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Abstract 6 

Spline Smoothing is used to filter out noise or disturbance in an observation, its performance 7 

depends on the choice of smoothing parameters. There are many methods of estimating 8 

smoothing parameters; most popular among them are; Generalized Maximum Likelihood 9 

(GML), Generalized Cross-Validation (GCV), and Unbiased Risk (UBR), this methods tend to 10 

overfit smoothing parameters in the presence of autocorrelation error. A new Spline Smoothing 11 

estimation method is proposed and compare with three existing methods in order to eliminate the 12 

problem of over fitting associated with the presence of Autocorrelation in the error term. It is 13 

demonstrated through a simulation study performed by using a program written in R based on 14 

the predictive Mean Score Error criteria. The result indicated that the predictive mean square 15 

error (PMSE) of the four smoothing methods decreases as the smoothing parameters increases 16 

and decreases as the sample sizes increases. This study discovered that the proposed smoothing 17 

method is the best for time series observations with Autocorrelated error because it doesn’t over 18 

fit and works well for large sample sizes. This study will help researchers overcome the problem 19 

of over fitting associated with applying Smoothing spline method time series observation. 20 

Key words: Autocorrelation, Generalized Maximum Likelihood, Generalized Cross-Validation, 21 

Splines Smoothing, Time series and Unbiased Risks.  22 
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1.0 Introduction 24 

In non-parametric regression, smoothing is of great importance because it is used to filter out 25 

noise or disturbance in an observation; it is commonly used to estimate the mean function in a 26 

nonparametric regression model, it is also the most popular methods used for prediction in non-27 

parametric regression models, the general spline smoothing model is given as: 28 

                             (1) 29 

Where; yi is the observation values of the response variable, f is an unknown smoothing function, 30 

Xi is the observation values of the predictor variable and εi is zero mean Autocorrelated 31 

stationary process. The main objective of this research is to estimate f (.) when xi = ti but not 32 

necessarily equally spaced, with t1 < . . . < tn (time) and εi is assumed to be correlated. Therefore, 33 

this research shall consider the spline smoothing for non-parametric estimation of a regression 34 

function in a time-series context with the model; 35 

                                (2) 36 

Where; Yi = observation values of the response variable, f = an unknown smoothing function, ti 37 

is the time for i = 1 . . . n, and eti = zero mean Autocorrelated stationary process. 38 

Smoothing spline arises as the solution to a nonparametric regression problem having the 39 

function f(x) with two continuous derivatives that minimizes the penalized sum of squares; 40 

                    
 

             
 

                                                                                      
 

 

 

   

 

Where;  denotes a smoothing parameter, that is, the rate of exchange between residual error and 41 

roughness of the curve f, the parameter λ controls the trade-off between goodness-of-fit and the 42 

smoothness of the estimate. If λ is 0 then       simply interpolates the data, if λ is very large, 43 

then       will be selected so that       is 0, which implies a globally linear least-squares fit to 44 
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all data. Wahba et.al (1995). There are vast literatures on Spline Smoothing modeling of time 45 

series data in the presence autocorrelated error; Diggle and Hutchinson (1989), Yuedong (1998), 46 

Yuedong et. al. (2000), Opsomer, Yuedong and Yang (2001), Wahba et. al. (1995), Carew et. al 47 

(2002), Hall and Keilegom (2003), Francisco-Fernandez and Opsomer (2005), Hart and Lee 48 

(2005), Krivobokova and Kauermann (2007), Shen (2008), Morton et.al. (2009), Wang, Meyer 49 

and Opsomer (2013), Adams, Ipinyomi and Yahaya (2017).  50 

The aim of this study is to propose a new Smoothing method (PSM) by modifying two of the 51 

existing spline smoothing methods (i.e. the Generalized Cross Validation (GCV) and Unbiased 52 

Risk (UBR)) and compare this modified smoothing methods with three existing estimation 53 

methods namely; Generalized Maximum Likelihood (GML), Generalized Cross Validation 54 

