Organoids As a form of Modern Day Silver Lining In Blood Cancer

Abstract— Blood Cancer-in the shape of carcinogenesis, is worldwide recognized, as a recent time catastrophe. Its unique capability of sustaining its dormancy, vulnerabilities, of drug screening methodologies, and most importantly therapeutic resistance of tumor affected stem cells has transformed blood cancer, as hardly curable. To face this challenge; Organoids are figured out to be a possible solution. From a researcher's point of view organoids are generally 3D structured in (vivo) clusters of stem cell molecules, showcasing bio-active capabilities. However, the lower success rate of organoids, bespeaking its initial stages of preclinical level of studies. In addition, most of these models & their implications just only been limited to in (vivo) principles and various forms of cancer exemplifying; Blood lymphoma. Interestingly, some recent milestones of organoids in different research models on metastasis reflects the glimpses of hopes. At this present study, we have worked on organoids and their possible involvement in blood cancer. We have emphasized on organoid modellings both in (vivo) and in (vitro) cell culture, which are some excellent sources for cell analysis. Presently, we have established a model where a Nano-sized in (vitro-vivo) cell clustering's of organoids with an MRI scanning technique been utilized to build a more precise and useful therapeutic tool. This innovative approach would help us to identify the tumors that won't will not respond to any conventional therapies. Also in our studies the organoids have shown; active cellular level of immunomodulation, leading to a proper signal transduction. As a consequences, this revolutionary model creates opportunities for a better outcome in terms of diagnostics and therapeutics.

9

10

Key word: Blood cancer, in (vivo-vitro) models, Organoids, Revolutionary model.

11 12

13 **1. INTRODUCTION**

14

15 From the preface of the eclipse of an unknown erstwhile to the dawns of the most advanced 21st century. Blood cancer has always been figured out to be an unbridled 16 deterrent against the existence of human souls. Leukemia, Lymphoma, and 17 18 Myeloma [26] are all of the three different existing forms of blood cancer, reflecting the various levels of its fatality and pathogenicity. Its higher percentage of its 19 20 morbidity resembles ing the atrocious side of this havoc. According to some recent 21 data interpretations, Blood cancer is being primarily termed as; responsible for the deaths of almost a single living person within a span of every 9 minutes in USA in 22 2017[23]. Previously utilized drug therapeutics and treatment modalities such as; 23 Surgery, Chemotherapy, Radiotherapy and recently experimented immune 24 therapeutics showing a class of higher success rate by dwindling the death 25 percentage by almost 70 percentiles. However, they are still unable to eradicate this 26

apocalypse. The primary analytical reports symbolizing the main obstacles behindthe treatment policies of blood cancer are:

29

The inability to target and the supreme capability of the resistance of human stem cells
against various types of cancerous medications.

Lack of cancer epigenetics profiling and specificity suggesting the unfortunate aspects of
 its inability to treat tumor, even within the same origin and similar characteristics.

•Metastasis of cancer tumor cells paving a way for some research output on something
effective and advanced, especially in blood cancer.

•The Non-specific nature of cancer symptoms and the problems associated with cancer
 diagnosis making it harder to treat.

38

39 Example: The current imaging tool PET-CT technique is still unable to predict the responses 40 with reliable accuracy and not that much effective towards a more individualized treatment 41 policies, urging on the necessity of innovative therapeutic solutions like; Organoids. That's 42 why this proposed theory surrounding the active responses of organoids as an antioncogenic agent, has a huge potential to fulfill. Nevertheless the lower success rate of 43 44 organoids could be used as an obstruction against this proposed one, but here the issued 45 researchology working on the whole aspect, is completely based on the liabilities of those 46 upwardly discussed processes and an advancement of organoid theorem. Furtherly, the 47 vulnerabilities of 2D cell cultures in terms of-

48

The Inability to stimulate the micro-environment and organ specific functions and
 50

Lacking's of the proper genetic heterogeneity of original tumors. Indicating the soften
 corner in this route of analysis.

