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ABSTRACT 7 
 8 
 
The Knapsack Problems are among the simplest integer programs which are NP-hard. Problems in 
this class are typically concerned with selecting from a set of given items, each with a specified weight 
and value, a subset of items whose weight sum does not exceed a prescribed capacity and whose 
value is maximum. The classical 0-1 Knapsack Problem arises when there is one knapsack and one 
item of each type. This paper considers the application of classical 0-1 knapsack problem with a 
single constraint to computer memory management. The goal is to achieve higher efficiency with 
memory management in computer systems. 
This study focuses on using simulated annealing and genetic algorithm for the solution of knapsack 
problems. It is shown that Simulated Annealing performs better than the Genetic Algorithm for large 
number of processes.   
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1. INTRODUCTION 15 
 16 
A great variety of practical problems can be represented by a set of entities, each having an 17 
associated value, from which one or more subsets has to be selected in such a way that the sum of 18 
the values of the selected entities is maximized, and some predefined conditions are respected. The 19 
most common condition is obtained by also associating a weight to each entity and establishing that 20 
the sum of the entity sizes in each subset does not exceed some prefixed bound. These problems are 21 
generally called knapsack problems, since they recall the situation of a traveler having to fill up his 22 
knapsack by selecting from among various possible objects those which will give him the maximum 23 
comfort. One such problem is in computer memory management. 24 
 25 
Modern computer memory management is for some causes a crucial element of assembling current 26 
large applications. First, in large applications, space can be a problem and some technology are 27 
efficiently needed to return unused space to the program. Secondly, inexpert implementations can 28 
result in extremely unproductive programs since memory management takes a momentous portion of 29 
total program execution time and finally, memory errors become rampant, such that it is extremely 30 
difficult to find programs when accessing freed memory cells. It is much secured to build more 31 
unfailing memory management into design even though complicated tools exist for revealing a variety 32 
of memory faults. It is for this basis that efficient schemes are needed to manage allocating and 33 
freeing of memory by programs. 34 
 35 
Optimizing current memory management strategies strength is performed by altering the space 36 
allocated to each task. To achieve high levels of multiprogramming while avoiding thrashing such 37 
policies vary the load (i.e., the number of active tasks). Additionally, in a system that runs out of 38 
capacity probably because the system is undersized, several options are available. This option 39 
includes either upgrading the processor (if possible), reduce available functionality, or optimize.  40 
A great deal of realistic problems where some predefined conditions are respected such that the sum 41 
of the values of the selected entities is maximized can be represented by a set of entities, each 42 
having an associated value, from which one or more subsets has to be selected. The most ordinary 43 
situation is obtained by establishing that the sum of the entity sizes in each subset does not exceed 44 
some prefixed bound by associating a weight/size to each entity.  45 



 

 
 