(GCV) and Unbiased Risk (UBR) for time series observations in the presence of Autocorrelated 55 

error in order to eliminate the problem of over fitting associated with the presence of 56 

Autocorrelation in the error term. Section one presents the introduction to the study. Section two 57 

reviews the existing spline smoothing method and the proposed selection method, Section 3 58 

presents the Monte Carlo simulation study, equation used for generating values in simulation 59 

experimental design and data generation, section four compares the four methods via a 60 

simulation study, and finally, the result discussion and conclusion were presented in last section. 61 

2.0: Parameter Estimation 62 

2.1: Generalized Cross-Validation (GCV) with Autocorrelation Structure 63 

The term Generalized Cross-Validation (GCV) was coined by Wahba (1977) and applied by 64 

Hastie and Tibshirani, (1999), Aydin and Memmedli (2011) then, Diggle and Hutchinson (1989) 65 

and Wahba (1983) introduced the Autocorrelation structure in GCV, this is given as;                                                                                                                         66 

         
                   

                                                                                                                                          67 
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Where; (Sλ) = the ith diagonal element of smoother matrix, V = the correlation structure, y = (yl, 68 

. . . ,yn)
T
 and f = (f(t1) ,. . . ,f(tn))

T
  69 

2.2: Generalized Maximum Likelihood (GML) Estimation Method with Autocorrelation 70 

Structure 71 

The Generalized Maximum Likelihood (GML) estimation method is an empirical Bayes type 72 

criteria developed by Wecker and Ansley (1983) and Wahba (1985) while Yuedong (1998) 73 

proposed the GML methods for correlated observations with one smoothing parameter given by; 74 

          
           

               
 

   

                                                                                                            

 Where; det 
+
 (I – Sλ) is the product of the n – m nonzero eigenvalues of (I – Sλ), λ is Smoothing 75 

parameter, W is the correlation structure, Sλ is the diagonal element of smoother matrix, n is n1 + 76 

n2, Pairs of measurement/observations and m is number of zero eigenvalues. by Samuel (2019) and 77 

Rueben(2019) 78 

 79 

2.3: Unbiased Risk (UBR) Estimation Method with Autocorrelation Structure 80 

The UBR method or CP criterion was suggested by C.L. Mallows’ (1973) and had been applied 81 

successfully by Craven and Wahba (1979), Gu (1992); Wahba, Wang, Gu (1995); Klein, and 82 

Klein (1995) and (Wang, 1998), but Yuedong (1998) provides UBR method with a known 83 

Autocorrelation structure for selecting smoothing parameters for spline estimates with non-84 

Gaussian data. It is written as; 85 

           

 
   

 
           

 

  
 
                  

                                                                                          

                   86 

Where; n is the pairs measurement/observations       , W is the correlation structure, λ is 87 

Smoothing parameters, Sλ = is the ith diagonal element of smoother matrix. 88 

2.4 Proposed Smoothing Method (PSM) with Autocorrelation Structure 89 
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A Spline Smoothing model is defined as; 90 

                                                                                                                                         (7) 91 

Where; Y is the observation values of the response variable, X is the predictor variable, f is 92 

Regression function and  is error term. There is a number of option to consider when model (7) 93 

above, they include; Data transformation, additive terms e.g. quadratic or cubic term and Spline 94 

smoothing. This study is interested in Spline Smoothing because it considers non-linearity based 95 

on the regression curve by introducing a kink or bends in the yi, this kinks is produced by hinge 96 

function and the point of bend on the fit is called knots. Spline Smoothing is simpler to plot and 97 

easy to interpret when the relationship is between y and (x, x
2
). The number of knots is denoted 98 

by  , model (7) above can also take the form; 99 

                
       (Polynomial regression)            (8)         100 

The main purpose of the conversional regression analysis is to minimize the residual Sum of 101 