53

54 Whereas, the activity of 3D in (vivo-vitro) model featuring the followings:

55

• The effectiveness in both in (vivo) and in (vitro) counterparts and

57

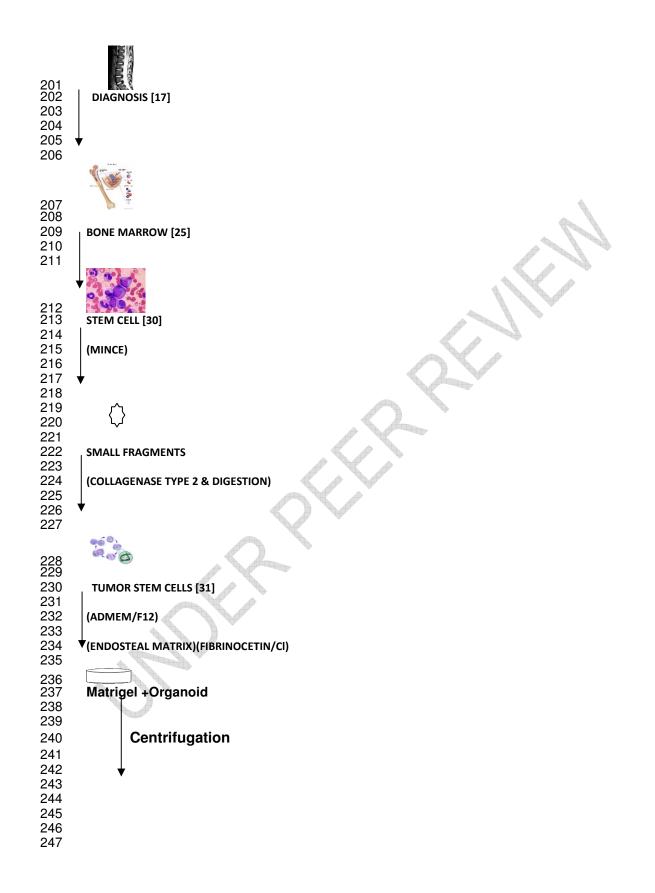
The performance of the assay techniques associated with a purpose to differentiation,
diagnosis, and its usefulness in vivo self-proliferation and efficiency in the treatment of
individually affected cancer cells [2].

61

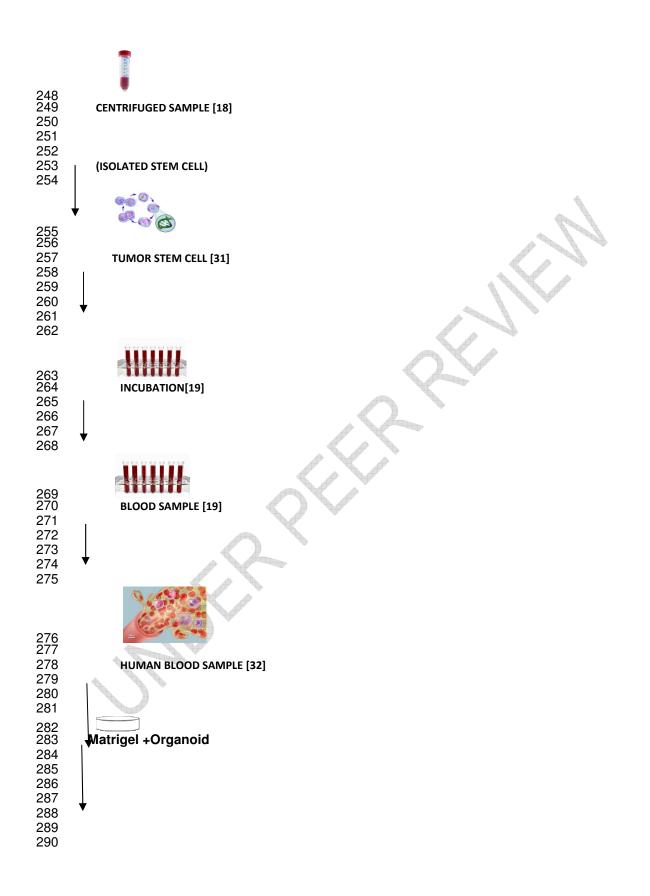
From an additional point of view, MRI scanning techniques could be utilized as a trump card in a similar scenario. This Magnetic Resonance Imaging technique possessing, the ability to add a new dimension to the ongoing procedure has the ability by making to make the diagnosis and prognosis process a far more precise and effective in nature. Therefore, the organoids could easily be available to resolve the missing puzzle.

68 69

70

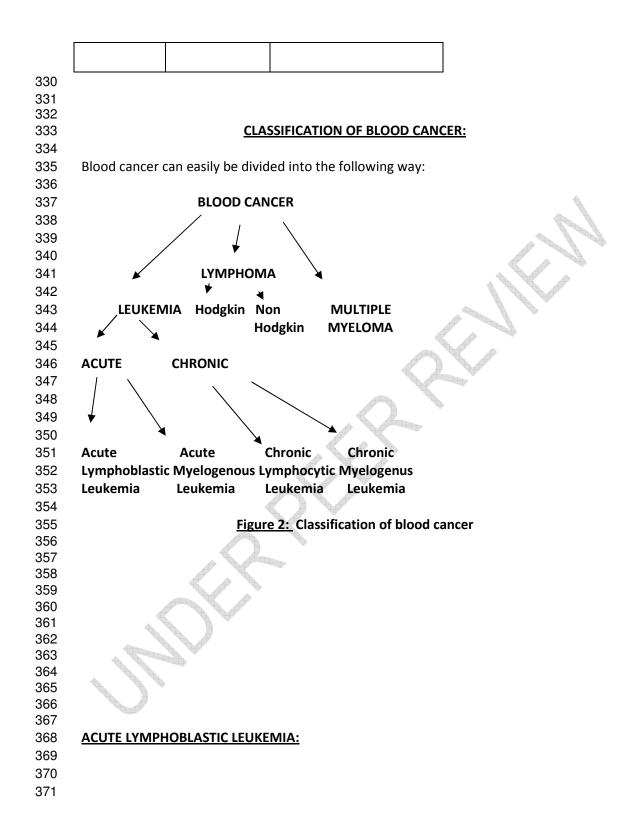

71 72 CHALLENGES ASSOCIATED WITH BLOOD CANCER:

