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Abstract 
In this paper we apply the newly developed charge storage expression as a function of time i.e. via 
convolution operation of time varying capacity function and applied voltage function to a capacitor 
i.e. q = c* v. This new formula is different to usual and conventional way of writing capacitance 
multiplied by voltage to get charge stored in a capacitor i.e. q = cv. We apply this new formula to RC 
circuit as charging/discharging the capacitors (ideal and fractional ones) via constant dc voltage or 
current sources. This paper gives validity of usage of this new formula in RC circuits. 
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1. Introduction 
This is continuation of our earlier deliberations regarding verification of the new 
formula q(t) c(t)* v(t) ; [1], [40]. This paper is from deliberations regarding usage of this 
formula in Project: Design & Development of Power-packs with Aerogel Supercapacitors & 
Fractional Order Modeling BRNS Santion No. 36(3)/14/50B/2014-BRNS/2620 dated 11.03.2015; 
where we wish to use this new developed formula.  
 
The voltage change when appears at a capacitor, it reacts or relaxes via relaxation current. The 
time varying capacity function c(t)  is the one that defines the response function; and by 
principle of causality [1] we write q(t) c(t)* v(t)  where v(t)  is the input impressed voltage. 
This is different to usual formula q(t) c(t)v(t) . This new formulation is deliberated in detail 
with c(t) as for ideal loss less capacitor case, as well as time varying capacity function (fractional 
capacitor case) in [1]. The capacity function c(t) is the function which decays with time, and has 
the form -αc(t) t ; 0 1   and acts only at the time of application of voltage change. For ideal 
case of loss-less capacitor the capacity function is c(t) (t)  ; [1]. In this paper we will always 
take the power-exponent of power-law of decaying capacity function i.e.  as between zero and 
one, i.e. 0 1   . This power-law decay function is in singular at origin and is in tune with 
singular power law decay relaxation current given by Curie-von Schweidler (universal law) of 
dielectric relaxation [2]-[5]. In this universal dielectric relaxation law, the relaxing current is a 
decaying power-law as i(t) t , when uncharged system of dielectric is stressed by a constant 
voltage. The use of this universal dielectric relaxation law gives current voltage relation of a 
capacitor as given by fractional derivative [6]-[10]. The non-singular decaying function gives all 



 

 

together different form of current voltage relations in capacitor is discussed in [11], [38]. The use 
of non-singular kernel in integration for the formula for fractional derivative and application is 
developing topic. This concept is used and studied in pioneering works [23]-[36], for several 
dynamic systems.   
 
Here we are taking singular function c(t) as ‘time varying capacity function’, as because the 
same gets derived from basic universal dielectric relaxation law i(t) t of Curie-von 
Schweidler [1], [40]. In this paper we will take capacitor with time varying capacity function 
c(t) C t (i.e. a fractional capacitor), and will use the formula [1], where the voltage 
excitation v(t) is applied at time t = 0 to an uncharged capacitor 

t t
q(t) c(t)*v(t) c(t )v( )d c( )v(t )d

 
             

With this new formula q(t) c(t)* v(t)  applied we discuss various cases of q(t)  i.e. charge 
stored in capacitor and i(t) , the circuital current etc. for RC charging/discharging circuit with 
ideal capacitor and fractional capacitor.   
 
We note a priori that the constant C  is proportionality constant of the relation of time varying 

capacity function i.e. c(t) t  , and not Fractional Capacity. The fractional capacity of a 
fractional capacitor we will represent as FC  which has units of 1Farad / sec  , and we will use 

F αC C Γ(1- α)   to relate the two [1], [40]. The voltage, v(t)  across a capacitor or dielectric 

changes at a rate in proportion to the current:  1
ti(t) = D c(t)*v(t) , with -α

αc(t) = C t  we get 

   1
ti(t) = c(t) v(0) + c(t)*D v(t) ; [1]. The equation of current and voltage, and impedance for 

fractional capacitor is following, given by fractional derivative α α α
tD d / dt  [6], [7] [8], [12], 

[13]; comes from q(t) c(t)* v(t) , [1]. The fractional derivative operator is Riemann-Liouville 
type (Refer Appendix) as derived in [1]; and in [6], [7].  

F
F

d v(t) 1i(t) C ; Z(s) ; 0 1
dt s C



  


      

With limit 1  we get classical ideal loss less capacitor that is following 
d v(t) 1i(t) C ; Z(s)

dt s C
   

The fractional capacitor appears in studies with super-capacitors and other memory based 
relaxation phenomena [14]-[22]. We assume that the fractional capacitor has no resistance, (like 
ideal capacitor has no resistance) and is excited by ideal voltage sources (that has zero output 
impedance), in the RC charging circuits. We will use Laplace Transform technique in all our 
analysis. In all the cases in subsequent sections, we will apply this new formula 
q(t) c(t)* v(t) and give the validity justification. Recently this formula q(t) c(t)* v(t)  is 
getting experimentally validated [39], for super-capacitors.  
 
Therefore charge in a capacitor is q(t) c(t)* v(t) , is given via convolution operation and not 
with the usual way that we write as q(t) c(t)v(t) .  Let us have a capacitor with capacity 
function in time as power-law c(t) C t  ( 0 1   ), that is fractional capacitor, is charged 
via resistance R.   Let a voltage inv (t)  or current ini (t)  be applied to an uncharged capacitor in the 



 

 

RC circuit at time t 0 . Then charge function in time is given as convolution (*) operation 
as 0q(t) c(t)* v (t) , with 0v (t)  is the voltage profile on the capacitor, in the RC circuit of 

Figure-1. This charge q(t)  is also 
t

0
q(t) = i(τ)dτ  , where i(t) is current flowing through the 

capacitor in the RC circuit. This comes from normal circuit theory application, and we will show 
that this 0q(t) c(t)*v (t) is same that we get from normal circuit theory. For each case we also 
study the ideal loss less capacitor given by capacity function as c(t) C (t)  , [1], [40] and 
apply 0q(t) c(t)* v (t) .  
 
We will validate and verify this new formula q(t) c(t)* v(t)  in circuit theory with RC circuit, 
in this paper. The aim of the paper is not to show profiles of circuit voltage current or charge, 
with variation ofα ; but rather validate the new formula 0q(t) c(t)* v (t) , with that of solution 
obtained by circuit theory techniques. Thus we are not drawing MATLAB simulated figures for 
voltage current and charge functions. We will also validate self-discharge mechanism of 
fractional capacitor (super-capacitor) exhibiting memory effect, by using this new 
formula q(t) c(t)* v(t) . 
 
 
2. Charge storage q(t)  by step input voltage in mv (t) = V u(t)  excitation to RC circuit 
with ideal loss less capacitor 
In classical circuit theory, if we charge an ideal capacitor, C (initially uncharged) through a 
resistor R , via a step input voltage in mv (t) = V u(t) (Figure-1) we get voltage across capacitor as 

exponential rise as t /RC
0 mv (t) V (1 e )  ; t 0  . In Figure-1 consider 1Z (s) R  , and 2Z (s) is 

ideal capacitor with capacity function as c(t) C (t)  , [1], [40].  Therefore we have following 
impedance function 

   2
1 1 1Z (s)

s c(t) s C (t) sC
  

 
                                         (1) 

The above Eq. (1) is new way of writing Z(s) for capacitor ideal or fractional we got from 
application of formula q(t) c(t)* v(t) in our earlier discussion [40]. That we got by 
differentiating this convolution expression to get i(t)  and taking Laplace transform to arrive at 

Eq. (1), i.e.    1
Z(s) V(s) / I(s) s c(t)


   .  