 46 
The goal of this paper is to maximize the number of processes in a limited memory space.   47 
 48 
 49 
 50 
2. LITERATURE REVIEW 51 
 52 
Knapsack problems have been studied intensively in the past decade attracting both theorist and 53 
practitioners. The theoretical interest arises mainly from their simple structure which both allows 54 
exploitation of a number of combinational properties and permits more complex optimization problems 55 
to be solved through a series of knapsack type. From a practical point of view, these problems can 56 
model many industrial applications, the most classical applications being capital budgets, cargo 57 
loading and cutting stock. In this section a review of literature on knapsack problems and applications 58 
is presented. 59 
 60 
The knapsack problem (KP) is a traditional combinatorial issue used to show numerous modern 61 
circumstances. ―Since Balas and Zemel a dozen years ago introduced the so-called core problem as 62 
an efficient way of solving the Knapsack Problem, all the most successful algorithms have been 63 
based on this idea. All knapsack Problems belong to the family of NP-hard problems, meaning that it 64 
is very unlikely that polynomial algorithms for these problems can be devised [1]. 65 
 66 
The Knapsack problem has been concentrated on for over a century with prior work dating as far back 67 
as 1897. ―It is not known how the name Knapsack originated though the problem was referred to as 68 
such in early work of mathematician Tobias Dantzig suggesting that the name could have existed in 69 
folklore before mathematical problem has been fully defined [2]. 70 
 71 
Heuristic algorithms experienced in literature that can generally be named as population heuristics 72 
include; ―genetic algorithms, hybrid genetic algorithms, mimetic algorithms, scatter-search 73 
algorithms and bionomic algorithms. Among these, Genetic Algorithms have risen as a dominant 74 
latest search paradigm [3]. 75 
 76 
Genetic Algorithms (GA) are PC algorithms that hunt down fine solutions to a problem from among 77 
countless solutions. They are versatile heuristic search algorithm in view of the evolutionary thoughts 78 
of natural selection and hereditary qualities. “These computational paradigms were inspired by the 79 
mechanics of natural evolution, including survival of the fittest, reproduction, and mutation. This 80 
algorithm is an intelligent exploitation of random search used in optimisation problems” [4] 81 
 82 
Bortfeldt and Gehring presented a hybrid genetic algorithm (GA) for the container packing problem 83 
with boxes of unlike sizes and one container for stacking. Generated stowage plans include several 84 
vertical layers each containing several boxes. Within the procedure, stowage plans were represented 85 
by complex data structures closely related to the problem. To generate offspring, specific genetic 86 
operators were used that are based on an integrated greedy heuristic [5]  87 
 88 
GAs often calls for the creation and assessment of lots of dissimilar children. However, GAs are 89 
capable of generating high-quality solutions to many problems within reasonable computation times. 90 
[6], [7]. [8], [9]. Additionally, while performing search in large state-space or multi-modal state-space, 91 
or n-dimensional surface, a genetic algorithm offers significant benefits over many other typical 92 
search optimisation techniques like  linear programming, heuristic, depth-first, breath-first. 93 
 94 
Proposed in [10], simulated annealing maintain a temperature variable to create heating process. The 95 
temperature is earlier set high and after that allows to gradually "cool" as the algorithm runs. While 96 
this temperature variable is high the algorithm will be permitted, with more recurrence, to accept 97 
solutions that are more awful than the present solution. This gives the algorithm the capacity to hop 98 
out of any local optimums it discovers itself on early on in execution. As the temperature is decreased 99 
so is the possibility of tolerating more awful solution, thus permitting the algorithm gradually focusing 100 
on a zone of the search space in which ideally, a near ideal solution can be found. 101 
 102 
 103 
Simoes and Costa [11] performed an empirical study and evaluated the exploits of the transposition 104 
A-based Genetic Algorithm (GA) and the classical GA for solving the 0/1 knapsack problem. Obtained 105 



 

 
 