Square (RSS), if RSS is used to compare regression models, the largest model would be chosen 102 

even though its not the best model. It is worthy to note that in Spline Smoothing, a method of 103 

selection known as Cross Validation (CV) was proposed by Wahba (1979). In place of RSS in 104 

the conventional simple regression analysis, the error term is therefore defined as; 105 

                      
      

106 

        
           

  
   

 
                   (9) 107 

Recall that; 108 

         , for the observed and            for the fitted value when a number of knots are 109 

introduced, then;       
 

 
        

  
    110 

Cross Validation method is defined in terms of variance, thus; 111 
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              (10) 112 

The main of this proposed selection method was to minimize the variance as much as possible in 113 

order to have a precise estimate of the parameter of interest, 114 

Where; 115 

    is smoothen matrix, it is the squared diagonal matrix and its diagonal entries are denoted by; 116 

                       and            
       

 
       

                                                             (11) 117 

Recall that;  118 

                                                                                                                                             

Where; I is an identity matrix and               is a squared matrix with diagonal entries; 119 

          . 120 

Remember that;           and                      CV selection method is therefore given 121 

as;       

 
  

         

         
  

             (13) 122 

                    

                                       (14) 123 

Since the Euclidean distance makes use of the summation and trace of a matrix, a new spline 124 

smoothing selection method was proposed by Wahba (1979) called Generalized Cross Validation 125 

(GCV) defined as; 126 

        
 
 

            

  
 

             
         (15)                                                                                                            

 127 

GCV uses additives operation by considering Euclidean distance and trace of a matrix; 128 

                          
 
                                                                                   (16) 129 
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Using Multiplicative operations, another Spline Smoothing selection method was proposed by 130 

Wahba (1976) called Generalized Maximum Likelihood (GML) defined as;  131 

         
         

         
 

   

         (17) 132 

Where; m is number of zero eigenvalues, n – m = non-zero eigenvalues of (1 – Sλ) for correlated 133 

error terms such as   12 
 w . Where; W = the correlation structure 134 

GML becomes modified as; 135 

         
          

            
 

   

              (18) 136 

To extend GCV, Unbiased Risk method was proposed with correlation structure; 

                                                 

137 

          

 

 
  

 
           

 

  
 

                  
                                                                                                                138 

And from equation (15), GCV method for estimating spline smoothing (λ) in the presence of 

139 

autocorrelation structure was given by, 

140 

          
                   

           
                                                                                                       

A new Spline Smoothing estimation method is proposed to allow for the presence of correlation 141 

structure when UBR (19) and GCV (20) methods were modified when k is set as 1, as seen 142 

below;
 

143 

Combining equations (19) and (20) and substituting k = 1,           
       

       
            144 
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 Now the behavior of the minimize λ in GCV and UBR methods under the substituted value of k 145 

= 1 yield.  146 

          

        
 

          

                

 
   

 
 

        
 

 
 
                   

 

                                                                                                    

Factorizing equation (22) 147 

          

        
 

          

                

 
   

 
 

        
 

 
 

 

                

                                                                                                        

The Proposed Smoothing Method (PSM) we derived is the minimizer of V (λ) given by 

148 

          
        

 
          

                
  

 
 

 

                

 
   

 
 

        
                                                             

          
 

 
  

 

        

 

          

 
 

  
 
 

        
                                                                                               

 

          

 
         

 

          

  
 
 

        
                                                                                                     

 
Where; n is Pairs of observations, λ is the Smoothing parameter, W and         

 
           149 

are the Autocorrelation structures and Sλ is the diagonal element of smoother matrix. 150 

3.0 Material and method 151 

3.1 Equation used for generating values in simulation 152 
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A simulation study is conducted to evaluate and compare the performance of the four estimation 153 

methods presented in previous sections. The model considered is    154 

       
     

 
                                                                                                                 

