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Abstract 

In this paper, we consider a competitive reaction-diffusion model to describe the existence of 

travelling wave solutions of two competing species. Moreover, the non-linear system is also 

studied by introducing different competitive-cooperative coefficients; constant and spatially 

distributed which leads to the persistence and extinction of organisms in a heterogeneous 

environment of population biology. If the diffusion coefficients and other parameters are 

positive constant, it is seen that one species is in extinction by the other and coexistence is 

also possible under certain conditions on carrying capacity. The results are numerically 

investigated by using the Finite difference method (FDM). 
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1. Introduction 

In nature there are two or more species compete for the same limited food source or in some 

way inhibit each other's growth. This type of interspecies interactions is known as mutual 

competitive suppression or competition for a common resource [1]. Their dynamics are 

considerably very rich, and also of great importance for the functioning of ecosystems. To 

describe the dynamics of two competing populations, the basic 2-species Lotka–Volterra 

competition model with diffusion can be used [2], which has the following set of equations: 

 
 
 

 
 
  

  
                

  

  
                

  

 

 

              

 

 

(1.1) 

 

 

where   and   are the density of the two interacting species,          are the carrying 

capacities,     is the competition coefficients and         are the diffusion coefficients, 

respectively. It is noted that all parametric values are non-negative. The symbol   is the well-

known Laplacian operator which can also be written as    
  

   
 . Note that the competition 

model (1.1) is reaction-diffusion type and not a conservative system like its Lotka–Volterra 

predator-prey counterpart. 

In modern mathematics, the theory of travelling wave solution of the partial differential 

equation is applied to describe different phenomena in ecology [3], farming [4], forestry [5], 

cell culture [6] and other natural sciences [7]. In this paper, we will study the travelling wave 
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solution of the competitive reaction-diffusion system (1.1). We evaluate an approximate 

transformation of the travelling wave equations into monotone form and we reduce the 

existence proof to the application of well-defined theory about monotone travelling wave 

systems [8]. Let us now consider the system (1.1) as follows: 

 
 
 

 
 
  

  
  

   

   
           

  

  
  

   

   
           

  

 

 

              

 

 

(1.2) 

 

For travelling wave solutions of the above systems, we will consider the following 

hypotheses: 

         

         

We will discuss the existence and uniqueness of the travelling wave solutions of the form 

    
 

 
         

 

 
       joining the equilibria    

 

 
  and  

 

 
    as  

 

 
     

moves from    to   . It means, when the second species move from carrying the capacity 

to extinction, first species move from extinction to carrying capacity. If the inequality of 

hypothesis in      is interchanged, the existence of travelling wave solutions activating from 

      to positive coexistence equilibrium which proved in [9]. However, if      is 

interchanged, [10] and [11] assured us the existence of travelling wave solutions activating 

from one equilibrium on one positive axis to the equilibrium on another positive axis. 

Generally, we can observe that in some papers [8, 9] and [10] are used to solve the existence 

of travelling wave solutions using dynamical system and ordinary differential equation 

methods. We get help for studying about travelling wave solutions on other interacting 

species in related papers [13, 14, 15] and [16]. We can also be found various types of 

boundary value problems including the system (1.2) in [17, 18, 19, 20] and [21]. These books 

are not related to travelling wave solutions. The novelty of this work is that we use an 

alternative method of upper-lower solutions to prove the existence of travelling wave 

solutions. Moreover, we make the resulting system into a monotone system by changing the 

variable in the second equation of system (1.2) with reversing order. Recently, several 

researchers consider the monotone dynamical system for two species populations with 

competition-cooperation and mutualistic relations [24-28]. In weak competition it is shown 

that there is a possible coexistence of both populations and established that there is an ideal 

free pair; population maximize their fitness and any movement will reduce their fitness.  

The main and important objectives of this paper are designed as follows: 

 We established the travelling wave solutions of our governing equations analytically 

under some hypotheses in Section 2 and boundaries are open in  . 