We have from circuit theory and from Figure-1 the following expressions 

   

 

2 m
0 in in m in

1 2

m
m1 1

RC RC

Z (s) VV (s) v (t) , v (t) = V u(t) , v (t)
Z (s) Z (s) s

V 1 1V
RCs s s s

 


 
     

 

                (2)                              

The inverse Laplace Transform of Eq. (2) gives following voltage charging equation for capacitor 
t /RC

0 mv (t) V (1 e ); t 0                                                          (3) 
We have 0 mtlim v (t) V   , the current flowing in the RC circuit at t 0 is the following 

    m m
1 1

Cs RC

V /s V1 1 t/RCm1
RR s

Vi(t) e
R

  
                                               (4) 



 

 

Therefore the charge function q(t) is  
t t /RCm

0 0

t /RC
m

Vq(t) i( )d e
R

V C(1 e ); t 0





   

  

                                                   (5) 

We apply the formula q(t) c(t)* v(t) to ideal capacitor given by c(t) C (t)  across which we 
are having a voltage profile as t /RC

0 mv (t) V (1 e )  , to write following 

     

       

0

t/RC m m
m 1

RC

Q(s) c(t) v (t)

V VC (t) V (1 e ) C
s s





 
       

 

 
                     (6) 

The inverse Laplace transform of Eq. (6) above gives 
t /RC

mq(t) V C(1 e ); t 0                                                    (7) 

Eq. (7) is same as Eq. (5) that we got via circuit theory applying
t

0
q(t) i( )d   . This gives 

validation of formula q(t) c(t)* v(t) for classical ideal loss less capacitor case. 

t = 0

mV
1Z (s)

2Z (s)

0V (s)

inv (t)

ov (t)

 
Figure- 1: The constant voltage charging RC circuit 

 
 
3. Charge storage q(t)  by step input voltage in mv (t) = V u(t)  excitation to RC circuit 
with fractional capacitor 
In Figure-1 consider 1Z (s) R  , and 2Z (s) is fractional capacitor with capacity function 

as c(t) C t ; with 0 < α < 1  . Therefore we have following impedance function [40] 



 

 

     2 1

F
F

1 1 1Z (s)
s c(t) s C t s C (1 )s

1 1 ; C C (1 )
s C (1 ) s C

 
 

  
 

  
 

    
 

 
                              (8) 

Here we will use a constant voltage excitation of mV  from time t 0 , to time ct T  (as charging 
phase, through a known resistor R )  and thereafter we will switch to discharging phase i.e. 
voltage source will be made zero (Figure-3). By this we record the charging and discharging 
profile 0v (t) , and then apply 0q(t) c(t) * v (t)  to get charge, and then current. From the circuit 
diagram of Figure-1, we write the following [37] 

   

 F

2 m
0 in in m in

1 2
1

m m
1

FF RC

Z (s) VV (s) v ( ) , v (t) = V u(t) , v ( )
Z (s) Z (s) s

V V ks 1; k
(s k) RCRC s s

t t








 


  


 

                     (9) 

Now use   α-β

α
p!sαp+β-1 (p) α

α,β s -a
t E (at ) = [10], [12], [13] to get  -1

α
1 α αs

α,α+1s -a
= t E (at ) , by 

putting p 0 , α = α ,β = α +1 , where the α
α,βE (at ) is two parameter Mittag-Leffler function 

(Refer Appendix); as defined in infinite series in following expression 
m α m

α
α,β α,(α+1)

m=0 m=0

m

α,1 α
m=0

(x) (-kt )E (x) = , E (-kt ) =
Γ(αm+β) Γ(mα +α +1)

(x)E (x) = E (x) =
Γ(αm+1)

 



 


                 (10) 

With this we obtain the following from Laplace inverse of Eq. (9) 

 
 

m

α

F-α

V k1 α
0 m α,α+1s(s k)

m t
α,α+1 RC

F

v (t) V kt E (-kt )

V t E -
RC


 







 




                                          (11) 

We have alternate derivation via series expansion [13], [37] as follows 

  1 -1 2 3m m k
0 1 s

2 3
m

1 2 3

2 3

m 1 2 1 3 1

V k V kV (s) 1 ; (1+ x) = 1- x + x - x +...
s(s k)

V k k k k1 ...
s s s s

k k kV ..
s s s

s 



 

   

  

  


 
     

 
 

    
 

              (12) 

Use Laplace pair  n+1
(n 1) nt
s

   to invert term by term the above Eq. (12) to get following 



 

 

 α

F-α

2 2 3 3

0 m

2 2 3 3

m

n
α t

m m α m α RC
n 0

kt k t k tv (t) V ...
( 1) (2 1) (3 1)

kt k t k tV 1 1 ...
( 1) (2 1) (3 1)

( kt )V 1 V 1- E (-kt ) = V 1- E -
(n 1)

  

  





 
           

  
                

             


             (13) 

Where, αE (x) is one parameter Mittag-Leffler function (Refer Appendix) used in Eq. (13), 

with x
1E (x) = e . Therefore for classical ideal capacitor with limit 1 , we have normal 

exponential charging t /RC
0 mv (t) V (1 e )  ; writing F 1

C C 
 .   

For voltage charging expression for fractional order impedance 1
2 FZ (s) s C 

  , Eq. (8) we 
have from Eq. (11) and Eq. (13) the following 

    α α

F-α F-α

αmt t
0 m α α,α+1RC RC

F-α

Vv (t) = V 1- E - = t E -
RC

                         (14) 

We have 0 mtlim v (t) V  . For charging current of circuit of Figure-1 with 

1Z = R and α
F-α

1
2 s C

Z (s) = , we have 1 2Z(s) = Z (s) + Z (s) and write the following 

  F-α
F-α

α-1
m m m

α 11 RCs C

V V V1 sI(s) =
Z(s) s R s +s R + 

            
                                  (15) 

Using   n-1

n
n s

n s -a
E (at )  , [10], [12], [13] we get inverse Laplace transform of above Eq. (15) as 

 α

F-α

m t
α RC

Vi(t) = E -
R

                                                        (16) 

Clearly for ideal case i.e. in limit α 1 case we get mV -t /RC
Ri(t) = e .  Therefore the charge q(t) is 

from Eq. (16) the following  

 α

F-α

t t
m τ

α RC0 0

Vq(t) = i(τ)dτ = E dτ
R

-                                              (17) 

We apply the formula q(t) c(t)* v(t) to fractional capacitor given by c(t) C t across 

which we are having a voltage profile as   α

F-α

t
0 m α RCv (t) = V 1- E - , to write following steps 



 

 

     
       

     
 

   

 

α

F-α

F-α F-αm

F-α

F-α

F-α

F-α

0

t
m α RC

1
m F-α RC CV k1 1

RC (1 )2-α αs(s k) 1
RC

2 -1
m

αα 1
RC

1
1m m

α 1
RC

Q(s) c(t) v (t)

C t V 1 E

V C
C (1 )s ; k = , C

s s +

V s sE ( kt )
R s ks +

V s Vs
R Rs +







  

 









  

     

      

               

 

 



   α

F-α

1 t
α RCs E 




           (18) 

Taking inverse Laplace transform of Eq. (18) by recognizing  t 1

0
f(τ)dτ s F(s) we write 

 α

F-α

t
m τ

α RC0

Vq(t) E dτ
R

-                                                   (19) 

The same result as in Eq. (17) we got by using 
t

0
q(t) = i(τ)dτ validates the verification of 

formula q(t) c(t)* v(t) . Put 1   in Eq. (19) and we get ideal loss-less capacitor 
with F-αC C , and x

1E (x) e to write the following case 

 
 

α

F-α

t t -τ/RCm mτ
α RC0 0

1

-t/RC
m

V Vq(t) E dτ e dτ
R R

V C 1- e

-


 



 
                         (20) 

The above Eq. (20) is charge build up relation for ideal-loss less capacitor, same as Eq. (5) and 
Eq. (7). 

We take the integration of Mittag-Leffler function as    t α
α α,20

E kτ dτ = t E ( kt )-   with 
m(x)

α,β (αm )m 0
E (x) 

 
   (Refer Appendix for proof). So we have charge build up function on a 

fractional capacitor in RC charging circuit as follows 

 

 

α

F-α

t m
α RC0

m
α,2 F-α

Vq(t) E dτ
R

V t E ( t / RC ) ; t 0
R

- 





  


                           (21) 

Let us verify this for 1  from Eq. (21) where we get  
F-α

m
α,2 F-α

1;C C

V tq(t) E ( t / RC )
R



 

  , 

We use
m m αm( 1) a x

α,2 (αm 2)m 0
E ( a x )  

 
  and get  t /RC

mq(t) V C 1 e  , by simple algebraic 

manipulations and tricks.  Thus we have verified the validity of formula q(t) c(t)* v(t) in RC 
charging circuit with fractional capacitor. 
 