 Where; ε’s are generated by a first-order autoregressive process AR (1) with mean 0, standard 155 

deviations 0.8 and 1.0 and first-order correlations (i.e. ρ = 0.2, 0.5 and 0.8) and its 95% Bayesian 156 

confidence interval. Wahba, (1983) and Diggle, (1989). 157 

3.2 Experimental design and data generation 158 

The experimental plan applied in this research work was designed to have three time series 159 

sample Sizes (T) of 20, 60 and 100, three Autocorrelation levels, i.e.    = 0.2, 0.5 and 0.8, four 160 

smoothing functions were considered i.e. λ = 1, 2, 3 and 4, two standard deviation were 161 

considered, i.e. σ = 0.8 and 1.0. The data were generated for 1000 replications for each of the 162 

722433  combinations of cases n, , λ, and σ. The criterion used is the PMSE values to 163 

evaluate 


f̂ computed according to each of the estimation given as;  164 

                            

 

   

 

                                                                                                   

The Predictive Mean Square Error can be divided into two terms, the first term is the sum of 165 

square biases of the fitted values while the second is the sum of variances of the fitted values. 166 

Where;       is the observed value and        = fitted/predicted/estimated value. Aydin, 167 

Memmedli and Omay (2013). Simulation study was performed by using a program written in R, 168 

it was used to estimate all the model parameters, the criterion, the effect of autocorrelation on the 169 

estimated parameters and the performances of the four estimation methods i.e. Generalized 170 
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Maximum Likelihood (GML), Generalized Crossed Validation (GCV), Unbiased Risk (UBR) 171 

and the Proposed Smoothing Method (PSM). 172 

4.0 Result 173 

In this study, the results of the proposed Spline smoothing estimation method was compared with 174 

three existing estimation methods namely; the Generalized Cross-Validation, Generalized 175 

Maximum Likelihood and Unbiased Risks, the Predictive mean square errors criterion was used 176 

to measure their efficiency.  177 

4.1. Performance of the four smoothing methods based on predictive mean square error 178 

        criterion when σ = 0.8. 179 

Table one presents the predictive mean square error for the four estimators, three sample sizes, 180 

four spline smoothing levels and three correlation error levels at 0.8 sigma level. It was 181 

discovered that for GCV and for sample size 20 the predictive mean square error of 4.938284 at 182 

λ = 1, decreases to 2.789043 at λ = 2 and further decreased to 2.018062 when λ = 4. The 183 

predictive mean square error increases as the level of autocorrelation increases from 4.938284 184 

when α = 0.2 to 5.735483 when α = 0.5 and to 5.70041 when α = 0.8 for smoothing function (λ) 185 

= 1 and sample size = 20. It was also discovered that the predictive mean square error decreases 186 

as the sample size increases; at n = 20 the PMSE decreased from 4.938284 to 1.353605 at n = 60 187 

and further deceases from 1.353605 to 0.394855 at n = 100 and for smoothing function (λ) = 1.  188 

The predictive mean square error (PMSE) of GML decreases from 3.788134 at λ = 1, to 189 

3.624478 at λ = 3 and then decreased to 3.615046 at λ = 4. At sample size 20 the predictive mean 190 

square error is 3.902353, it decreased to 2.328352 as the sample size increased to 60 and further 191 

decreased to 2.314015 as the sample size increased to 100. It is noticed that the PMSE of GML 192 

increases from 2.638143 to 2.804273 as the autocorrelation error level increases of 0.2 to 0.5, but 193 
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decreases from 2.804273 to 2.625861 as the autocorrelation level increases from 0.5 to 0.8. For 194 

all the other increase in autocorrelation error levels, the PMSE increased correspondingly, thus 195 

there is efficiency in GML. For the Proposed Smoothing Method (PSM), it was discovered that 196 

the predictive mean square error increases as the autocorrelation level increases and decreases as 197 

the sample size increases. At sample size 20 the predictive mean square error of 4.208490 at λ = 198 