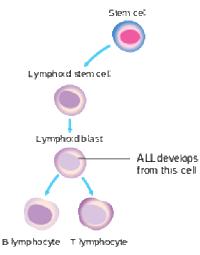
The obstacles following the treatment of various blood cancer are:

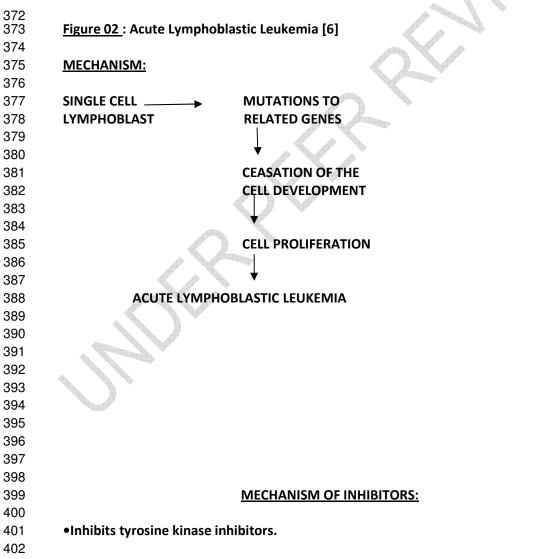

73		
74		While targeting cancer stem cells
75 76		Drug registence properties of stom colls
70 77		Drug resistance properties of stem cells
78		 Lack of cancer epigenetic profiling & specificity of existing Epi-drugs.
79		
80		 Association with cancer diagnosis makes it difficult to treat.
81		
82		Unavailability of effective biomarkers in blood cancer.
83		
84		Limitations of conventional chemotherapeutic agents.
85	1	
86 07	l	 Metastasis possessing posing a huge obstacle to the treatment of cancer.
87 88		MECHANISM OF BLOOD CANCER:
89		WIECHANISWI OF BLOOD CANCER.
90		The stem cells originating from the bone marrow leading to the development of
91		Hematopoiesis. Usually, stem cell molecules are constantly divided to produce a new cell.
92		Whereas, in blood cancer it may sometimes go through a passage of unnatural cell division,
93		anemia or the signal transduction pathway gets severely hampered. <u>AS</u> a result, the
94		differentiation, transduction, and repair mechanism gets completely damaged, as well as the cell
95		proliferation process.
96 07		The graphest symposy of these models is just not each to sid us to headle the motobalis
97 98	I	The greatest armory of these models is just not only to aid us to handle the metabolic changes [2], but also to help us to express the genes. As a consequences, Normal
90 99	I	progenitor cells leading to repair and regeneration after the possible occurrence of
100		damages.
101		uumugesi
102		
103		
104		
105		RESEARCH PROCEDURE:
106		
107		In recent times, the success of both in (vivo) & in vitro organoid cell culture & its wonderful
108		supremacy, while showing mimicry, provid <u>es ing</u> the characteristics of heterogeneity [2].
109		
110		
111		
112		
113 114		
115		
116		
117		
118		CULTURE SYSTEM OF BLOOD CANCER:

119 120 121 122	This proposed research model is composed of the following components: <u>Table 01:</u>	
	Matrigel Matrix, ECM extract, Advanced DMEM/F12, Gluta Max, HEPES, Noggin, R-Spondin Nicotinamide, A-83-01, Y27632, Gremlin 1, Darbepoetin-alpha, Peginesatide, Romiplostim, WNT pathw inhibitor, Hedgehog pathway inhibitor, Farnesyl transferase inhibitor, Aurora A kinase inhibitor, Histo deacetylase, HSP90, Proteasome inhibitors, Nicotinamide.	way
123 124 125 126 127 128 129	It is to be noted that here the existence of ECM substituents is the differentiating constituents between 2D & 3D organoid cell culture[2], where the advanced DMEM/F12 is being utilized as the ideal cell culture media. <u>Table 02 [13]</u> :	
0	NAME OF THE COMPONNETS OF ADVANCED DMEM/F12:	
	Non-essential Amino Acids	
	Sodium Pyruvate	
	Phenol Red	
130 131 132	WHY ADVANCED DMEM/F-12 IS UNIQUE:	
133 134 135 136	 The reasons to be bolded behind the usage of Advanced DMEM/F-12 are: Inexistence of L-glutamine 	
137 138	• There isn't any use of HEPES are not used	
139	• Reduced (FBS) supplementation compared to classics, where reduction occurred by almost (50-60)	
140 141 142 143 144 145	percentiles [13]	
146		
147	GENERAL OVERVIEW:	
148		
149 150 151 152 153 154	Self-developing capability among inherently affected stem cells is a renowned assumption among scientists and has initiated researchers to develop a 3D in (vivo-vitro) cell culture models from primary tissues of bone marrow [2]. Both in (vivo-vitro) models of organoids representing a more reliable and idealistic response compared to usual cell lines, outlasting recapitulation and manipulation capacity [2].	4
155	Page	D 5