 
 



 

 

4. Charge holding at large times for fractional capacitor 
We have from Eq. (21) at ct = T  the charge stored is    mV

c c α,2 c F-αRq(T ) T E ( T / RC )  . Now 

we see if we keep the unit step voltage in mv (t) = V u(t) for large time say cT  for a 

fractional capacitor, what is    m

c c

V
T c T c α,2 c F-αRlim q(T ) lim T E ( T / RC )

 

  , that we 

analyze. Whereas for classical ideal capacitor c

c c

-T /RC
T c T m mlim q(T ) lim CV (1-e ) = V C

 
 , is a 

constant independent of ct = T . 
 
This we study from recurring property of α,βE (x) which is 1 1

α,β α,β-αx xΓ(β-α)E (x) = E (x) -  from 

which Poincare asymptotic expansion is n
1

α,β n=1 x Γ(β-nα)
E (x) -   valid for x  (Refer 

Appendix).  In the expression asymptotic expansion of α,2 c F-αE ( T / RC ) taking cx kT   , 

where
F-α

1
RCk =  we write for cT  as following 

c

-α -2α -3α
c c c

α,2 cT 2 3

-α
c

T T T
lim E ( k T ) - - -...

kΓ(2 -α) k Γ(2 - 2α) k Γ(2 -3α)
T

kΓ(2 -α)


  


              (22) 

We approximate above infinite series Eq. (22)  by neglecting higher powers exponents of power 
law, as the higher terms will be decaying much faster than the first term. Therefore we write the 
following 

   m

c c

V
T c T c α,2 c F-αR

-α
1-αc m F-αm

c c

1-αm F-α
c

lim q(T ) lim T E ( T / RC ) ; 0 < α <1

T V CV T T ; Γ(m+1) = mΓ(m)
R kΓ(2 - α) Γ(2 - α)

V C T
(1-α)Γ(1-α)

 

 

 
 

 

  

                 (23) 

In [1] we got
1-α

α mC V t
1-αq(t) = for a fractional capacitor with capacity function -α

αc(t) = C t as a 
charge build up formula for a fractional capacitor. In [1] we showed tlim q(t) =  by use of 
formula q(t) = c(t)*v(t) for an uncharged fractional capacitor, charged directly from ideal 
voltage source (i.e. in RC of circuit Figure-1 with R 0  ). Here in RC circuit case we see that 
steady state of charge holding will be never obtained (as we get for an ideal loss less capacitor). 
For the fractional capacitor case, the charge will keep growing to infinity, leading to electro-static 
break down of capacitors [1], [6], [7]. Using F-α αC = C Γ(1-α)  in the derived formula for large 

times in RC charging in asymptotic approximation is m F-α m αV C V C1-α 1-α
(1-α)Γ(1-α) (1-α)q(t) t t that is same 

that we got in [1]. Here if we put 1 , we have classical ideal capacitor F-α αC = C Γ(1- α) C  
and thus mq(t) = V C for any t 0 ; that is true for classical ideal capacitor case. 
 



 

 

In case of classical capacitors, we have  -t /RC
mq(t) V C 1-e  and here we get steady-state 

at mtlim q(t) V C  . This is fundamental to memory effect as observed in a fractional capacitor 
case [40].  There is no memory effect in the classical capacitor cases the charge store is steady 
constant mq(t) = CV for any holding time for in mv (t) = V u(t) . While the charge storage in a 
fractional capacitor depends on holding time for step voltage, more the holding time more 
the charge stored in fractional capacitor [1], [40]. 

 
5. Self-Discharging a fractional capacitor after holding a step input voltage for a 
long time--The memory effect, explained by the formula q = c * v 
A fractional capacitor is charged from time ct = -T to time t with a constant step 
input in m cv (t) = V u(t - (-T )) . That is step voltage us applied at time ct = -T . The charging current 
is from general charge equation by following convolution 

expression  
t

CHq (t) = c(t)*v(t) c(t - x)v(x)dx


  ; [1].  For a fractional capacitor with 

capacity function -α
αc(t) = C t we write the convolution expression with lower limit of integration 

as c-T that is the time where the voltage change is applied, [1]. 

 
c c

tt -α
CH α-T -T

q (t) = c(t)*v(t) = C (t - x) v(x)dx                                      (24) 

Where v(t) we say voltage across the capacitor assumed to be at mV in ct = -T , and v(t) = 0 , for 

ct < -T .  This assumption is valid when we say ct >> -T , that is neglecting the rise part of the 

charging equation   α
c

F-α

(t+T )
c m α RCv(t + T ) = V 1- E - is c mv(t + T ) V  for ct T  . The charging 

current is following 

 
c

c c

t -αCH
CH α-T

x=t t-α
α α αx=-T -T

dq (t) di (t) = = c(t)*v(t) , c(t) = C t
dt dt
d d v(x)dx= C (t - x) v(x)dx C
dt dt (t - x)

 
                        (25) 

The integration by parts for term 
c

t -α

-T
(t - x) v(x)dx in Eq. (25) gives following result 

c c
c

c

c

c

x=t
t t (1)

α α α-T -T
x=-T

x=t1-α 1-αt (1)

-T
x=-T

(1)t1-α 1-αc
c -T

v(x)dx dx dx= v(x) - v (x) dx
(t - x) (t - x) (t - x)

(t - x) (-1)(t - x)= v(x) - - v (x) dx
1-α 1- α

v(-T ) v (x)= (t + T ) (t - x) dx
1-α 1-α

   
  

   

   
   
   



   





                 (26) 

Using the derivation of Eq. (26) and using the definition of fractional derivative for 0 < α <1 is 
Riemann –Liouville (RL) α

a tD and Caputo C α
a tD  (Refer Appendix) we write the following steps                          



 

 

 

c c

c

c

(1)t t1-α 1-αc
CH α α cα-T -T

1-α (1)t 1-αc
α c α -T

(1)tc
α αα α-T

c

α

v(-T )d v(x)dx d v (x)i (t) = C = C (t + T ) (t - x) dx
dt (t - x) dt 1-α 1-α

(t + T )d v (x) d= C v(-T ) + C (t - x) dx
dt 1-α 1- α dt

v(-T ) v (x)= C + C dx
(t + T ) (t - x)

C Γ(1-α)

 
 

 
   
   

  



 





 

  

  

c

c

c

(1)tc
α F-αα α-T

c

C αF-α c
F-α -T tα

c

α
F-α -T t

v(-T )1 v (x)dx+ , C Γ(1- α) = C
Γ(1- α) (t +T ) (t - x)

C v(-T ) C D v(t)
Γ(1-α) (t +T )

C D v(t) , 0 < α <1

  
     

 
  

 





(27) 

We set c mv(-T ) V for ct T and (1)v (t) = 0 for a constant voltage mv(t) = V for ct T and 
write 

 
c

(1)tc
CH α α α-T

c

α m
α

c

v(-T )1 v (x)dxi (t) C Γ(1- α) +
Γ(1-α) (t +T ) (t - x)

C V
(t + T )

  
      




                          (28) 

The above CHi (t) in Eq. (28) is Curie-Von Schewdler relaxation current power law for dielectric 
relaxation when the dielectric is stressed by a constant voltage at time (in this case) ct T  . This 
we get by other method too as depicted below  

 c

c

c

α
CH F -T t

t=tα
m

F-α F-α αα
t=-T

tα
-αm m

α α cα
-T

m
α cα

c

i (t) C D v(t) ; 0 < α <1

d VC , C = C Γ(1-α)
dt

d V VC Γ(1- α) C Γ(1- α) (t - (-T ))
dt Γ(1-α)

V= C 0 < α <1 (t +T ) > 0
(t + T )





 
   

 

                         (29) 

In above steps of Eq. (29) we used formula for RL fractional derivative of a constant K  
as

-α(x-a)α
a x Γ(1-α)D K = K , with ca = -T that is start point of fractional differentiation process, and x = t , 

and mK = V  (Refer Appendix). We note that C α
a xD K = 0 , that appears in Eq. (28). 

 
At t = 0 the voltage source in mv (t) = V u(t) is disconnected, or we keep the fractional capacitor at 
open-circuited condition, after keeping this for a long-long time from ct = -T   .Thus there will be 
a self discharging of the charged fractional capacitor, and the self discharge current will be 



 

 

proportional to decaying open circuited voltage ocv (t) , given as follows from time t = 0  the time 
the fractional capacitor was kept open circuited, to time t 0 . The self-discharging current we 
write as follows  α

DIS F-α 0 t oci (t) = C D v (t) , that is 
t=t t=tα α

oc oc
DIS F-α αα α

t=0 t=0

d v (t) d v (t)i (t) = C = C Γ(1-α)
dt dt

                                    (30) 

We will see in subsequent section that DISi (t) of Eq. (30) is not the conventional current of 
discharge that flows out to a shunt resistance put for discharging the stored charge, but gives a 
notion due to special re-distribution of charges inside a spatially distributed system infinite RC 
circuit-we call it notional discharge current (we will discuss later).  
 