2 decreases to 4.202272 at λ = 3 and further decreases to 3.615946 when λ = 4. The predictive 199 

mean square error of PSM decreases as the sample size increases, for λ = 1 and autocorrelation 200 

level of 0.2. PSM decreased from 4.188747 at sample size = 20 to 2.853925 at sample size 60 201 

and further decreased to 2.287803 at sample size 100. The predictive mean square error of PSM 202 

increases from 2.853925 to 1.822216 as the autocorrelation error level increases of 0.2 to 0.5 for 203 

sample size is 60 and increases from 1.822216 and 1.812007 as the autocorrelation error level 204 

increases of 0.5 to 0.8 for sample size is 60. The predictive mean square error for UBR increases 205 

as the autocorrelation level increases and decreases as the smoothing levels and sample sizes 206 

increase. At sample size 20 the predictive mean square error of 3.777261 at λ = 1, decreases to 207 

3.469432 at λ = 2, decreases to 3.416732 at λ = 3 but increased slightly to 3.98581 when λ = 4. 208 

The predictive mean square error of UBR decreases as the sample size increases, for λ = 2 and 209 

autocorrelation level of 0.5, UBR decreases from 3.469432 at sample size = 20 to 1.88788 at 210 

sample size 60 and further decreased to 1.431244 at sample size 100. The predictive mean square 211 

error of UBR increases from 3.416732 to 3.526772 as the autocorrelation error level increases of 212 

0.2 to 0.5 for sample size is 20 and increases from 3.526772 and 3.611808 as the autocorrelation 213 

error level increases of 0.5 to 0.8 for sample size the same sample size. 214 

 215 

 216 
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Table 1: The MSE result of the simulated study for GML, GCV, PSM and UBR in the presence of 217 
autocorrelation ( ) = 0.3, 0.5 and 0.8 for n = 20, 60 and 100 when standard deviation (σ) = 0.8 218 

                                                                               PMSE 

N = 20  N = 60  N = 100 

Λ Smoothing 

Methods 

 

ρ= 0.2 

 

ρ= 0.5 

 

ρ= 0.8 

 

ρ= 0.2 

 

ρ= 0.5 

 

ρ= 0.8 

 

ρ= 0.2 

 

ρ= 0.5 

 

ρ= 0.8 

λ = 1 GCV 

GML 
PSM(k=1) 

UBR 

4.938284 

3.788134 
4.188747 

3.777261 

5.735483 

3.902353 
1.977449 

2.810875 

5.700411 

4.557857 
2.05909 

1.449087 

 1.353605 

2.328352 
2.853925 

2.101405 

3.179886 

2.429546 
1.822216 

2.317046 

5.817303 

2.625861 
1.812007 

1.118518 

 0.394855 

2.314015 
2.287803 

1.913073 

4.190077 

2.836043 
1.573442 

2.079789 

4.753061 

2.438085 
1.605743 

0.841755 

λ = 2 GCV 
GML 

PSM(k=1) 

UBR 

2.789043 
2.638143 

4.208498 

3.469432 

3.755684 
2.804237 

2.018938 

2.506771 

5.368908 
1.300494 

2.105152 

1.017353 

 1.123143 
2.19448 

2.823294 

1.88788 

1.374032 
2.018002 

1.879530 

1.616574 

4.406313 
1.027948 

1.778426 

1.230349 

 0.341562 
2.040446 

2.287803 

1.431244 

2.96876 
1.334802 

1.573403 

0.220508 

3.188995 
0.171129 

1.200836 

1.532589 
λ = 3 GCV 

GML 

PSM(k=1) 
UBR 

3.175146 

3.624478 

4.202272 
3.416732 

3.507623 

3.802802 

2.025768 
3.526772 

4.218419 

4.263339 

2.112142 
3.611808 

 2.472227 

2.094332 

1.816911 
1.857928 

1.730359 

2.958588 

0.175471 
2.525618 

1.456264 

2.996486 

1.765224 
2.564013 

 0.334902 

1.990265 

1.531958 
1.361115 

0.815361 

2.22264 

0.467133 
1.866935 

1.992452 

0.8030926 

0.124897 
3.321139 

λ = 4 GCV 

GML 
PSM(k=1) 