 For numerical study, we consider two systems of partial differential equations (PDEs) 

for 2-species competition models. The first problem is defined in sub-section 3.1 with 

constant coefficients and homogeneous Neumann boundary conditions. The results are 

presented by varying the parameters in a finite domain.   
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 In sub-section 3.2, it is considered that the competition coefficients are spatially 

distributed and investigated the problems for different diffusion coefficients for various 

times. 

 To solve PDEs, we employed the Crank-Nicolson finite difference scheme as well as 

pdepe package of MATLAB.  

 

In the following section, we will study to find the travelling wave solutions of (1.2). 
 

2. Existence of Travelling Wave Solution 

In this section, we will show the existence of travelling wave solution and explore the system 

(1.2) which has of the form     
 

 
         

 

 
       adding the equilibria    

 

 
  

and  
 

 
    as  

 

 
     moves from    to   . 

 

Let us consider 

          and            (2.1) 

 

Equation (1.2) can be written as  

 
  
 

  
 
  

   
  

 

    
 

   

    
           

  

   
  

 

    
 

   

    
           

  

where           . Now we can simplify the above system such that 

 

 
 
 

 
 
  

   
 
   

    
           

  

   
 
   

    
           

  

 

 

                        

 

 

(2.2) 

 

Let  

            (2.3) 

where   
 

 
 and   is a constant satisfying  

 

 
   

 

 
 

(2.4) 

Then the system (2.2) becomes  
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After rearranging the above system, we get 

 
 
 

 
 

  

   
 
   

    
          

  

   
 
   

    
                    

  

 

 

(2.5) 

 

where  

             

   
 

 
  

         (2.6) 

Here from      and (2.4), we have 

                (2.7) 

We can make    arbitrarily small by taking   close to 
 

 
 in (2.4). 

 

Theorem 2.1 [3] Let us consider the system (1.2) under      and     . For transforming the 

system (1.2) into the system (2.5), we use the change of variables (2.1) and (2.3) with   

satisfying (2.4). The parameters in (2.5) are related to those in (1.2) by (2.6) and the 

parameters     ,    and    satisfy the inequalities in (2.7). 

If                     is a solution of (2.5) we can easily verify that  

                                                              (2.8) 

is a solution of (1.2), where   and   are introduced in (2.3), (2.4). Now we have to find for 

solution of system (2.5). Let us consider the transformation 

                                                  

and it satisfies 

 
 
 

 
    
    

                 
 

    
 

   
    

                   

  

 

 

(2.9) 

 

Using this transformation, relating to (2.5), we are now finding for the solution of 

 
 
 

 
  

  

   
 
   

    
          

  
  

   
 
   

    
                    

  

 

 

          

 

 

(2.10) 

 

Theorem 2.2 System (1.2) has a travelling wave solution of the form 
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(2.11) 

for any     under the hypotheses [A1], [A2] and newly [A3] such that  

[A3]       

 

Now,       is a function of one variable which is denoted by    satisfying (2.10) for  

          and (2.9) as       and also       and       are positive monotonic 

functions for          . Remarkable thing is that 

 
 
 

 
    
    

                   
 

 
 

   
    

                 
 

 
   

  

 

 

(2.12) 

 

Proof: The change of variables  

    
          

    
   

 

    
       

(2.13) 

 

For            turns (2.10) into 

 

 
 
 

 
  

   
   

 
    

    
           

 

    
     

 
   
   

 
    

    
  

 

    
                     

  

 

 
 
 

 
  

   
   

 
    

    
         

 

    
     

 
   
   

 
    

    
  

 

    
                     

  

  

              

 
 
 

 
  

    

    
  

   
   

    
      

    
         

 
    

    
  

   
   

  
 

    
                      

  

 

 

                        (2.14) 

 

 

This equation is also monotone for following conditions such that 

          
 

    
   

Now we have to construct a pair of coupled upper solutions for the system (2.14). Let us 

consider an increasing function        satisfying the following Kolmogorov-Petrovskii-

Piscunov (KPP) equation for     such that 
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(2.15) 

 

For           and also                  and                  Let 

     
               

   
 