results showed that, just like in the domain of the function optimization, transposition is always 106 
superior to crossover.  107 
 108 
Eager about making use of a easy heuristic scheme (simple flip) for answering the knapsack 109 
problems, [12] offered a study work on the application of usual zero-1 knapsack trouble with a single 110 
limitation to determination of television ads at significant time such as prime time news, news 111 
adjacencies, breaking news and peak times. 112 
Martello et al [13] presented a new algorithm for the optimal solution of the 0-1 Knapsack problem, 113 
which is particularly effective for large-size problems. The algorithm is based on determination of an 114 
appropriate small subset of items and the solution of the corresponding "core problem": from this they 115 
derived a heuristic solution for the original problem which, with high probability, can be proved to be 116 
optimal. The algorithm incorporated a new method of computation of upper bounds and efficient 117 
implementations of reduction procedures.  118 
 119 
Huttler and Mastrolilli [14] addressed the classical knapsack problem and a variant in which an upper 120 
bound is imposed on the number of items that can be selected. It was shown that appropriate 121 
combinations of rounding techniques yield novel and more powerful ways of rounding. Moreover, they 122 
presented a linear-storage polynomial time approximation scheme (PTAS) and a fully polynomial time 123 
approximation scheme (FPTAS) that compute an approximate solution, of any fixed accuracy, in 124 
linear time. These linear complexity bounds give a substantial improvement of the best previously 125 
known polynomial bounds. 126 
 127 
Hanafi and Freville [15] described a new approach to tabu search (TS) based on strategic oscillation 128 
and surrogate constraint information that provides a balance between intensification and 129 
diversification strategies. New rules needed to control the oscillation process are given for the 0 /1 130 
multidimensional knapsack (0/1 MKP). Based on a portfolio of test problems from the literature, our 131 
method obtains solutions whose quality is at least as good as the best solutions obtained by previous 132 
methods, especially with large scale instances. These encouraging results confirm the efficiency of 133 
the tunneling concept coupled with surrogate information when resource constraints are present. 134 
Rinnooy et al. [16] proposed a class of generalized greedy algorithms is for the solution of the multi-135 
knapsack problem. Items are selected according to decreasing ratios of their profit and a weighted 136 
sum of their requirement coefficients. The solution obtained depended on the choice of the weights. A 137 
geometrical representation of the method was given and the relation to the dual of the linear 138 
programming relaxation of multi-knapsack is exploited. They investigated the complexity of computing 139 
a set of weights that gives the maximum greedy solution value. Finally, the heuristics were subjected 140 
to both a worst-case and a probabilistic performance analysis. 141 
 142 
Balachandar and Kannan [17] presented a heuristic to solve the 0/1 multi-constrained knapsack 143 
problem (0/1 MKP) which is NP-hard. In this heuristic the dominance property of the constraints is 144 
exploited to reduce the search space to find near optimal solutions of 0/1 MKP. This heuristic was 145 
tested for 10 benchmark problems of sizes up to 105 and for seven classical problems of sizes up to 146 
500, taken from the literature and the results were compared with optimum solutions. Space and 147 
computational complexity of solving 0/1 MKP using this approach were also presented. The 148 
encouraging results especially for relatively large size test problems indicate that this heuristic can 149 
successfully be used for finding good solutions for highly constrained NP-hard problems. 150 
Elhedhli [18] considered a class of nonlinear knapsack problems with applications in service systems 151 
design and facility location problems with congestion. They provided two linearizations and their 152 
respective solution approaches. The first is solved directly using a commercial solver. The second is a 153 
piecewise linearization that is solved by a cutting plane method. 154 
 155 
Devyaterikova et al. [19] presented discrete production planning problem which may be formulated as 156 
the multidimensional knapsack problem is considered, while resource quantities of the problem are 157 
supposed to be given as intervals. An approach for solving this problem based on using its relaxation 158 
set is suggested. Some L-class enumeration algorithms for the problem are described. Results of 159 
computational experiments were presented. 160 
Chen et al. [20] presented pipeline architectures for the dynamic programming algorithms for the 161 
knapsack problems. They enabled them to achieve an optimal speedup using processor arrays, 162 
queues, and memory modules. The processor arrays can be regarded as pipelines where the 163 
dynamic programming algorithms are implemented through pipelining. 164 
 165 



 

 
 

 166 
3. METHODOLOGY 167 
 168 
Because of their wide range of applicability, knapsack problems have known a large number of 169 
variations such as: single and multiple-constrained knapsacks, knapsacks with disjunctive constraints, 170 
multidimensional knapsacks, multiple choice knapsacks, single and multiple objective knapsacks, 171 
integer, linear, non-linear knapsacks, deterministic and stochastic knapsacks, knapsacks with convex 172 
/ concave objective functions, etc. 173 
 174 
This is a 0-1 knapsack problem, pure integer programming with single constraint which forms a very 175 
important class of integer programming. 176 
The 0-1 Knapsack Problem (KP) can be mathematically formulated through the following integer 177 
linear programming [21]. 178 
 179 