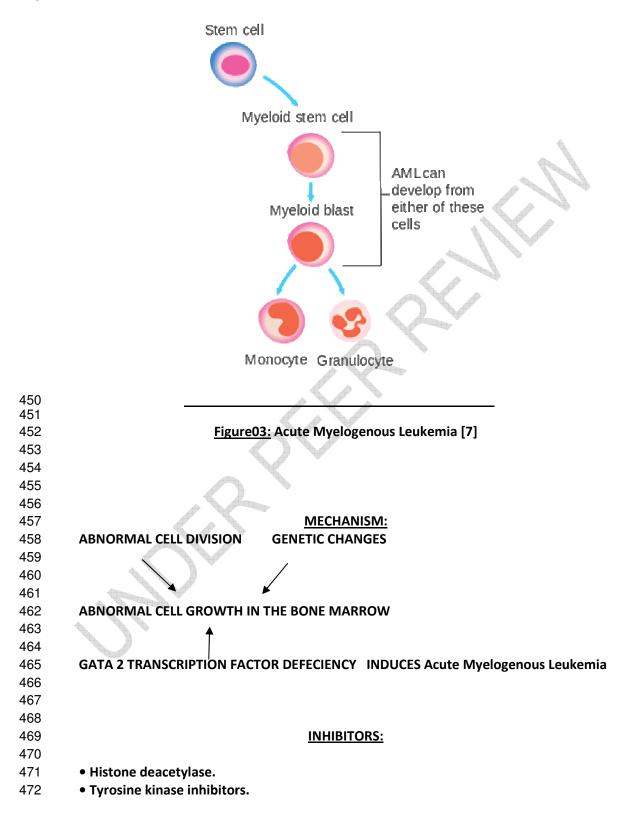
156	
157	
158	
159	WHY NANO-MRI SCANNER:
160	
161	MRI Scanner is an ideal media to diagnose. Magnetic Resonance Imaging technique uses
162	strong magnetic field gradients and in here, The Nano-ranged wave technology to generate
163	the in (vivo) images of the human body on different slices like; Sagittal, Axial, Limbic to get
164	an ideal diagnosing outcome.
165	
166	It_is's advantageous to use an MRI scanner, as it doesn't have any ionizing radiation
167	technology leading to toxicity. Before going through the MRI scanning process, the subject
168	is being injected by with the dye. Aftermath, Nano ranged estimation aids us to observe
169	and diagnose.
170	
171	The greatest asset of this type of MRI scanners is the ability to get a gradual improvisation,
172	as the more
173	
174	Advanced generation reflects on the shorter passage of scanning period.
175	Advanced generation reneets on the shorter passage of seaming period.
176	Though it usually takes around (30-60) minutes [14] to make a complete scan, here it has
177	taken a figure somewhere close to (10-15) minutes.
178	taken a ligure somewhere close to (10-13) minutes.
	[NOTE: The ideal 2D expanded call authors begins to be dealed Materiael. Crowth factors
179	[NOTE: The ideal 3D organoid cell culture having Lamnin riched Matrigel, Growth factors
180	& small cell inhibitors][2]
181	
182	In additional sense,
183	
184	 It would aid the diagnosis quite accurately.
185	
186	 Greater application of the media.
187	
188	 It helps in the 3D culture of organoids
189	
190	
191	
192	(IN VITRO MODEL)
193	
194	
195	
196 197 ▼	
197	MRI SCANNER [20] NANOTECHNOLOGY [24]
199	
200	