The coulomb of charge CHq (t) pumped into the capacitor plus self-discharged coulombs of 
charge say DISq (t)  is zero that is CH DISq (t) = -q (t) . Differentiating this we get 

CH DISi (t) + i (t) = 0  which gives the following. We write the following  

   
c

CH DIS

α α
F -T t F-α 0 t oc

i (t) + i (t) = 0

C D v(t) C D v (t) 0  
                                         (31) 

That is the following we get using Eq. (28) or Eq. (29) 
α

ocm
α αα α

c

d v (t)VC + C Γ(1-α) = 0
(t + T ) dt

                                             (32) 

Our interest is finding ocv (t) , from t 0 that is in self-discharge phase.  We do the fractional 

integration α
0 tI  (from time 0  to time t ) of the above Eq. (32) and write the following 

α
α α ocm

0 t α α 0 tα α
c

d v (t)VI C + C Γ(1- α) I = 0
(t + T ) dt

    
         

                               (33) 

We write   tα α
0 t 0 t oc oc oc oc0I D v (t) v (t) = v (t) - v (0)    with oc mv (0) = V   for the second term 

and write the following 

 α m
0 t α α oc mα

c

VI C + C Γ(1- α) v (t) -V = 0
(t + T )

 
 
 

                                    (34) 

To the first term we apply Riemann formula of Fractional Integration (Refer Appendix) that is 

  1-α

t f(x)dxα 1
0 t Γ(α) (t -x)0
I f(t) =  and get 

 
t

α m α oc α mα 1-α0
c

1 dxC V + C Γ(1-α)v (t) -C Γ(1- α)V = 0
Γ(α) (T + x) (t - x)               (35) 

Rearranging the Eq. (35) we write  
tm

oc m α 1-α0
c

V dxv (t) = V -
Γ(α)Γ(1-α) (T + x) (t - x)                                    (36) 

In Eq. (36) put cT + x = τ , dx = dτ , therefore for x = 0 , cτ = T and x = t , cτ = T + t we have 
 



 

 

c c

c c

T +t T +tm m
oc m mα 1-αT T

c

α 1-α
c

V Vdτv (t) = V - = V - F(τ)dτ
Γ(α)Γ(1-α) τ (T + t - τ) Γ(α)Γ(1- α)
1F(τ)

τ (T + t - τ)


 
           (37) 

Now we break c

c

T +t

T
F(τ)dτ  as c c

c c

T +t 0 T +t

T T 0
F(τ)dτ = F(τ)dτ + F(τ)dτ   and call the second term 

as NI (t) . We write NI (t) in terms of convolution of two functions with substitution cT + t = t  

c cT +t T +t t

N α 1-α α 1-α α 1-α0 0 0
c

dτ dτ 1 1I (t) = F(τ)dτ = = = *
τ (T + t - τ) τ ( t - τ) t t

   
   
                 (38) 

Now we use Laplace pair   m+1
Γ(m+1)m

s
t = to write        -α -(1-α)

N NI (t) I (s) = t t    

 
 N -α+1 -(1-α)+1

Γ -(1-α) +1Γ(-α +1) Γ(1-α)Γ(α)I (s) = =
s ss

  
  

  
                          (39) 

Recognizing   -1u(t) = s , we write  N NI (s) I (t) , and write 

N

Γ(1-α)Γ(α) ; t 0
I (t) =

0 ; t < 0





                                                     (40) 

Therefore we have c c

α 1-α
c

T +t T +t
dτ

τ (T +t-τ)0 0
F(τ)dτ Γ(1-α)Γ(α)   . Thus we write the expression for 

open circuit voltage ocv (t)  for a charged fractional capacitor that is charged for a long time cT to 
voltage mV and at t = 0 kept at self-discharge mode, we get 

 

c

c

c

c

c

c

T +t 0m
oc m 0 T

0m m
m T

0 Tm m
T 0

Tm
α 1-α0

c

Vv (t) = V - F(τ)dτ + F(τ)dτ
Γ(1-α)Γ(α)

V VV - Γ(1-α)Γ(α) - F(τ)dτ
Γ(1- α)Γ(α) Γ(1-α)Γ(α)

-V VF(τ)dτ = F(τ)dτ
Γ(1-α)Γ(α) Γ(1- α)Γ(α)

V dτ
Γ(1-α)Γ(α) τ (T + t - τ)

 
  







 



 



           (41) 

In Eq. (41) ocv (t) is the voltage over open capacitor at self discharge mode (oc).  This ocv (t)  
function of time depends on the total time cT   the capacitor has been on the voltage source of 
constant voltage mV . More the cT more CH cq (T ) and more time ocv (t) will take to self-discharge, 
from charged voltage mV . This formula for self discharge voltage i.e. 

cm
α 1-α

c

TV dτ
oc Γ(1-α)Γ(α) τ (T +t-τ)0

v (t)   is noted in [6]; here we derived the same by using the 

concept  q(t) = c(t)* v(t) . 
 
We mention here the formula for self discharge as described above is only valid for a constant 
voltage excitation or a step input case. For a triangular voltage impressed at ct = -T  reaching 



 

 

voltage mV at time cmT described as  m cm cV / T (t + T ) will be having different ocv (t) self-
discharge profile. 
 
The Figure-2 shows self discharge of a super-capacitor when charged with different times, 
showing memory effect. Here cT is 4hr, 8hr and 16hr, charged to mV 2.2  (Courtesy: BRNS 
Funded joint Project CMET Thrissur-BARC Development of CAG Super-capacitors and 
application in electronics circuits); [41], [42]. The Figure-2 shows that self discharging 
curves ocv (t)  for each cT is different, indicating memory effect. 

cT = 4 h r

cT = 8 h r

cT = 1 6 h r
o cv ( t )

 
Figure-2: Self-discharge of fractional capacitor, more time we place fractional capacitor on a 

constant voltage more time it takes decay: Memorizing the charging history.    
 
 
6. Self discharging of a classical ideal capacitor 
We have a constant voltage source applied at ct = -T for a constant capacitor case with 
capacity function as c(t) = Cδ(t) , [1]. For this case we have the relation Eq. (42) i.e. 

   (1)
CH c ci (t) = Cδ(t +T ) v(-T ) +C v (t) ; that we derive from formula CHq (t) = c(t)*v(t) .  

Compare what we got for a fractional capacitor with -α
αc(t) = C t  

i.e.
(1)

c
α α

c c

tv(-T ) v (x)
CH α α(t+T ) (t-x)-T

i (t) = C + C dx , Eq. (28).  We follow following steps 



 

 

 

  

      

c

c

c c

tCH
CH -T

x=t

cx=-T

t -T t -T

c c c

c c

dq (t) di (t) = = c(t)* v(t) , c(t) = Cδ(t)
dt dt
d d= Cδ(t - x)v(x)dx C v(t) , t -T
dt dt

dC dv(t)v(t) + C
dt dt

dv(t) dv(t)v(t) C δ(t +T ) +C = C v(-T )δ(t +T ) +C
dt dt

i(-T ) + i(t), t -T

 

 





 



               (42) 

The first term at RHS of above Eq. (42) i.e. ci(-T )   indicate the value of current at ct = -T . 
The constant function starting at ct = -T i.e. C when differentiated gives cCδ(t +T ) . This 
unit delta functions at ct = -T , i.e. cδ(t + T ) when multiplied by v(t) gives c cv(-T )δ(t + T ) . 

This comes from property   0 0δ(x - x) f(x) dx = f(x ) , differentiation of this 

gives   d
0 0 0dxδ(x - x)f(x) = f(x ) = f(x )δ(x) . Thus at ct = -T we have c ci(-T ) = Cv(-T ) and 

ci(-T ) = 0 for ct > -T . Compositely we write  c 1 c ci(-T ) = C v(-T ) δ(t +T ) , i.e. specifying its 

value at only ct = -T . The second term is i(t) for ct -T , that is  (1)i(t) = C v (t)  . 
 