Maximize P୨x୨ 
୬

୨ୀଵ
       (1) 180 

 181 

Subject  to  ൌ ൫w୨x୨൯
୬

୨ୀଵ
   c                      (2) 182 

  x୨ ൌ 0 or 1, j ൌ 1, … , n 183 
 184 
Where, ܲ refers to the value, or worth of item j, ݔ refers to the item j, ݓ refers to the relative-weight 185 
of item j, with respect to the knapsack and C refers to the capacity, or weight-constraint of the 186 
knapsack. There exist j = 1…n items, and there is only one knapsack. 187 
 188 
The use of two major meta-heuristics approaches, Genetic algorithm and Simulated annealing which 189 
have been used to solve large scale problems [22] will be considered in this paper. 190 
  191 
3.1 Simulated Annealing 192 
Simulated annealing (SA) is a local search algorithm capable of escaping from local optima. Its case 193 
of implementation, convergence properties and its capability of escaping from local optima has made 194 
it a popular algorithm over the past decades. Simulated annealing is so named because of its analogy 195 
to the process of physical annealing with solids in which a crystalline solid is heated and then allowed 196 
to cool very slowly until it achieves stable state. i.e. its minimum lattice energy state and thus is free of 197 
crystal effects. Simulated annealing mimics this type of thermodynamic behavior in searching for 198 
global optima for discrete optimization problems (DOP) [23]. 199 
 200 
To formally describe simulated annealing algorithm for KP, some definitions are needed. Let Ω be the 201 
solution space: define η(ω) to be the neighborhood function for w ∈ Ω. Simulated annealing starts with 202 
an initial solution ω ∈ Ω. A neighborhood solution ω 1 ∈ η(ω) is then generated randomly in most 203 
cases. Simulated annealing is based on the Metropolis acceptance criterion, which models how a 204 
thermodynamic system moves from its current solution ω ∈ Ω to a candidate solution ߱݅  ∈  ሺ߱ሻ in 205ߟ 
which the energy content is being minimized. The candidate solution ω 1 is accepted as the current 206 
solution based on the acceptance probability. 207 
In this survey, finite-time implementations of simulated annealing algorithm are considered, which can 208 
no longer guarantee to find an optimal solution, but may result in faster executions without losing too 209 
much on the solution quality. Simulated annealing algorithm with static cooling schedule [24] for KP is 210 
outlined in pseudo-code. 211 
 212 
1 Select an initial solution ω =(ϰ1,….., ϰn)∈ Ω; an initial temperature t = t0;  213 
2 control parameter value α; final temperature e; a repetition schedule, M that defines the number of 214 

iterations executed at each temperature; 215 
3 Incumbent solution  ←  fሺωሻ; 216 
4 Repeat; 217 
5 Set repetition counter m  ൌ  0; 218 
6 Repeat; 219 
7 Select an integer i from the set  ሼ1,2, … . , nሽ randomly: 220 
8 If x୧ ൌ  0, pick up item i,   i. e.  set  x୧  ൌ  1, obtain new solution  ω1 then 221 
9 while solution ω1 is infeasible, do 222 



 

 
 

10 drop another item from ω randomly; denote the new solution  as ω1 223 
11 let Δ ൌ fሺω1ሻ െ fሺωሻ 224 
12 while Δ    0 or Random (0,1) < e ୲⁄  do  ω ← ω1 225 
13 Else 226 
14 drop item i and pick another item randomly, get new solution ω1 227 
15 let Δ  ൌ fሺω1ሻ െ  fሺωሻ 228 
16 while Δ   0 or Random ሺ0,1ሻ  ൏ e ୲⁄   do ω  ←  ω1 229 
17 End If 230 
18 If incumbent solution  ൏  ݂ሺωሻ,   Incumbent solution  ←  fሺωሻ 231 
19 m  ൌ  m    1; 232 
20 Until m  ൌ  M 233 
21 set t  ൌ  a  ∗  t; 234 
22 Until t  ൏  ݁ 235 
 236 
A set of parameters needs to be specified that govern the convergence of the algorithm, i.e. initial 237 
temperature ݐ, temperature control parameter ߙ, final temperature Ղ, and Markov chain length M, in 238 
order to study the finite-time performance of simulated annealing algorithm. Here to should be the 239 
maximal difference in cost between any two neighboring solutions [24]. 240 
 241 
The parameters used for the Simulated Annealing are: 242 