UBR 

2.018062 

3.615946 
4.11762 

3.398581 

3.42688 

2.800514 
2.028096 

3.512612 

2.169436 

1.250932 
2.114477 

4.927715 

 1.094332 

2.175146 
1.814626 

1.857928 

0.173144 

1.938749 
1.701375 

1.94582 

2.74644 

5.985579 
1.760514 

3.615934 

 0.332736 

1.973208 
1.500005 

1.337717 

2.765412 

1.984518 
1.430172 

1.815722 

2.928445 

5.983278 
1.098286 

3.257353 

Table two presents the predictive mean square error for the four estimators, three sample sizes, 219 

four spline smoothing levels, three correlation error levels and at 1.0 sigma level. It was 220 

discovered that for GCV, at α = 0.5 and sample size 20 the predictive mean square error of 221 

2.217985 at λ = 1, decreases to 2.038837 at λ = 2, decreases to 1.975886 at λ = 3 and further 222 

decreased to 0.873763 when λ = 4. The predictive mean square error increases as the level of 223 

autocorrelation increases from 2.217985 when α = 0.2 to 4.652218 when α = 0.5 and to 5.219997 224 

when α = 0.8 for smoothing function (λ) = 1 and sample size = 20. It was also discovered that for 225 

smoothing function (λ) = 2, the predictive mean square error decreases as the sample size 226 

increases; at n = 20 the PMSE decreased from 2.038837 to 1.036064 at n = 60 and further 227 

deceased to 0.106917 at n = 100.  228 

The predictive mean square error (PMSE) of GML decreases as the smoothing parameter 229 

increases. For small sample size and at α = 0.8, the predictive mean square error decreased from 230 

1.460676 at λ = 1 to 1.191663 at λ = 2 then decreases to 1.152826 at λ = 3 and further decreased 231 

to 1.139958 at λ = 4. The predictive mean square error of GML decreases as the as the sample 232 

size increases. At sample size 20 the predictive mean square error is 1.402249, it decreased to 233 

1.285324 as the sample size increased to 60 and further decreased to 0.917754 as the sample size 234 
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increased to 100. It is noticed that the predictive mean square error of GML increases from 235 

1.344602 to 2.150393 as the autocorrelation error level increases of 0.2 to 0.5, and increases 236 

from 2.150393 to 2.723054 as the autocorrelation level increases from 0.5 to 0.8. Thus there is 237 

efficiency in GML, but it was observed that predictive mean square error decreased as the 238 

autocorrelation error level increases. 239 

For the Proposed Smoothing Method (PSM), it was discovered that the predictive mean square 240 

error decreases as the autocorrelation level, smoothing parameter and sample size increases. At 241 

sample size 20 the predictive mean square error of 4.188747 at λ = 1 increased to 4.208498 at λ 242 

= 2 but decreases to 4.02272 when λ = 3 and further decreases to 4.117621 when λ = 4. The 243 

predictive mean square error of PSM decreases as the sample size increases, for λ = 2 and 244 

autocorrelation level of 0.2. PSM decreased from 1.706005 at sample size = 20 to 1.337262 at 245 

sample size 60 and further decreased to 1.111343 at sample size 100. The predictive mean square 246 

error of PSM decreases from 1.9762941 to 1.878994 as the autocorrelation error level increases 247 

of 0.2 to 0.5 for sample size is 20 and further decreases  from 1.878994 to 1.62727 as the 248 

autocorrelation error level increases of 0.5 to 0.8 for sample size is 20.  249 

The predictive mean square error for UBR increases as the autocorrelation level decreases as the 250 

smoothing level and sample size increases.  251 

At sample size 20 the predictive mean square error of 3.946115 at λ = 1, decreases to 2.285086 252 

at λ = 2 to 2.166318 at λ = 3 and further decreases to 1.259853 when λ = 4. The predictive mean 253 

square error of UBR decreases as the sample size increases, for λ = 4 and autocorrelation level of 254 