The obtained expression    (1)

CH c ci (t) = Cδ(t +T ) v(-T ) +C v (t)  is by the 

formulation q(t) = c(t)* v(t) . As an example, we take m cv(t) = V u(t +T ) a step input at 
time ct = -T , to an uncharged capacitor. We have (1)v (t) = 0 for ct > -T ; and at ct = -T we 
have c mv(-T ) = V  . Using this we get  c m ci(-T ) = CV δ(t +T ) ; this 

makes  CH m c ci (t) = CV δ(t +T ) , t -T . At any time t  the coulomb CHq (t) pumped charge 

into the capacitor plus self-discharged coulombs of charge say DISq (t)  is zero that 
is CH DISq (t) = -q (t) . Differentiating this we get CH DISi (t) + i (t) = 0  which 
gives CH DISi (t) + i (t) = 0 .  That is the following 

  oc
m c

dv (t)CV δ(t +T ) +C = 0
dt

                                           (43) 

Our interest is finding ocv (t) , from t 0 self-discharge phase.  We do the integration 1
0 tI  (from 

time 0  to time t ) of the above Eq. (43) and write the following 

  t t oc
m c0 0

dv (τ)dτ CV δ(τ +T ) + dτC = 0; t 0
dτ

                      (44) 

The first integration term is zero since the delta function is outside of the region of integration, 

thus   t

m c0
C dτ V δ(τ +T ) 0 .  



 

 

For the second term in Eq. (44) we have    
t t(1)

oc oc oct=00
C v (τ)dτ C v (t) C v (t) - v(0)  . The 

value mv(0) = V  that is ideal capacitor is charged to full value of voltage. Using these results we 
have for ideal classical capacitor oc mv (t) = V , from Eq. (44). 
 
This is very true observation. That an ideal loss less classical capacitor, once charged to mV Volts 
would retain its charge that is finite and equilibrium value mCV coulombs; and the terminal 
voltage ocv (t) will be held constant indefinitely. Now if a resistance is shunted across the charged 
capacitor, say R , this voltage oc mv (t) = V will decay as 

  -t /RC
DIS ocv (t) v (t) e or -t /RC

DIS mv (t) V e , for t 0 from the time the resistance was shunted.  
 
Similarly for a case of fractional capacitor the self discharge voltage 

say cm
α 1-α

c

TV dτ
oc Γ(1-α)Γ(α) τ (T +t-τ)0

v (t)   , Eq. (41) will additionally discharge if the fractional capacitor is 

shunted by R , and we will record for a fractional capacitor DISv (t) as following expression 

 

 
c

α
DIS oc α F-α

T αm
α F-αα 1-α0

c

v (t) v (t) E (-t / RC )

V dτ E (-t / RC )
Γ(1- α)Γ(α) τ (T + t - τ)



 
  
 


                           (45) 

The term α
α F-αE (-t / RC ) is discharge decay function of Mittag-Leffler, for a fractional capacitor 

(that we will derive in subsequent section), is similar to decay function -t /RCe as for the case for a 
classical loss less capacitor. 
 
 
7.  Self-discharge is a misnomer 
While we keep the charged fractional capacitor in ideal open circuit condition, (assume ideal 
infinite open circuit resistance or the ideal case this fractional capacitor having no leakage 
resistance), then we question why shall the terminal voltage ocv (t)  once charged to mV Volts, 
decay. We say in ideal case while shunt resistances are infinite there is no discharge current 

flowing out of fractional capacitor. Yet we observe decay as cm
α 1-α

c

TV dτ
oc Γ(1-α)Γ(α) τ (T +t-τ)0

v (t)    for 

different cT  pumping various amounts of charge cq(T ) .  
 
A fractional capacitor is like lossy semi-infinite transmission line-that is electrode structure being 
porous [8], [9], [41]. This infinite transmission line is composed of per unit series resistance ur  
and shunt capacitance uc , giving terminal relation of current and voltage as, [10] 

α
u u1

F-α2α
u u

c cd v(t)i(t) = ; α = , C =
r dt r

                                         (46) 

Therefore the fractional capacitor we say is spatially distributed system too, having infinite 
elements. When we connect a voltage source mV to this semi infinite transmission line, though 
the first capacitor (say u-1c  gets charged to mV , yet, the charging current keeps flowing to charge 



 

 

infinite number of u-2c , u-3c …, cu ,(charges diffuse spatially). Therefore at time cT   , we 
have CHq ( )   , with all the voltages at each distributed capacitors of infinite numbers at mV .  
 
This system when kept in open ideal circuit condition will maintain oc mv (t) = V . But see the 
actual case, we have a limited cT   , but large enough that gives the terminal voltage, say to 
capacitor u-1c  almost mV with other capacitors u-2c , u-3c ….., which are spatially farther away, 
with lesser terminal voltage as compared to the first capacitor u-1c . While in ideal open circuited 
condition-this unequally charged semi-infinite transmission line, will have internal spatial charge 
distribution, to have voltage balancing to equal voltage to all the unit capacitors that are spatially 
distributed. This gives the notion as if  ocv (t)  is self-discharging or decaying, though there is no 
real discharge current flowing out of the fractional capacitor. Since this semi-infinite lossy 
transmission line has infinite elements, thus this process goes on infinitely for a long time, to have 
infinite capacitors have infinitesimal small charges and adding up to zero-and while the charge 
balancing is at play, at open circuited condition the current that flows in all the section will 
dissipate the stored electrostatic energy.  Therefore, a fractional capacitor is a truly lossy 
capacitor, unlike an ideal loss-less capacitor which holds the stored charge and thus the open 
circuit voltage) indefinitely. This analysis is assuming that ideal capacitor or fractional capacitor 
doesn’t to have any leakage resistance. Therefore, self-discharging term is misnomer; actually it 
is voltage redistribution taking place spatially-via diffusion process. 
  
 
8. Charging/discharging a super-capacitor in RC circuit 
8-a) Charging Phase 
The differential equation corresponding to Figure-1 for 1  , is ordinary differential equation 
(ODE), with 1Z (s) = R and 1

2 sCZ (s) =  is following 

0
0 in

dv (t)RC v (t) v (t)
dt

                                                      (47) 

For 1  we get fractional differential equation (FDE), with 1Z (s) = R and α
F-α

1
2 s C

Z (s) =  is 

following 
α

0
F-α 0 inα

d v (t)RC v (t) v (t)
dt

                                                   (48) 

A super-capacitor is modeled as Equivalent Series Resistance (ESR) series with impedance of a 
Fractional Capacitor of order  [15]-[22]. We now consider a lumped ESR ( sR ) for super-

capacitor, thus for Figure-1 we have 
α

s F-α
α α

F-α F-α

s R C +11
2 s s C s C

Z (s) R   while charging impedance 

remains at 1Z (s) R . Therefore for any input voltage  in inV (s) = v (t) , we write the charging 
current (in Laplace domain) as  

α
F-α

α
F-α inin

CH α1
s F-α ss C

s C V (s)V (s)I (s) = =
R + R + s C (R + R ) +1

                                (49) 

Output voltage across 2Z (s) in Laplace domain is therefore is 
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+V (s) + V s R C Vput V (s) =
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          (50) 

To get 0v (t) we do inverse Laplace transform of Eq. (50) as following 

     
α-1

m sm
α α1 1

F-α s sC (R+R ) C (R+R )F-α s F-α s

V R sV1 1 1
0 0 C (R+R )s s + (R+R ) s +

v (t) = V (s)         
   

                (51) 

Use formula   α-β

α
αp+β-1 (p) α s

α,β s -a
t E (at ) p! . [10], [12], [13] with p = 1 ,α = α , β = α +1  and p = 0 , 

α = α ,β =1 , to write from Eq. (51) the inverse Laplace as 

   α α

F-α s F-α s

αm R st t
0 α,α+1 α,1C (R+R ) C (R+R )

F-α s s

V V Rv (t) t E E
C (R + R ) R + R

               (52) 

Let us keep the step input from time t = 0 to ct = T  , and then at time ct = T , the output voltage is 

   α α
c c

F-α s F-α s

α
T TR c R s

0 c α,α+1 α,1C (R+R ) C (R+R )
F-α s s

V T V Rv (T ) E E
C (R + R ) R + R

               (53) 

The charge q(t) will be held only in the element F-αC . We calculate now the voltage profile cv (t)  
and then voltage at ct = T , i.e. c cv (T )   for only fractional impedance part i.e. α