Cooling factor: 0.98 243 
Termination Temperature: 0.2 244 
Initial Temperature: 100 245 
Neighbor Sampling Size: 350 246 

 247 
3.2 Genetic Algorithm 248 
A genetic algorithm (GA) can be described as an “intelligent” probabilistic search algorithm and is 249 
based on the evolutionary process of biological organisms in nature. During the course of evolution, 250 
natural populations evolve according to the principles of nature selection and “survival of the fittest.” 251 
Individuals who are most successful in adapting to their environment will have a better chance of 252 
surviving and reproducing, while individuals who are less fit will be eliminated. This means that the 253 
genes from highly fit individuals will spread to an increasing number of individuals in each successive 254 
generation. The combination of good characteristics from highly adapted parents may produce even 255 
more fit offspring. In this way, species evolve to become increasingly better adapted to the 256 
environment [25]. 257 
 258 
A GA simulates these processes by taking an initial population of individuals and applying genetic 259 
operators in each reproduction. In optimization terms, each individual in the population is encoded 260 
into a string or chromosome that represents a possible solution to a given problem. The fitness of an 261 
individual is evaluated with respect to a given objective function. Highly fit individuals or solutions are 262 
given opportunities to reproduce by exchanging pieces of their genetic information in a crossover 263 
procedure with other highly fit individuals. This produces new “offspring” solutions (i.e. children) who 264 
share some characteristics taken from both parents. Mutation is often applied after crossover by 265 
altering some genes in the strings. The offspring can either replace the whole population 266 
(generational approach) or replace fewer fit individuals (steady-state approach). This evaluation-267 
selection-reproduction cycle is repeated until a satisfactory solution is found.  268 
 269 
The basic steps of a simple GA are shown below [26] 270 

Step 1: Generate an initial population 271 
 272 
Step 2: Evaluate fitness of individuals in the population 273 
The objective function value (∑ ݆݆ܺ

ୀଵ ) equates to how good a solution is, that is, its fitness.  274 
In general, an initial population is randomly generated in some way.  275 
 276 
Step 3: repeat 277 

a. Select individuals from the population to be parents 278 
In the GA world for the KP, parents will be chosen by binary tournament selection. 279 
In binary tournament selection, two individuals are randomly selected from the 280 
population. From these two, the individual with the best fitness is selected to be the 281 
first parent 282 



 

 
 

b. Recombine (mate) parents to produce children 283 
In the GA world for the KP, a single child will be obtained from two parents by 284 
uniform crossover. In uniform crossover each bit in the child solution is created by: 285 
repeat for each bit in turn 286 

choose one of the two parents at random 287 
set the child bit equal to the bit in the chosen parent 288 

In one-point crossover, a pint between two adjacent bits is randomly selected, “cut” 289 
the parents into two segments and create two children by rejoining the segments.  290 

c. Mutate the children Evaluate fitness of the children 291 
Mutation corresponds to small changes that are stochastically applied to the 292 
children 293 
Mutation can be applied with a constant probability or with an adaptive probability 294 
that changes over the course of the algorithm (perhaps in response to the number 295 
of iterations that have passed or in response to population characteristics). 296 

d. Replace some or all of the population by the children 297 
until 298 

 299 
Step 4:  you decide to stop whereupon report the best solution encountered 300 

 301 
The parameters used for the Genetic Algorithm are: 302 

Population Size: 500 303 
Recombination Rate:0.7 304 
Mutation Rate: 0.005 305 
Number of Crossover Points: 3 306 