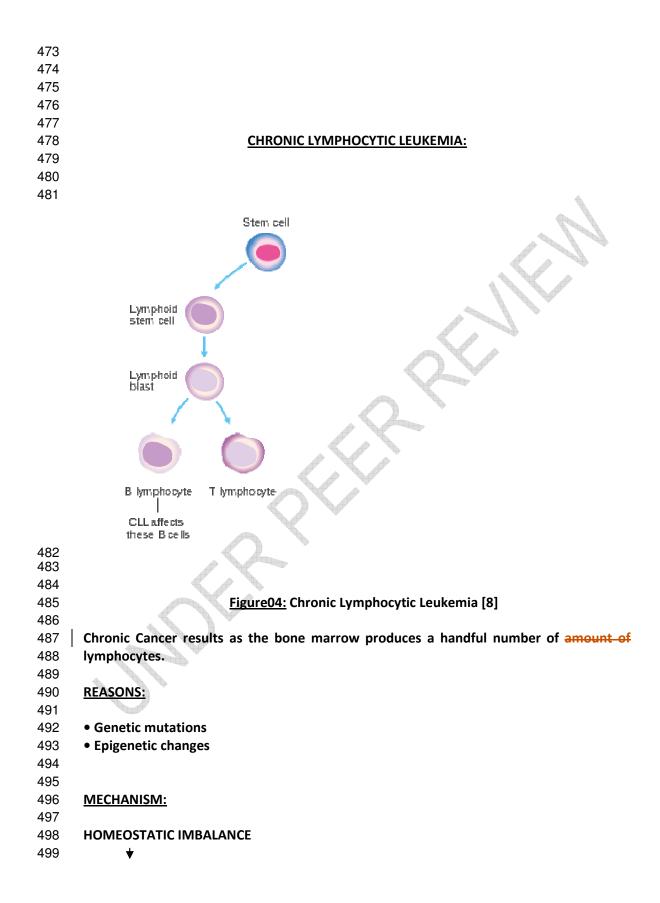

291 292 293 294 295		TION [21]		
296 297 298 299 300	Urr Urr 1			
301 302 303 304 305 306 307 308 309	<u>Fig. 1:</u> Flow	chart for in (viv	o-vitro) establishment of	Blood Cancer.
310			IN (VIVO) SCENARIO:	
311 312 313 314 315 316 317 318	condition. Her	re, the mutated ge affected cells. N	enes of human blood cancer	experiment in (vivo) analytical <u>areis</u> induced to the growth of being widely designed for the
319 320		ATTING VIEW AND		exibly molded in (vitro) model
321 322 323 324 325 326 327 328	shows a series of active phenotypic responses. Proving its worth as a recognized assay. Enzymatic expression in blood cancer is a good option to target. That's why the inhibitors of those channels and their enzymatic activities of the protein level inhibitors been activated. Utilization of Nano wavelength for the purpose of analyzing the targets to establish a proper study model, possessing a superior accuracy and greater efficiency to detect deep lying tumors with relatively ease. <u>TABLE 03:</u> <i>GROWTH FACTORS & INHIBITORS APPLIED IN ORGANOID CELL CULTURE</i>			
329		FUNCTION		1
	NAME	FUNCTION	<u>STRUCTURE/SOURCE/</u> COMPONENTS	
			- Frank war with file wold in	1

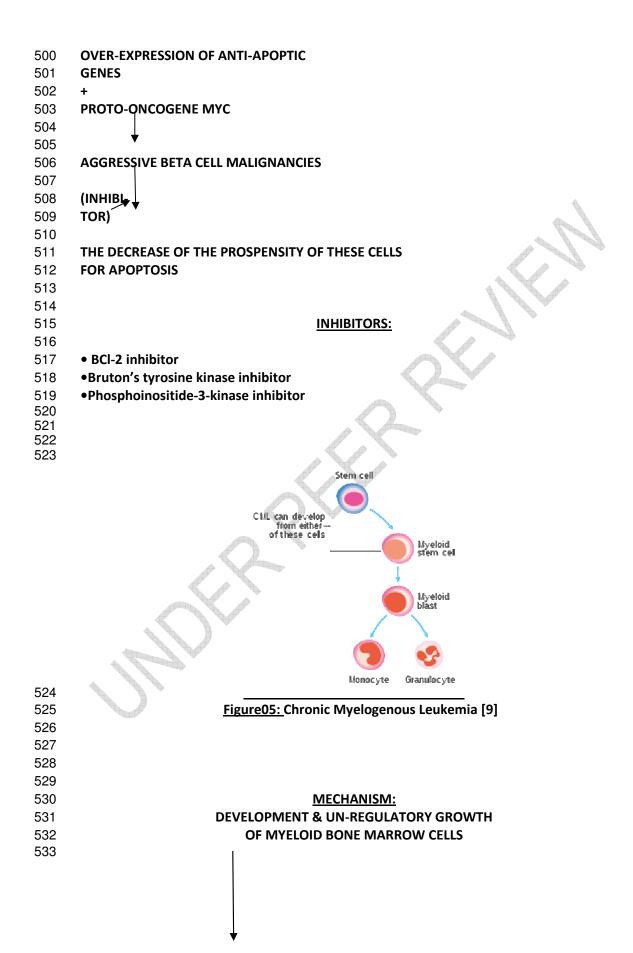

NAME	FUNCTION	STRUCTURE/SOURCE/
		<u>COMPONENTS</u>
GREMLIN 1	Inhibition of	•Embryonic fibroblast
	predominant	•Furin like domain
	BMP2 & BMP4 in	•184 Amino acid glycoprotein
	limb buds allows	