    
          

(2.16) 

 

For           
    we can easily observe that 

 

 
     

    
  

    
   

     
      

    
          

 
  

    

    
  

   

   
      

 

    
         

 
               

 

    
         

 
           

 

    
         

 
    

 

    
      

  
 

    
           

(2.17) 

for all          . For           
    we also can check that 

 
     

    
  

    
   

  
 

    
                        

 
 

 

    
  

    

    
   

 

    

   

   
  

 

    
 

  

    
               

  

      
  

 
  

 

    

    

    
 

 

    

   

   
 

 

    
                  

 
 

 

    
  

    

    
  

   

   
                    

 
 

 

    
                             

 
 

 

    
                  

       

for all          . We can say that the inequalities are the true cause 

            
 

 
   

 

 
   

by hypothesis     . Consider a pair of functions denoted by      
   and      

   and defined 

by 

     
         

        
         

    (2.18) 

Now let us consider the monotone system 
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(2.19) 

For          , the problem reduces to  

 
 
 

 
 

     

    
  

    
   

     
      

    
            

     

    
  

    
   

  
 

    
                          

  

 

 

(2.20) 

For          , all          
             

  . In the region        and 

     
 

    
, the system (2.19) is monotone. When         

  is the first equation and 

        
   is the second equation for all          , particularly (2.20) is true. Here let 

 
             

      

    
         

 
           

 

    
                       

Hence      
   

         
    for       and     is sufficiently small. Let    be a class of 

vector valued functions                 is monotonically decreasing and satisfying 

                 
        with              

              and   
           

 

    
 .  

We have      for the existence of the function       
        

    satisfying (2.20) where 

                          

     

   
            

   

    
   

    . 

Since the function    can be reduced at the top left corner of the rectangle    
          

         

         
 

    
 , then the system (2.14) has a solution which is a function denoted defined by  

      
        

          
        

     

After setting            
   and       

 

    
      

   for           as in (2.13), 

then                 as defined in (2.11) is a travelling wave solution of system (1.2) for 

        ,      satisfying (2.12) as described in the statement of theorem 2.2.  
 

3. Numerical Examples and Applications  

3.1 Effects of competitive constant coefficients 

We consider the following system of partial differential equations subject to initial and 

boundary conditions 

 
 

 
  

  
  

   

   
          

  
  

  
  

   

   
        

  

  
  

  

 

 

(3.1) 
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Where                
  

  
, with the domain         and homogeneous Neumann 

boundary conditions  

  

  
 
  

  
   

Here      to      are readily satisfied and      is always true for       Now, our goal is 

to solve these equations numerically by using Implicit Finite Difference Method such as 

Crank-Nicolson method [22]. Constructing the algorithm in FORTRAN languages by code 

block software and pdepe package for partial differential equations in MATLAB; we can 

have the solutions which are graphically presented by the following figures.  

 

    
 

(a) (b) 

  
(c)  (d) 

Figure 3.1: Dynamics of the system of equation (3.1) which corresponds (1.1) for various 

changes of the parameter. 

By taking time-domain maximum 200 and spatial domain 1, we see from Figure 3.1 (a, b, c, 

d) that for different diffusion strategies the domination of species        over        does 

not change. Besides, when            , we get almost extinction of both the species. 

Nevertheless, using      ,        shows steady eradication nature during whole time 

whereas        moves up to 1. More dynamics under different diffusion and time domain are 

given below.  
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Figure 3.2: The illustration of the solutions (3.1) for different diffusion coefficients at time 

      (left)         and (right)        .  

 

The behaviour of diffusion coefficients is reported in Figure 3.2. We take different values of 

diffusion coefficients at time       over the habitat. Considering one diffusion coefficient 

is fixed such as d1     and another one is replaced by various values such as d2 

            and it is observed that the solutions are coinciding separately. Biologically, it 

means that the solutions        and        are independent of diffusion coefficients.  

          
Figure 3.3: The graphical representation of average solutions at different times         

with diffusion coefficient d1 = d2    . 