 307 
3.3 Chi-Square  308 
To ascertain whether the time taken and memory sued to obtain a solution is dependent or not on the 309 
number of processes, the chi-square test is used. The chi-square test of independence is a statistical 310 
test to determine if two or more classifications of the samples are independent or not. The 311 
methodology of the chi-square test of independence between two qualitative statistic figure values is 312 
divided into four steps.  313 

1. The first step is the expression of the null and alternative hypothesis.  314 
2. The second step is to determine the significance level (α).  315 
3. The third step is to calculate the chi-square test statistic (χ2 ).  316 
4. The fourth step is to compare the computed (χ2 ) with the critical value in the table for the 317 

significance level (α) and then to make a statistical decision in regard to the null hypothesis. 318 
The chi-square test is computed with the following equation [27] 319 

        
 2
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k

i i

i i

O E

E



                                                               (3)  320 

Where: Oi is the observed number in category i 321 
Ei is the expected number of cases in each category 322 
k is the total number of cells or categories after combining classes 323 

The hypothesis about the distribution is rejected at the chosen significance level (α) if the critical value 324 
is less than the test statistic defined as 

2
, 1k p    325 

Where: 326 
p = number of parameters  327 

In statistics, the p-value is a function of the observed sample results (a statistic) that is used for 328 
testing a statistical hypothesis. Before the test is performed, a threshold value 0f 5% is chosen, called 329 
the significance level of the test and denoted as α. 330 
 331 
 332 
 333 
4. ANALYSIS AND RESULTS 334 
 335 
Category A: The computer system with a total of 10 created processes, all with their system 336 
information in figures. The computer memory can accommodate capacity of 50mb but the total 337 
memory of the process is 56 with a combined process activity (number of times process is accessed 338 
of  123 339 



 

 
 

 340 
Table 1: Results for Category A 341 

GA SA 

No. of Processes Used 9 9 

Memory Used 46 46 

Number of Times Process Is 
Accessed 

119 119 

 342 
From Table 1, it could be seen that all three algorithms provide the same output in terms of all the 343 
parameters under consideration. This means that both DP, GA and SA  344 
 345 
Category B: The table below shows a computer system with a total of 50 created processes, all with 346 
their system information in figures. The computer memory can accommodate capacity of 100mb. but 347 
the total memory of the process is 281 with a combined process activity (number of times process is 348 
accessed of  483 349 
 350 

Table 2: Results for Category B 351 
GA SA 

No. of Processes Used 25 23 

Memory Used 100 100 

Number of Times Process Is 
Accessed 

327 328 

 352 
From Table 2, GA provided a slight advantage of in terms of the number of process used. Apart from 353 
that all three algorithms provided fairly the same result 354 
 355 
Category C: The table below shows a computer system with a total of 100 created processes, all with 356 
their system information in figures. The computer memory can accommodate capacity of 300mb. but 357 
the total memory of the process is 574 with a combined process activity (number of times process is 358 
accessed of 1011 359 
 360 

Table 3: Results for Category C 361 
GA SA 

No. of Processes Used 61 62 

Memory Used 300 300 

Number of Times Process Is 
Accessed 

815 803 

 362 
Table 3 shows that DP provides a better result than the rest. All memory needed was utilized showing 363 
efficient use of memory available. 364 
 365 
Category D: The table below shows a computer system with a total of 500 created processes, all with 366 
their system information in figures. The computer memory can accommodate capacity of 1000mb. but 367 
the total memory of the process is 2661 with a combined process activity (number of times process is 368 
accessed of  5287 369 

 370 
Table 4: Results for Category D 371 

GA SA 

No. of Processes Used 258 252 

Memory Used 1000 1000 

Number of Times Process 
Is Accessed 

3551 3431 

 372 
Category E: The table below shows a computer system with a total of 1000 created processes, all 373 
with their system information in figures. The computer memory can accommodate capacity of 374 



 

 

5000mb. but the total memory of the process is 5626 with a combined process activity (number of 375 
times process is accessed of 10480). 376 
 377 