 ${}^{\rm Page}\mathbf{8}$

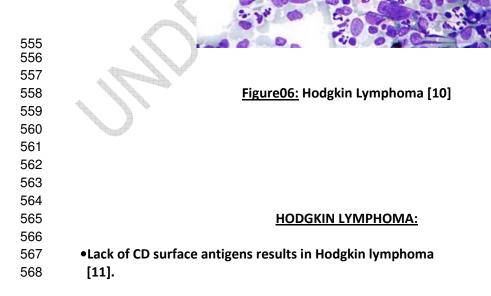
	thetranscriptional	
	upregulation of	
	FGF'S & SHH	
	ligands.	
R-SPONDIN-01	Facilitation of the	•Chromosome
K-SFONDIN-01	growth of	•2cysteine ring
	metastasis[2]	•1 thrombospondin type 1
		domain
NOGGIN	Promotion of	•HGNC:HGNC:7866
	bone metastasis	
	of some cancers	
	& association	
	with	
	tumorigenesis of	
	primary bone	
	malignancies	
AURORA A	[2] •Regulation of	encoding aurora A,B, & C.
KINASE	serine/threo-	encouning autora A,B, & C.
INHIBITOR	nine kinases	
	•Anti-cancer	
	agents	
FARNESYL	A preventive	A 4 Amino acid sequence at
TRANSFERASE	function	the carboxyl terminus of a RaS.
INHIBITOR		(48KDa & 46KDa)
HISTONE	Inhibition of	2classes; HDAC & HDI
DEACETYLASE	histone	
INHIBITOR	deacetylase	
PROTEASOME	Blocks	Proteolytic site on the Eukary-
INHIBITOR	proteasomes	otic cells
	•	Č, Č
Wnt PATHWAY	Promotion of	•WNT ligand or receptors
INHIBITOR	cancer &	•3signaling pathways:
	progression of	canonical, non-canonical planar
	it[42]	cell pola
		rity, non-canonical WNT/calc
FLT3	•Formation of	ium HGNC:HGNC:3765[28]
	fms regulated	Halle.Halle.3705[28]
	tyrosine kinase 3	
	•Signal	
	transduction	
	[28]	
A-83-01	• A transforming	•C25H19N9S
	growth factor	• HHI:
	beta inhibitor	Results of aberrant compone
	suppresses the	nt of the Hedgehog signaling
	proliferation of organoids	pathways.•3different classes; Shh, GLI,
	[2]	SMO
	r-1	[29]
DARBEPOETIN	Stimulates	C815H1317N233O241S5
	Junuales	