 

Figure 3.3 represents the nature of average solutions versus time. By taking identical as 

diffusion coefficient d1 = d2      at different times      (left) and      (right), we see 

that the average solutions vary on time and the density of populations are changing. One 

species is survived and the other one is in extinction.  
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Figure 3.4: Comparison at different times                 and corresponding 

average solutions of        (left) and        (right) for same diffusion coefficient       

according to (3.1). 

 

From Figure 3.3, we have known that the average solutions are time-dependent. The 

descriptions of Figure 3.2 are still valid for Figure 3.4. Here we represent the multiple plots 

of solutions at time      (solid),      (long dashed) and       (dashed). So, it is 

generalized that solutions of the system (3.1) are independent of diffusion coefficients but 

obviously, the persistence and extinction depend on diffusion speed. 

 

3.2 Effects of spatially distributed competition coefficients 

Let us now consider a generalized form of (1.2), when competition coefficients are space 

dependent: 

 
 
 

 
 
  

  
   

   

   
                    

  

  
   

   

   
                    

  

 

 

 

 

(3.2) 

where      is the carrying capacity and                     are all function of  ,  

positive and defined as the competition coefficient. It is noted that the boundary conditions of 

(3.2) are the same as defined in the earlier section. 

Our next step is to establish some results using the following parametric functional  

      ,                                  , and                  

                  of  (3.2) over the domain        .  

 

Using the same numerical strategy of section 3.1, we produce the following results: 
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Figure 3.5: Solutions of (3.2) for same diffusion coefficient d1= d2= 0.1, initial value 

          at times           and       over the domain. 

 

We can see that        and       , the solutions of (3.2) which show that the density of first 

species are increasing over the domain for same diffusion coefficient at different times while 

the second population density is decreasing. The result satisfies the third hypothesis      

        Now we consider (3.2) with different diffusion coefficient as d1     and d2 

                      at t=200. It is observed (see, Figure 3.6) that all the solutions for 

different diffusion coefficients coincide. So, the variation of diffusion coefficient does not 

effect on populations size. 

            
Figure 3.6: Solutions of (3.2) for d1    ,                   for various 

d2                  and      at time        

 

We can investigate the solutions for increasing of times from 10 to 200 using the same 

diffusion coefficient which is depicted in the following Figure 3.7. Solutions are indicating 

by        and       . When time varies, we observe that both populations are coexisting 

with           over the domain. 
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Figure 3.7: Solutions of (3.2) for same diffusion coefficient     at different times        

   and        respectively. 

 

The following Figure 3.8 establishes for carrying capacity,                   which is 

bigger than all other parameters such that                                   

                 and                  and diffusion coefficients d1= d2= 0.5. 

          
Figure 3.8: Solutions (left) and average solutions (right) of (3.2) using carrying 

capacity                  . 

 

The above figures depict, if the carrying capacity is larger than all other parameters, then left 

illustration shows that         increasing and         decreasing. Similarly, the right 

illustration shows that average solutions have similar behaviour species at time      for 

same diffusion coefficient d1=d2=0.5 and same initial value 0.8. It’s obvious that with smaller 

carrying capacity in the competitive species, there is a formidable chance for both the species 

step toward extinction.  

 

4. Conclusion 

In this paper, we introduced an appropriate transformation of the travelling wave solutions 

using three hypotheses and the realistic significances of these hypotheses. The models have 

presented the interconnection between growth, competition, diffusion coefficients etc. for two 
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species population dynamics and it is observed that the travelling wave can exist. We 

investigated the characteristics of competitive reaction-diffusion equations for a couple of 

species. The selected equations do not depend on the changes of diffusion coefficients over 

the domain and the density of one species are decreasing at a certain time while the rest one is 

increasing. It is also constructed two different forms of governing equations for numerical 

simulations and observed that the persistence and extinction speed for different times are 

independent of diffusion coefficients. One species is increasing and the left one is decreasing 

over the domain if we take the larger carrying capacity for identical or different diffusion 

coefficients. The numerical results are obtained by an implicit finite difference method. 
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