F-α

1
s C

of the 

impedance 2Z (s) comprising of sR plus this fractional impedance α
F-α

1
s C

, the voltage is thus 

 
F-α s

α
F-α in m

c CH inα α α
F-α F-α s F-α

m
α 1

F-α s C (R+R )

s C V (s) V1 1V (s) I put V (s) =
s C s C (R + R ) +1 s C s

V 1
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     (54) 

Using the Laplace identity of Mittag-Leffler function   n-1

n
n s

n s -a
E (at )  , [10], [12], [13] we write 

 

  

α

F-α s

α

s F-α

αm t
c α,α+1 C (R+R )

F-α s

t
c m α c(R+R )C

Vv (t) t E -
C (R + R )

v (t) V 1 E , 0 t T



    
                                    (55) 

At ct = T we thus have the voltage at the fractional impedance  

    α α
c c

F-α s s F-α

α
T Tm c

c c α,α+1 m αC (R+R ) (R+R )C
F-α s

V Tv (T ) E - V 1 E
C (R + R )

                    (56) 

The charge q(t) is cq(t) = c(t)*v (t) with fractional capacitor with capacity function 

as -α
αc(t) = C t   having voltage profile and that is   α

s F-α

t
c m α (R+R )Cv (t) V 1 E    as following 
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          (57) 

Taking inverse Laplace transform of Eq. (57) by recognizing  t 1

0
f(τ)dτ s F(s) we write 

   α

s F-α

t
m mτ

α α,2 s F-α(R+R )C0
s s

V V tq(t) E dτ = E ( t / (R R )C )
R + R R + R

-                    (58) 

At ct = T we have charge as 

 c

s F-α

Tm c
c α,2 (R R )C

s

V Tq(T ) = E
R + R



                                          (59) 

For 1
2 s sCZ (s) = R  i.e. with an ideal capacitor with ESR, we have the following 
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
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                     (60) 

Charge at the end of ct = T is  
Tc

(R+R )Cs
c mq(T ) = V C 1 e

  
 

                                                     (61) 

The charging current is following from Eq. (60) 
t

(R+R )Cs
m

CH c
s

V edq(t)i (t) = , 0 t T
dt (R + R )



                                         (62) 

The voltage at the end of ct = T is
Tc

(R+R )Cs
c c mv (T ) = V (1 e )


 .  

 



 

 

8-b) Discharging Phase 
After ct T we make the voltage inv (t) 0 i.e. we are draining out the stored charge i.e. 

 c sT / (R+R )C
c mq(T ) = V C(1 e ) during the discharge phase ( ct T ); Figure-3. In the discharge 

phase the voltage c cv (T ) will decay as   st / (R+R )C
c c cv (t ) = v (T ) e  , for ct T , writing ct = t - T . 

At this point the capacity function c(t ) Cδ(t )   will again appear, as there is sudden change 
(differentiability is lost) in voltage from mV to 0 at t 0  (i.e. ct T ). Therefore the discharging 
charge profile q(t ) we write as cq(t ) c(t )*v (t )   as follows 
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                           (63) 

The discharging current ct T is as follows 
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t
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                     (64) 

 
The negative sign in Eq. (64) indicates that discharge current is opposite to that of charging 
current. Now we carry on with the above logic for a fractional capacitor with α

F-α

1
2 s s C

Z (s) = R  . 

This value   α
c

s F-α

T
c c m α (R+R )Cv (T ) V 1 E    ; Eq. (56) becomes the initial voltage while we 

discharge the super-capacitor with time defined as ct = t - T , for discharge phase where 

inv (t ) 0    .  
Now we see the discharge profile, as the charged fractional capacitor F-αC  with above 
value c cv (T )  Eq. (56) discharges through R . The discharge current is now for t 0  , negative to 
the charging current is following 

 α αF-α F-α s

1
c c c c

DIS 1 α 1s s C s s C (R+R )

v (T ) / s v (T )sI (s)
R + R + (R + R ) s



   


                       (65) 

The inverse Laplace transform of Eq. (65) gives discharge current for ct T as following 
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This DISi (t ) is real discharge current flowing out of the capacitor, unlike notional discharge 
current that we used in explaining the self discharge phenomena.   For 1  we have for ideal 
loss less capacitor F-αC = C from Eq. (66) 
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       (67) 

The discharging profile of q(t ) with initial charge cq(0) = q(T ) is 
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                  (68) 

Thus we get q(t ) for ct T with ct = t - T as following 

 Tt c
(R+R )C (R+R )Cs s

c c c c m cq(t ) Cv (T )e ; v (T ) V 1 e ; t T
                        (69) 

The voltage profile across the fractional capacitor while discharging process is  

    αα
c
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We mention here that Eq. (70) is only having discharge though shunt resistor R . If we consider 
the self-discharge phenomena of the fractional capacitors, then we have from earlier derivation 
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The self discharge part due to spatial charge diffusion into distributed structure, is a very-very 
slow process, thus we generally avoid that while calculating the discharge profiles through 
external shunt resistance.  
 
The charge q(t )  profile during the discharge phase is cq(t ) = c(t )* v (t )   for ct T is following 
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           (72) 



 

 

In above steps Eq. (72), we have used α α
ts F(s) D f(t) , for 

-1s
s k

F(s) 


  , αf(t) = E ( kt )  . 

Consider the fractional derivative operator α
tD as Caputo fractional derivative. We have the 

Caputo fractional derivative of Mittag-Leffler function α
αE (λx )  as α α α

x α αD E (λx ) E (λx )  ; 
[13] (Refer Appendix). Using this we write the following 
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Using inverse Laplace Transform we have  
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Where we have  m c c
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We put 1  in   α
c c

s F-α

tv (T ) τ
α(R+R ) (R+R )C0

q(t ) q(0) E d
s

τ


     ; Eq. (75) and we get what we got 

for classical ideal capacitor F-αC = C , i.e.  τ
(R+R )Cc c s

s

tv (T )
R R 0

q(t ) = q(0) + e dτ
 

   , Eq. (69). 
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Figure-3: Constant voltage charging and discharging voltage profile at super-capacitor 

 
The Figure-3 displays the curve of voltage profile for a constant voltage charge and discharge 
case. Here we point out that the charging curve though similar to exponential charging of a text 
book capacitor -t /RC

0v (t) (1 e )  , but it is not so, for fractional capacitor that is described via 
Mittag-Leffler function. Similarly the discharge profile though similar to exponential 
decay -t/RC

0v (t) e , but is not so for fractional capacitor; here too described by Mittag-Leffler 
function.  All the relations we obtained and also verified our formula q(t) = c(t)*v(t) .  
 
 
9. Charge storage q(t)  by step input constant current in mi (t) = I u(t)  excitation to RC 
circuit with fractional capacitor and ideal capacitor 
In the Figure-1 we take 1Z (s) = R , α

F-α

1
2 s C

Z (s) = and instead of in mv (t) = V u(t) , that is voltage 

source, we take, that as an ideal constant current source i.e. in mi (t) = I u(t) . This constant current 

charging we apply to initially uncharged fractional capacitor, with capacity function -α
αc(t) = C t . 

The fractional capacitor will develop a voltage across it by law governed by fractional derivative 
and fractional integral as follows 

 
α t α -α

F-α tα 0
F-α F-α

d v(t) 1 1i(t) = C ; v(t) = i(τ) dτ D i(t); 0 1
dt C C

               (73) 

Therefore, for constant current mi(t) = I the voltage is fractional integral of a constant mI   

-α -α αm
t t m

F-α F-α F-α

1 1 Iv(t) D i(t) = D I t ; t 0
C C C (1 )

  
  

                        (74) 

for t 0 [12], [13], [37].  We used formula Γ(m+1)-n m m+n
t Γ(m+1+n)D t = t  in Eq. (74), (Refer Appendix) 

Therefore the charge function q(t) is q(t) c(t)* v(t)  as follows 
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Thus we have charge function by taking Laplace inverse of above Eq. (75) as 
mq(t) = I t ; t 0                                                          (76) 

The Eq. (76) can be expressed as mq(t) = I r(t) , where r(t)  is unit ramp function at t = 0 . That is 
r(t) = t for t 0 and r(t) = 0 for t < 0 . This Eq. (76) is matter of fact is the current flowing 
through R and F-αC is mi(t) = I for t 0 , and thus the charge will be 

t t

m m m0 0
q(t) = i(τ)dτ = I dτ = I t = I r(t) ; t 0                                       (77) 

For an ideal capacitor with c(t) = Cδ(t) the voltage is m
t I1

mC C0
v(t) = I dτ = t so the charge 

is q(t) c(t)* v(t) as follows 
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                            (78) 

Thus in the case of constant current charging, we verified the validity of q(t) c(t)* v(t) as for 
any capacitor fractional or ideal loss less capacitor, the mq(t) = I t ; that is always integration of 

current function, i.e. 
t

0
q(t) = i(τ)dτ  , for t 0 . 