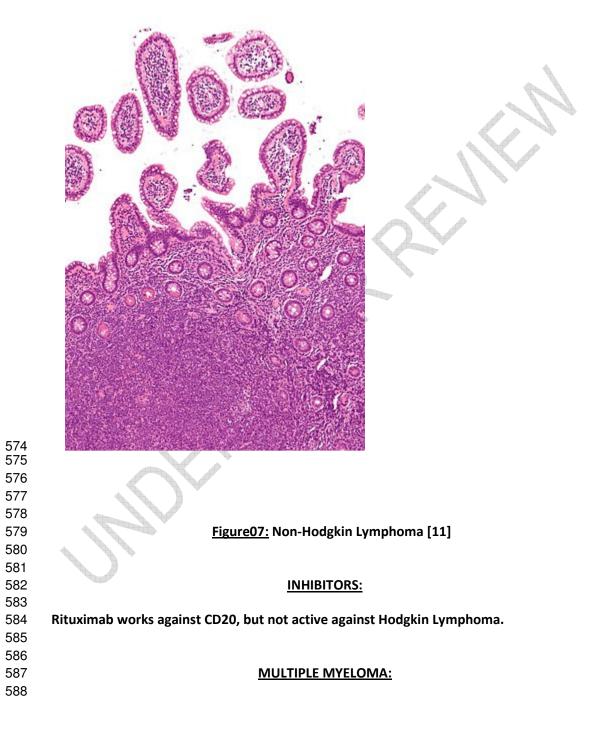

ALPHA •erythropoie- Sis •Anemia PEGINESATIDE Stimulates •Anemia •It mimics the •It mimics the structure of Erythropoietin & promotes the RBC development •C2634H4080N722O790S18[47]
•Anemia PEGINESATIDE Stimulates •Anemia •It mimics the structure of Erythropoietin & promotes the RBC development C231H350N62O58S6[C2H4O]n
PEGINESATIDE Stimulates •Anemia •It mimics the structure of Erythropoietin & promotes the RBC development
•Anemia •It mimics the structure of Erythropoietin & promotes the RBC development
•Anemia •It mimics the structure of Erythropoietin & promotes the RBC development
•It mimics the structure of Erythropoietin & promotes the RBC development
structure of Erythropoietin & promotes the RBC development
Erythropoietin & promotes the RBC development
promotes the RBC development
promotes the RBC development
RBC development
ROMIPLOSTIM A hormone that •C2634H4080N722O790S18[47]
regulates platelet Analogue of thrombopoietin
production
production
NICOTINAMIDE A Vitamin PP •C6H6N2O[48]
Is a nutrient •Nicotinic acid or
required for long 3cyanopyridine
term organoid
culture V27622 simblision of Pho C14U21N2Q
Y27632 •Inhibition of Rho C14H21N3O
kinase[2]
•Improves
culture[2]
HEDGEHOG •Inhibites the •3FDA approved inhibitors:
PATHWAY Growth of cell[Vismodegib, Erismodegib,
INHIBITOR •Activates tissue Smoothened
repairmen and <pre> •It's a kind of glycoproteins</pre>
cell proliferation
MATRIGEL
INHIBITOR 2D & 3D
environments
•Improvement of
the
differentiation of
both normal and
transformed
anchorage
dependent
epithelial cells
HSP 90 •Inhibits collagen 3 types of Natural product
INHIBITOR I & ii geldanamycin
(C29H40N2O9),
• Inhibits Matrix radicicol(C18H17ClO6),
Eanase-3 to
Reduce cell Metastasis

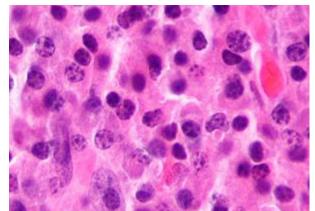



403	
404	 Activates proteins by signal transduction cascades.
405	
406	
400 407	EGF (RECEPTOR) Wee1 Kinase
	EGF (RECEPTOR) Wee1 Kinase
408	↑
409	
410	Tyrosine kinase inhibitors
411	
412	[NOTE <u>:</u> Tyrosine kinase inhibitors ability to deprive
413	Tyrosine kinase to access HSP 90]
414	
415	
416	
417	
418	
419	
420	
421	
422	
423	
424	
425	
426	
427	
428	
429	
430	
431	
432	
433	
434	
434	
436	
437	
438	
439	
440	
441	
442	
443	
444	
445	
446	ACUTE MYELOGENOUS LEUKEMIA:
440 447	ACOTE MITELOGENOOJ ELONEMIA.
448	

Page L4


449

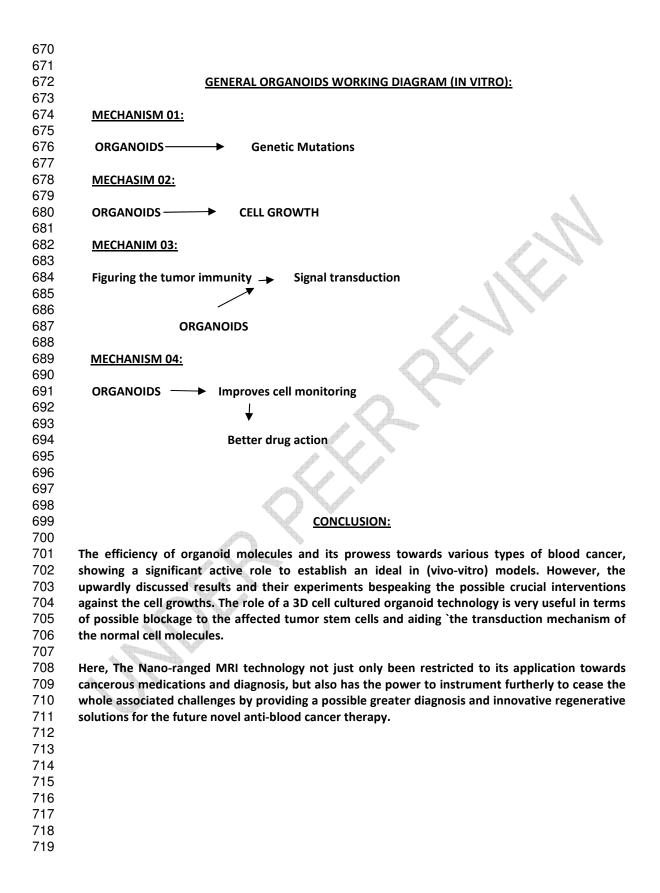

 $_{\rm Page}16$


534	
535	
536	INHIBITOR S
537	
538	
539	LEUKOCYTOSIS
540	
541	
542	INHIBITORS:
543	
544	Tyrosine kinase inhibitors [9]
545	
546	
547	
548 549	LYMPHOMA:
549 550	LTWPHOMA.
550 551	
552	2 types of Lymphoma. Hodgkin & Non-Hodgkin lymphoma.
553	2 types of Lymphoma. Hougkin & Non-Hougkin lymphoma.
554	
	ALL SOLD SOLD SOLD SOLD SOLD SOLD SOLD SO
	84 1 M



- 569570 •MOPP was initially used to treat Hodgkin lymphoma.
- 571 572

NON-HODGKIN LYMPHOMA:



 $_{\rm Page}19$

624	
625	
626	
627	
628	LIMITATIONS OF THE THEOREM:
629	
630	The vulnerabilities of the current proposal are:
631	
632	 The Organoids are imperfect for reproductions [2].
633	
634	• It can affect s the therapeutic potential.
635	
636	• Some organoid lines cannot be expanded, in case of long
637	Term prospects [2].
638	
639	• Cancer organoids tends to grow slowly [2].
640	
641	• It just a research proposal, which requires to be worked gradually on the progression
642	of advancement.
643	
644	 In this study there isn't any discussion about the Acute
645	Monocytic leukemia and its possible treatment.
646	wonocytic leukenna and its possible treatment.
647	GENERAL ORGANOIDS WORKING DIAGRAM (IN VIVO):
648	<u>GENERAL ORGANOIDS WORKING DIAGRAWI (IN VIVO).</u>
649	
650	MECHANISM 01: ORGANOIDS
651	
652	Acquires relative genetic & epi-genetic
653	Information's about tumor cells
654	
655	
656	Generation of tumor reactive T-cells
657	
658	
659	Tumor Killing
660	
661	MECHANISM 02:
662	
663	ORGANOIDS Slows the infiltration through
664	The Exchange of biomaterials/chemicals
665	
666	
667	Positive effects on drug responses used in blood cancer
668	
669	

720	
720	
722	
723	
724	
725	
726	REFERENCES:
727	
728	[1]Esther Landhuis, Tumor organoids may speed
729	Cancer treatment.vol.195, No.1, January 19, 2019,
730	P.9.
731	[2]Xu et al.Journal of Hematology & Oncology,
732	(2018) 11:116, Hanxiao Xu, Xiaodong Lyu,
733	Ming Yi, Weiheng Zhao, Yongping song, and
734	Kong ming Wu, Organoid technology and
735	Applications in cancer research.
736	[3]Nagle, P.W.Seminars in Cancer Biology (2018), Patient-derived tumor organoids for
737	prediction of cancer treatmentbresponse.June.2018.
738	[4] Kristi Baker, Organoids provide an important window on inflammation on cancer, May
739	21, 2018.
740	[5]Manuela Unbischek, Helena Rannikmae, Thomas Foets, Ktahrina Ravin, Marko
741	Hyvonen, Marc de la Roche. Organoid culture media formulated with growth factors of
742	defined cellular activity.17 th April 2019.
743	[6]Acute lymphoblastic leukemia. Wikipedia.
744	[7]Acute Myeloid leukemia. Wikipedia.
745	[8]Chronic Lymphocytic leukemia. Wikipedia.
746	[9]Chronic Myelogenous leukemia. Wikipedia.
747	[10]Hodgkin Lymphoma. Wikipedia.
748	[11]Non-Hodgkin Lymphoma. Wikipedia.
749	[12]Multiple Myeloma. Wikipedia.
750	[13]MERCK, DMEM/F12 Media
751	[14]What is an MRI (Magnetic Resonance Imaging)?, Live Science.
752	[15] A three-dimensional tissue culture model to study Primary human bone marrow &
753	its malignancies.
754	[16]ScienCell Research Laboratories, inc.
755	[17]Evaluating the varied appearances of Normal & Abnormal Marrow, RAD Source.
756	[18]50 ml centrifuge tube, Pluimate-Pluriselect.
757	[19]Freepik
758	[20]GE Healthcare, Discovery MR750-60cm, Lease MRI Scanner
759	[21]Syringe, Shutter stock
760	[22]American Society of Hematology
761	[23] Robyn stoller, 7 Facts you need to know about blood cancers,
762	National Foundation for Cancer Research, 13th September, 2017.
763	
764	
765	

 ${}^{\rm Page}22$

- 767 [24]Adrian Herper, MD, PhD, Executive vice president and Chief medical officer, Eagle
- 768 pharmaceuticals, 12/14/2016, 7:30am, 'Nanotechnology & the New Generation of 769 Injectable Medicines'.
- 770 [25]Bone Marrow, National Cancer Institute.
- 771 [26]Real Choices in health & wellness, The Bio Regulator Company.
- 772 **[27]**Hera, in vivo solutions available or in development.
- 773 **[28]FLT3, NCBI.**
- 774 [29]Small Molecules, A 83-01, Biogens (A peproTech brand)
- 775 [30]Enusa Ramani, Economic assessment of
- 776 Diagnostic systems against neglected diseases
- 777 In African children under five years of age
- 778 [31]Hematopoietic stem cells, bioexplorer.net
- 779 [32]Histology department, Faculty of Medicine, Cairo University.

[33] Huayu yang, Lejia sun, Meixi liu, Yilei Mao; Patient derived organoids: a
 promising model for personalized cancer treatment, Oct9, 2018

782

- 783 784
- 785
- 786
- 787 788