity of water 218 consumed, given the vitality of water to human existence.

219 In a community like Muyuka Sub-Division where 49.6% of the population do not participate 220 at any level of the development of the water scheme, it will be clear that the sustainability of 221 such a water scheme is questionable. In a longitudinal study conducted by Mehta and 222 Virjee[17], the sustainability of the water system was directly proportional to the quality 223 (whether participation is self-motivated or through force) and quantity (the proportion of the 224 population that actually participates in one way or the other towards the realization of the 225 water system) of participation from the community. At first when the water system is in place 226 and very functional everyone is elated but this elation will not be for long if there was no community participation. When the system starts developing faults (which is natural) there 227 228 will be nobody to look at the faults with keen attention and so the population soon gets a 229 water problem phase.

230 The community members know best their needs more than any other person. So in the need 231 identification, the community must be actively implicated otherwise the water scheme will be 232 seen as "theirs" [7]. This is exactly the case with the Muyuka rural water supply because 233 when the government authorities or Non-Governmental Organizations brings up the idea of 234 the construction of a water system, the community members are less likely to participate. 235 Evans and Phil[9] also noted similar result that 30-40% of water systems in Africa don't 236 function some few months after installation due to the lack of participation of users in the 237 preliminary phases of the initiation of the water scheme.

The problem with the Muyuka water supply scheme may not only be at the level of the frequency of breakdown but at the duration the water source stays unrepaired once it has broken down. Taking into consideration the importance of water, 22 days (according to water committee members) or 67 days (according to community members) is a lot of time to keep the population without water. Similar results were obtained by Mbithi and Rasmuson[18], when they studied the sustainability of sources of potable water in Harambee, Uppsala.

4. Conclusion

245

The water scheme in Muyuka was constructed many years ago and today faces serious crisis. Even those that were just constructed encounter similar challenges such as premature failure, leaving the inhabitants unsatisfied with the current water system. Government and Non-Governmental Organizations do their best to see that the inhabitants of Muyuka have good water but they fail to get a good proportion of local community members involved in project sustainability of the water scheme. This has had a negative impact on the sustainability of the water schemes as there are a lot of the water sources that are just a shadow of what they use to be. Frequent breakdown of the water schemes compounded by the unavailability of spare parts locally, and in expansion, user dissatisfaction and unwillingness to pay for maintenance, little training of water committee members on water management and delays in repairs, has resulted in poor sustainability of the water system.

257 258

259

260

COMPETING INTERESTS

261 Authors have declared that no competing interests exist.

262 263

265

264 CONSENT

266 Not Applicable

267 268 ETHICAL APPROVAL

269

All authors hereby declare that the study have been examined and approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki. Ethical approval was granted by the Biaka University Institute of Buea Ethical Review Board (BUIB IRB). Administrative authorization was gotten from the Regional Delegate of the Economy, Planning and Regional Development for the South West and from the Mayor of the Muyuka Council.

276

277 **REFERENCES**

278

- 279 1. Wagner EG, Lanoix JN, Organization WH. Water supply for rural areas and small
- 280 communities. World Health Organization; 1959.
- 281 https://apps.who.int/iris/handle/10665/41697. Accessed 21 Jul 2019.
- 282 2. Moriarty P, Smith S, Butterworth J, Franceys R. Trends in Rural Water Supply: Towards a
 283 Service Delivery Approach. 2013;6:21.
- 3. Omarova A, Tussupova K, Hjorth P, Kalishev M, Dosmagambetova R. Water Supply
 Challenges in Rural Areas: A Case Study from Central Kazakhstan. IJERPH. 2019;16:688.
- 4. WHO/UNICEF Joint Water Supply and Sanitation Monitoring Programme, World Health
 Organization, UNICEF. Progress on sanitation and drinking water. 2015.
- 5. McArthur JW, Rasmussen K. ACCELERATIONS AND ADVANCES DURING THE
 MILLENNIUM DEVELOPMENT GOAL ERA. :14.
- 6. Sustainability Assessment of Rural Water Service Delivery Models: Findings of a Multi Country Review. :12.
- 292 7. Danert K. Rural Water Supply Network. :7.
- 293 8. Weltgesundheitsorganisation, UNICEF, editors. Progress on sanitation and drinking-
- 294 water. Geneva: World Health Organization; 2010.

- 295 9. Evans P. Paying the Piper An overview of community financing. :58.
- 10. Addressing the sustainability crisis: lessons from research on managing rural waterprojects. 2009;:4.
- 11. Kimengsi JN, Gur AS, Gwan AS. A Model for Sustainable Water Supply in Rural
 Communities: The Case of Ekondo-Titi, Cameroon. SE. 2018;3:46.
- 300 12. de Kruijf J. Sustainability of Rural Water Supply Systems: Assessment of gravity water
 301 systems implemented by Plan Cameroon in the Northwest Province of Cameroon. :145.
- 13. Lockwood H, Bakalian A, Wakeman W. ASSESSING SUSTAINABILITY IN RURAL
 WATER SUPPLY: THE ROLE OF FOLLOW-UP SUPPORT TO COMMUNITIES. :54.
- 14. Eng J. Sample Size Estimation: How Many Individuals Should Be Studied? Radiology.
 2003;227:309–13.
- 306 15. Machado AVM, dos Santos JAN, Alves LMC, Quindeler N da S. Contributions of
- Organizational Levels in Community Management Models of Water Supply in Rural
 Communities: Cases from Brazil and Ecuador. Water. 2019;11:537.
- 309 16. Mishra RK, Dubey SC. FRESH WATER AVAILABILITY AND IT'S GLOBAL
 310 CHALLENGE. 2015;:57.
- 311 17. Mehta M, Virjee K. Financing Small Water Supply and Sanitation Service Providers
 312 Exploring the Microfinance Option in Sub-Saharan Africa. :26.
- 313 18. Njuguna GN. Self-Reliance in Kenya: The Case of Harambee, M.P. Moithi and r.
- 314 Rasmusson. Ufahamu: A Journal of African Studies. 1979;9.
- 315 https://escholarship.org/uc/item/0zn7z9fh. Accessed 23 Jul 2019.

317

316