Table 5: Results for Category E 378 
GA SA 

No. of Processes Used 915 916 

Memory Used 5000 5000 

Number of Times Process Is 
Accessed 

10299 10307 

 379 
GA and Sa provide fairly the same results in Table 4 and 5. 380 
 381 
The main criteria in evaluating the efficiency of an algorithm is time and space. Even though in terms 382 
of results the three algorithms provided similar results, their efficiency will be determined based on the 383 
time it took to produce the results and the amount of memory resource it took on the computer. 384 

 385 
Table 6: Results for based on Time Taken 386 

TIME (ms) 

No. of Process GA SA 

10 436 60 

50 323 52 

100 385 87 

500 1374 300 

1000 2338 554 

 387 
 388 

 389 
Figure 1: Results for based on Time Taken 390 

 391 
From Table 6 and Figure 1, It is seen that GA took more time in giving an optimum out than SA for 392 
larger number of processes. As the number of processes increases, time taken increases 393 
exponentially for GA as compared to SA.  394 
Also the GA also used more memory utilization for than SA from Table 7 and Figure 2. The GA 395 
outperformed the Sa only when the number of processes  396 
Using the chi-square test on Table 6, the null and alternate hypothesis are defined as follows 397 
H0: Time taken is independent of Number of processes. 398 
H1: Time taken is not independent of Number of processes. 399 
 400 
The chi-square statistic (χ2)= 18.7547.  401 
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The p-value is .000878.  402 
 403 
Since the p-value of 0.000878 is less than the significance level of 0.05. we fail to accept(reject) the 404 
null hypothesis meaning the result is significant. This implies that number of processes is dependent 405 
on the time taken to obtain a solution 406 
 407 

Table 7: Results for based on Memory Taken 408 
MEMORY (byte) 

No. of Process GA SA 

10 28880312 42511800 

50 92815928 45555312 

100 100774992 73927720 

500 210273904 117057112 

1000 233449048 210256440 

 409 
 410 

 411 
Figure 2: Results for based on Memory Taken 412 

 413 
Using the chi-square test on Table 7, the null and alternate hypothesis are also defined as follows 414 
H0: Memory Used is independent of Number of processes. 415 
H1: Memory Used is not independent of Number of processes. 416 
 417 
The chi-square statistic (χ2)= 22.8798  418 
The p-value is .000134.  419 
 420 
Since the p-value of 0.000134 is less than the significance level of 0.05. we fail to accept(reject) the 421 
null hypothesis meaning the result is significant. This implies that memory used to obtain a solution is 422 
dependent on the number of processes. 423 
 424 
 425 
5. CONCLUSION AND RECOMMENDATIONS 426 
 427 
This paper showed that memory optimization as well as knapsack problem can be successfully solved 428 
using heuristic algorithms. In this paper, meta-heuristic algorithms i.e. simulated annealing and 429 
genetic algorithm were testes compared for their efficiency in optimizing memory. From Figure 2, it 430 
can be seen that with increase in number of processes, experiments with simulated annealing gives 431 
better result than the Genetic Algorithm in terms of both time-taken to obtain a solution and memory 432 
taken. From the analysis, it can be seen that for smaller number of processes the GA and SA 433 
performance are identical but as the number of processes increases, SA performs better than GA. 434 
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Therefore, it is concluded that, the most efficient algorithm in knapsack optimizing among the two for 435 
large number of processes is Simulated Annealing. 436 
Notwithstanding it extensive use, both SA and GA have their limitations. For SA, If the starting 437 
temperature is very high, the search will be a random local search for a period of time i.e. accepting 438 
all neighbors during the initial phase of the algorithm. Also, In the SA algorithm, the temperature is 439 
decreased gradually. If the temperature is decreased slowly, better solutions are obtained but with a 440 
more significant computation time. For GA, if reproduction fails to produce good chromosomes then 441 
convergence in the right direction is not possible.  442 
 443 
 444 
 445 
 446 

 447 
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