 
 
10. Charge storage q(t)  by step input current of a square pulse ini (t)  to RC circuit 
with fractional capacitor and ideal capacitor 
Let the square pulse of current be described as follows 

m m c m di(t) = I u(t) - 2I u(t -T ) + I u(t - T )                                 (79) 
Where u(t - T) = 1 for t T and u(t - T) = 0 for t < T , i.e. unit step function at time t = T  .Then 
with identity   -sTf(t - T) = e F(s)  with f(t - T) = 0 for t < T ; we write 

  c d-sT -sTm m mI 2I II(s) = i(t) - e + e
s s s

                                  (80) 

We have voltage across α
F-α

1
2 s C

Z (s)  as follows 

c d c d

2

-sT -sT -sT -sTm m m m m m
α α+1 α+1 α+1

F-α F-α F-α F-α
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C s s s s C s C s C s
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      (81) 



 

 

Then taking inverse Laplace of Eq. (81) we get voltage profile across F-αC as 
α αα

m c m dm
c d

F-α F-α F-α

m m c m d

F-α F-α F-α

2I (t - T ) I (t - T )I tv(t) = u(t) - u(t - T ) + u(t -T )
C Γ(α +1) C Γ(α +1) C Γ(α +1)

I r (t) 2I r (t -T ) I r (t -T )- +
C Γ(α +1) C Γ(α +1) C Γ(α +1)

  
            (82) 

We note that  1 -sTe F(s) f(t -T)  , where f(t - T) = 0 for t < T . We can write 

explicitly  1 -sTe F(s) f(t -T)u(t - T)  , where u(t - T) is unit step function at  t = T   . This we 

used in Eq. (82). Also in Eq. (682) we define function r as α
αr (t - τ) = (t - τ) for t   and 

αr (t - τ) = 0 for t < τ . The Laplace transform of r  is,   -(α+1)
αr (t) = Γ(α +1)s therefore we 

have the identity     -sτ -(α+1)
αr (t - τ) = e Γ(α +1)s , which is used in Eq. (81) to get Eq. (82). 

 
The charge function is q(t) c(t)* v(t) as follows, when the voltage profile v(t) ; Eq. (81) is 
across a fractional capacitor -α

αc(t) = C t . This -α
αc(t) = C t  gets applied at t = 0 , 

ct = T and dt = T ; that is where there is sudden change of state of v(t) ; (that is at points where the 
differentiability of v(t) is lost). We write 
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m c c m d d
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t - 2I (t -T )u(t -T ) + I (t - T )u(t -T )
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          (83) 

In Eq. (83) we define unit ramp function r as r(t - τ) = (t - τ) for t   and r(t - τ) = 0 for t < τ . 
The Laplace transform of r  is,   -2r(t) = s therefore we have the identity     -sτ -2r(t - τ) = e s , 
which is used in Eq. (683). This shows verification of our formula q(t) = c(t)* v(t) . In similar 
way we can analyze the ideal loss less capacitor c(t) = C (t) , for this wave form of current pulse. 
 
 
11. Charging/discharging when R is zero ohms in RC circuit with voltage pulses 
In this case Figure-1 has 1Z (s) = 0 . Therefore the voltage source directly gets connected to the 
fractional or ideal capacitor represented by impedance 2Z (s) . This case we have studied for step, 
ramp and sinusoidal voltage excitation in [40]. Here we take square wave case and triangular 
wave case, as extension of [40].    
11-a) Charge storage q(t) in a square wave voltage-on for time cT and thereafter zero 
The following excitation of a square wave pulse is applied to uncharged capacitor 



 

 

m c
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0 , t 0
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0 , t T
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                                                    (84) 

We construct the above Eq. (84) excitation with u(t - τ) = 1 for t   and u(t - τ) = 0 for t < τ ; 
that is unit step function at t =   as m m cv(t) = V u(t) - V u(t - T ) . The Laplace transform is 

    c-sTm m
m m c

V VV(s) = V u(t) V u(t - T ) - e
s s

                            (85) 

We used    d d-st -st
df(t - t ) e f(t) e F(s)    with df(t - t ) = 0 for dt < t in above Eq. (85). 

When this voltage is applied to a time varying capacity function 1c(t) = C δ(t) i.e. ideal loss less 
capacitor we write from q(t) = c(t)* v(t) the following 
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Taking inverse Laplace transform of Eq. (86) we get 

m 1 m 1 c m 1 c
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                        (87) 

Now when this square-wave is applied for a time varying capacity function as -α
αc(t) = C t i.e. for 

fractional capacitor we write from q(t) = c(t)* v(t) the following 
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Taking inverse Laplace Transform of above Eq. (89) we obtain 
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             (90)                 

The charge at ct = T is
1-α

m α cV C T
c 1-αq(T ) = , charge at c ct = 2T > T

1-α
m α cV C T 1-α

c 1-αq(2T ) = (2 -1) , charge 

at ct = 3T is
1-α

m α cV C T 1-α 1-α
c (1-α)q(3T ) = (3 - 2 ) . We observe that for a fractional capacitor while the 

voltage is zero, after ct = T , there still is charge holding, as compared with ideal capacitor Eq. 
(87). The current wave form is 
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11-b) Charge storage by voltage as triangular input of voltage 

The following excitation of a square wave pulse is applied to uncharged capacitor 

m
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                                 (92) 

We can write the above excitation as    m mv(t) = V / T r(t) - 2V / T r(t - T) for 0 t 2T  . With 
r(t) unit ramp at t = 0 and is zero for t < 0  and r(t - T) as unit ramp at t = T and zero at t < T . 
With this applied to a ideal capacitor, with 1c(t) = C δ(t)  , we get the following by application of 
q(t) = c(t)* v(t)  
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Doing inverse Laplace transform of Eq. (93) we get 
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             (94) 

Current is got by differentiation of above Eq. (94) 
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               (95) 

We take a fractional capacitor and do the following as done above as in Eq. (95) by applying the 
formula q(t) = c(t)* v(t)  
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We take inverse Laplace transform of above Eq. (96) with following definition of a 
function mr (t - τ) defined as 
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(t - τ) , t τ e Γ(1+m)r (t - τ) = ; r (t - τ) =
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                        (97) 

Thus the charge function q(t)  is following from Eq. (96) and Eq. (97) 
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                             (98) 

We used Γ(1+m) = m (m) in above Eq. (98). We re-write above Eq. (98) as using Eq. (97) 
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                 (99)                     



 

 

We have at t = T , 
1-α

m αV C T
(1-α)(2-α)q(T) = at t = 2T , 

1-α 2-α
m αV C T (2 -2)

(1-α)(2-α)q(2T) = .We observe that at t = 2T , 
the voltage is zero, but we have charge as non-zero. Withα 1 , we get q(2T) 0 , Eq. (99) that 
we have analyzed for an ideal loss less capacitor. Differentiating the above we write current as 
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Thus we verified q(t) = c(t)* v(t) the formula in RC circuits with charging resistance as zero, for 
triangular and square pulse of voltage excitation. 
 