0.8, UBR decreases from 2.549091 at sample size = 20 to 2.412688 at sample size 60 and further 255 

decreased to 1.540203 at sample size 100. The predictive mean square error of UBR increases 256 

from 2.166318 to 2.202126 as the autocorrelation error level increases of 0.2 to 0.5 for sample 257 
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size is 20 and increases from 2.202126 to 2.563679 as the autocorrelation error level increases of 258 

0.5 to 0.8 for sample size the same sample size, but it was observed that predictive mean square 259 

error decreased as the autocorrelation error level increases. 260 

Table 2: The MSE result of the simulated study for GML, GCV, PSM and UBR in the presence of autocorrelation ( ) =  261 
                0.3, 0.5 and 0.8 for n = 20, 60 and 100 when standard deviation (σ) = 1.0  262 

   PMSE 

N = 20  N = 60  N = 100 

Λ Smoothing 

Methods 

 

α = 0.2 

 

α = 0.5 

 

α = 0.8 

  

α = 0.2 

 

α = 0.5 

 

α = 0.8 

  

α = 0.2 

 

α = 0.5 

 

α = 0.8 

λ = 1 GCV 
GML 

PSM(k=1) 

UBR 

2.217985 
1.402249 

1.9762941

3.946115 

4.652218 
2.213838 

1.878994 

2.170123 

5.219991 
2.854191 

1.62727 

2.854018 

 1.5079261 
1.285324 

1.681525 

3.477279 

3.032906 
2.424851 

1.655205 

1.895938 

3.355379 
2.860878 

2.622758 

1.904192 

 0.109678 
0.917754 

1.625184 

0.715411 

0.205153 
1.498209 

1.060796 

1.410622 

4.068174 
1.460676 

1.814121 

1.391461 
λ = 2 GCV 

GML 

PSM(k=1) 
UBR 

2.038837 

2.353263 

1.706005 
2.285086 

1.550266 

2.159928 

1.883573 
2.043898 

2.357644 

2.742754 

1.512748 
2.606053 

 1.036064 

1.61744 

1.337262 
1.686028 

3.064901 

1.745815 

1.815278 
1.615925 

3.686213 

1.801702 

1.258637 
1.94976 

 0.106917 

0.916592 

1.111343 
0.715436 

0.204841 

1.484834 

1.555058 
0.391479 

2.641265 

1.191663 

0.824054 
1.213843 

λ = 3 GCV 

GML 
PSM(k=1) 

UBR 

1.975886 

1.344602 
1.691873 

2.166318 

2.465147 

2.150393 
1.799777 

2.202126 

2.230474 

2.723054 
1.490825 

2.563679 

 1.106586 

2.376657 
1.289702 

1.335866 

1.865407 

1.703152 
1.65212 

2.149228 

1.493562 

1.747526 
1.185653 

2.283664 

 0.914299 

0.916174 
1.188291 

0.715459 

1.204822 

0.482901 
1.786081 

0.388746 

1.462472 

1.152826 
1.525496 

1.832608 

λ = 4 GCV 
GML 

PSM(k=1) 

UBR 

0.873763 
1.341634 

1.686857 

1.259853 

1.437364 
2.147087 

1.794844 

2.014616 

2.188967 
2.716225 

1.483121 

2.549091 

 0.106479 
1.296255 

1.2739570

1.221922 

2.800442 
2.050446 

1.659382 

1.578077 

1.430831 
1.895078 

1.159813 

2.412688 

 0.956241 
0.916018 

1.104291 

0.715468 

0.204817 
0.482256 

1.454671 

0.387835 

1.404276 
1.139858 

1.259721 

1.540203 

 263 

                        (a)                                      (b)                                       (c)                                          (d) 264 
Figure 1: Plots of the observations (. . .) and Estimates (---) With Smoothing Parameters Chosen by GCV (a), GML (b), PSM (c), and UBR (d) 265 
for n = 20 266 
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 267 
                       (a)                                         (b)                                        (c)                                           (d) 268 
Figure 2: Plots of the  Observations (. . .) and Estimates (---) With Smoothing Parameters Chosen by GCV (a), GML (b), PSM (c),and UBR 269 
(d) for n = 60 270 