 
12. Conclusions 
This formula q(t) c(t)* v(t) is a new development.  We have not yet applied this to practical 
cases in our project as this theoretical development very new, but plan to have further 
experimental and theoretical studies on this new formula, like application in estimation state of 
charge (SOC) in supercapacitors charge discharge applications, parameter extraction by 
Hysteresis plot where use this formula for supercapacitors, the insight into new way of defining 
loss-tangent as we obtained from this formula, and applications to several dielectric relaxation 
experiments where memory is observed.   In this paper however we have applied this new 
formula of charge storage i.e. via convolution operation q(t) c(t)* v(t) , of time varying 
capacity function and voltage stress for a fractional capacitor and ideal loss-less capacitor; for 
verification in RC charging/discharging circuit; with dc voltage and current sources. We have 
also shown the effect of memory in self-discharging cases for a fractional capacitor, by this 
formula. This new formulation is different to the earlier used formula of multiplication of 
capacity and voltage function. The circuit analysis that we described for each cases verifies this 
formula. Thus this new formulation of stored charge via convolution operation is applicable, and 
can be taken as general formula applicable to fractional capacitor as well as ideal capacitor.  
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APPENDIX 
 

A Preliminaries of fractional calculus 
For a function f(t) for t 0 , the Riemann-Liouville fractional integration of order  is 
defined as  

 
tυ υ-1

0 t 0

1I f(t) = (t - τ) f(τ)dτ
Γ(υ)                                          A1 

Where Γ(υ) is Euler’s Gamma function, is generalization of factorial function we 

haveΓ(υ) = (υ -1)!. The formula Eq. (A1) is    υ-1υ t
0 t Γ(υ)I f(t) = *f(t) is convolution operation, 

with power-law memory kernel. This is 
υ-1t

υ Γ(υ)k (t) = and is singular function for case 0 < υ <1 . 

We have
υ-1t

υ 0 υ υ 0 Γ(υ)lim k (t) = lim = δ(t)  , which gives  0
0 tI f(t) = f(t) .The formula Eq. (A1) is 

appearing as generalization of Cauchy’s multiple integration formula of m fold integration  
where m given as follows 

 
tm m-1

0 t 0

1I f(t) = (t - τ) f(τ)dτ; m =1,2,3,....
(m -1)!                       A2 

The fractional derivative of order  for 0 1   by Riemann-Liouville (RL) formula is 

 
tβ -β

0 t 0

1 dD f(t) = (t - τ) f(τ)dτ; 0 < β <1
Γ(1-β) dt                        A3 

The Eq. (A3) is fractionally integrating the function by order (1-β) by formula Eq. (A1) and then 
followed by one-whole differentiation. We note that Eq. (A7) is also having convolution 
operation and with singular kernel as

-βt
β Γ(1-β)k (t) =  .We have 

thus
-βt

β 1 β β 1 Γ(1-β)lim k (t) = lim = δ(t)   and    d f(t)β
β 1 0 t dtlim D f(t) =  . 

There is reverse operation called Caputo’s fractional derivative, where we have a function 
f(t) defined for t 0 and is differentiable i.e. (1)f (t) exists for t 0 . The Caputo fractional 
derivative for fractional order 0 1   is given as 

 
tC β -β (1)

0 t 0

1D f(t) = (t - τ) f (τ)dτ; 0 < β <1
Γ(1-β)                         A4 

Thus for Eq. (A4) we need to get first the one-whole order derivative that is (1)f (t)  , and then 
carry out fractional integration for order 1-β , by formula  Eq. (A1).  The formula Eq. (A4) also 



 

 

employs singular kernel as
-βt

β Γ(1-β)k (t) = , and we have   C β (1)
β 1 0 tlim D f(t) = f (t) .  The Caputo 

and Riemann-Liouville (RL) fractional derivative are related by 

   β C β -β
0 t 0 t

f(0)D f(t) = D f(t) + t ; 0 < β <1
Γ(1-β)

                             A5 

We write (A5) as following, with non-zero as start point of fractional differentiation process 

 

 

tβ
a t βa

(1)t

β βa

(1)t

β βa

-β C β
a t

1 d f(x)D f(t) = dx , 0 β 1
Γ(1-β) dt (t - x)

1 f(a) f (x)= + dx ; t > a
Γ(1-β) (t - a) (t - x)

f(a) 1 f (x)= + dx
(t - a) Γ(1- α) Γ(1-α) (t - x)

f(a)= (t - a) + D f(t)
Γ(1-β)

 

 
 
 






                         A6

 

We mention that both the fractional derivatives are equal when initial value is zero i.e. f(0) = 0 . 
We note that fractional derivative of constant is not zero in RL sense, but is a power function (and 
that is singular at start point) i.e.   β -βK

0 t Γ(1-β)D K = t . Whereas the Caputo’s fractional derivative 

of a constant is zero, i.e.  C β
0 tD K = 0 . 

The fractional integration and fractional differentiation of delta function is as follows  
υ υ-1 υ -υ-1

0 t 0 t
1 1I δ(t) = t ; D δ(t) = t , 0 < υ <1

Γ(υ) Γ(-υ)
                    A7 

Fractional derivative and fractional integration of power function pf(t) = Kt is 

υ p p+υ υ p p-υ
0 t 0 t

Γ(p+1) Γ(p +1)I Kt = K t , D Kt = K t , p > -1
Γ(p+ υ+1) Γ(p - υ +1)

               A8 

The Laplace transform of fractional integral operation is  

 υ -υ
0 tI f(t) = s F(s)                                                  A9 

Laplace transform of Caputo fractional derivative for fractional order 0 < υ <1 is   

 C υ υ υ-1
0 tD f(t) = s F(s) - s f(0)                                     A10 

Laplace transform of Riemann-Liouville fractional derivative of order 0 < υ <1is 

 υ υ (υ-1)
0 tD f(t) = s F(s) - f (0)                                 A11 

In (A11)  (υ-1) 1-υ
t 0 0 tf (0) = lim I f(t) ; that initial states required in (A11) for RL fractional 

derivative is of fractional order, types (υ-1)f (0) whereas initial states required (A10) for Caputo 
type fractional derivative is integer order (classical) type f(0) . 
 
B. Mittag-Leffler Function 
Like in classical calculus, we have exponential function ze ; similarly, in fractional calculus we 
have Mittag-Leffler function. The series definition Mittag Leffler function is  

 
n

α,β 0

(z)E (z) , z ; Re α,β > 0
Γ(αn +β)n




                     B1 



 

 

For 1  we have α,1 αE (z) = E (z) ; is called One-Parameter Mittag-Leffler function. The Laplace 
transformation of Mittag-Leffler function is following 

 
α-1

α
α α

sE (λt ) =
s -λ

                                                          B2 

We observe that for α -bt
α α=1

E (-bt ) = e   , and α
α α=2

E (-at ) = cos at   .  

We point here that α
αf(t) = E (λt ) is eigen-function for fractional differential equation with 

Caputo derivative i.e. C α
0 tD f(t) = λf(t)  ; and α-1 α

α,αf(t) = t E (λt ) is eigen-function for fractional 

differential equation with RL fractional derivative i.e. α
0 tD f(t) = λf(t) . 

Recurring property of α,βE (x)  is  

α,β α,β-α
1 1E (x) = E (x) -
x xΓ(β - α)

                                         B3 

For one parameter Mittag-Leffler function  

   α α,1 α,1-α
1 1E (x) = E (x) = E (x) -
x xΓ(1-α)

                                 B4 

We use (B3) and write following steps 

 

α,β α,β-α α,β-2α

α,β-2α2 2

α,β-3α2 3 3

1 1 1 1 1 1E (x) = - + E (x) = - + - + E (x)
xΓ(β -α) x xΓ(β - α) x xΓ(β - 2α) x

1 1 1= - - + E (x)
xΓ(β -α) x Γ(β - 2α) x

1 1 1 1- - - E (x)
xΓ(β -α) x Γ(β - 2α) x Γ(β -3α) x

 
 
 

 

         B5 

From (B5) we get Poincare asymptotic expansion of α,βE (x) as 

 α,β nn=1

1E (x) -
x Γ(β - nα)

                                                  B6 

valid for x  . 
 

C. Proof of formula    
t α α

α α,20
E -kτ dτ = t E (-kt ) used 

We verify the formula used    t α
α α,20

E kτ dτ = t E ( kt )-  as in following steps 

 
α 2 2α 3 3αt tα

α0 0

α+1 2 2α+1 3 3α+1

α 2 2α 3 3α

α,2

kτ k τ k τE -kτ dτ = 1- + - + .... dτ
Γ(α +1) Γ(2α +1) Γ(3α +1)

kt k t k tt ...
(α +1)Γ(α +1) (2α +1)Γ(2α +1) (3α +1)Γ(3α +1)

kt k t k tt 1 ... , (m 1) m (m)
Γ(α + 2) Γ(2α + 2) Γ(3α + 2)

t E (-

 
 
 

    

 
         

 



 

 
m

α
α,β

m 0

(x)kt ) ; E (x)
(αm )






 

        C1 