 271 

                     (a)                                         (b)                                             (c)                                     (d) 272 
Figure 3: Plots of the  Observations (. . .) and Estimates (---) With Smoothing Parameters Chosen by GCV (a), GML (b), PSM (c),and UBR 273 
(d) for n = 100 274 
. 275 

 276 
Figure 4: The plot of the GML, GCV, PSM and UBR of the MSE of the simulated study in the presence of autocorrelation when σ = 1, ρ = 277 
0.2 and n = 20 278 
 279 
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 280 

Figure 5: The plot of the GML, GCV, PSM and UBR of the MSE of the simulated study in the presence of autocorrelation when σ = 1, ρ = 281 
0.2 and n = 60 282 

 283 

Figure 6: The plot of the GML, GCV, PSM and UBR of the MSE of the simulated study in the presence of autocorrelation when σ = 1, ρ = 284 
0.2 and n = 100 285 
 286 

Figure 1 and 6 presents the predictive mean square error estimates of GCV, GML, PSM and in 287 

1000 replications. From these plots we can see that the PSM and UBR estimates have small 288 

PSMEs compare with GCV and GML. We conclude that all four methods estimate the 289 

smoothing parameters and the functions well but the PSM and UBR provide better estimates than 290 

GCV and GML in terms of mean-square error. The PSM method is more stable when the sample 291 

size is small, such as when N = 20 while UBR method performs slightly better when N = 60. In 292 

this case there were several replications where GCV and GML providing more estimates of 293 
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smoothing parameters which lead to undersmoothing of the data. This behavior of the GCV 294 

method was investigated in Wahba and Wang (1993) and Wang (1998).  295 

Table 3: Summary of the predictive mean square error and ranks of the smoothing 296 
               methods in the presence of autocorrelation error 297 

Autocorrelation                              Smoothing method 

levels GCV GML PSM (k=1) UBR 

α = 0.2  

α = 0.5  

α = 0.8  

1.08 

1.89 

2.63 

1.39 

1.71 

1.99 

1.47 

1.66 

1.27 

1.63 

1.48 

2.09 

Grand mean 

Rank 

1.87 

4 

1.70 

2 

1.47 

1 

1.73 

3 

 298 

 299 

Table 4: Summary of the predictive mean square error and ranks of the smoothing 300 

   methods based on sample size 301 

Sample                           Smoothing method 

size GCV GML PSM (k=1) UBR 

n = 20  

n = 60  

n = 100  

2.434 

2.041 

1.124 

2.179 

1.900 

1.047 

1.711 

1.549 

1.145 

2.326 

1.921 

0.951 

Grand mean 

Ranks 

1.867 

4 

1.709 

2 

1.468 

1 

1.732 

3 

 302 

5.0 Discussion and conclusion 303 

In this study, Spline smoothing estimation method for time series observations in the presence of 304 

Autocorrelated errors were compared based on three sample sizes. The simulation result under 305 

the finite sampling properties of PMSE criterion shows that all smoothing methods were 306 

consistent but adversely affected by the presence of Autocorrelation in the error term, the 307 

smoothing methods ranks as follows, PSM, GML, UBR and GCV. The result suggested that 308 

PSM should be preferred when Autocorrelation level is mild and high (α = 0.5 – 0.8) and for low 309 

Autocorrelation levels in the observations, (i.e. α = 0.2 – 0.5) the Unbiased Risk (UBR) should 310 

be considered. It was also observed that GCV and GML were mostly affected by the presence of 311 
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Autocorrelation and therefore had an asymptotically similar behavioural pattern. The study also 312 

discovered that the Proposed Smoothing method is preferred mostly at the large sample size and 313 

the proposed Smoothing method do not over fit, as shown in the figures above.  314 
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