

Original Research Article 1

 2

Meta-Heuristics Approach To Knapsack Problem In 3

Memory Management 4
 5

 6
ABSTRACT 7
 8

The Knapsack Problems are among the simplest integer programs which are NP-hard. Problems in
this class are typically concerned with selecting from a set of given items, each with a specified weight
and value, a subset of items whose weight sum does not exceed a prescribed capacity and whose
value is maximum. The classical 0-1 Knapsack Problem arises when there is one knapsack and one
item of each type. This paper considers the application of classical 0-1 knapsack problem with a
single constraint to computer memory management. The goal is to achieve higher efficiency with
memory management in computer systems.
This study focuses on using simulated annealing and genetic algorithm for the solution of knapsack
problems. It is shown that Simulated Annealing performs better than the Genetic Algorithm for large
number of processes.

 9
 10
Keywords: Knapsack, Memory Management, Genetic Algorithm, Simulated Annealing 11
 12
 13
 14
1. INTRODUCTION 15
 16
A great variety of practical problems can be represented by a set of entities, each having an 17
associated value, from which one or more subsets has to be selected in such a way that the sum of 18
the values of the selected entities is maximized, and some predefined conditions are respected. The 19
most common condition is obtained by also associating a weight to each entity and establishing that 20
the sum of the entity sizes in each subset does not exceed some prefixed bound. These problems are 21
generally called knapsack problems, since they recall the situation of a traveler having to fill up his 22
knapsack by selecting from among various possible objects those which will give him the maximum 23
comfort. One such problem is in computer memory management. 24
 25
Modern computer memory management is for some causes a crucial element of assembling current 26
large applications. First, in large applications, space can be a problem and some technology are 27
efficiently needed to return unused space to the program. Secondly, inexpert implementations can 28
result in extremely unproductive programs since memory management takes a momentous portion of 29
total program execution time and finally, memory errors become rampant, such that it is extremely 30
difficult to find programs when accessing freed memory cells. It is much secured to build more 31
unfailing memory management into design even though complicated tools exist for revealing a variety 32
of memory faults. It is for this basis that efficient schemes are needed to manage allocating and 33
freeing of memory by programs. 34
 35
Optimizing current memory management strategies strength is performed by altering the space 36
allocated to each task. To achieve high levels of multiprogramming while avoiding thrashing such 37
policies vary the load (i.e., the number of active tasks). Additionally, in a system that runs out of 38
capacity probably because the system is undersized, several options are available. This option 39
includes either upgrading the processor (if possible), reduce available functionality, or optimize. 40
A great deal of realistic problems where some predefined conditions are respected such that the sum 41
of the values of the selected entities is maximized can be represented by a set of entities, each 42
having an associated value, from which one or more subsets has to be selected. The most ordinary 43
situation is obtained by establishing that the sum of the entity sizes in each subset does not exceed 44
some prefixed bound by associating a weight/size to each entity. 45

 46
The goal of this paper is to maximize the number of processes in a limited memory space. 47
 48
 49
 50
2. LITERATURE REVIEW 51
 52
Knapsack problems have been studied intensively in the past decade attracting both theorist and 53
practitioners. The theoretical interest arises mainly from their simple structure which both allows 54
exploitation of a number of combinational properties and permits more complex optimization problems 55
to be solved through a series of knapsack type. From a practical point of view, these problems can 56
model many industrial applications, the most classical applications being capital budgets, cargo 57
loading and cutting stock. In this section a review of literature on knapsack problems and applications 58
is presented. 59
 60
The knapsack problem (KP) is a traditional combinatorial issue used to show numerous modern 61
circumstances. ―Since Balas and Zemel a dozen years ago introduced the so-called core problem as 62
an efficient way of solving the Knapsack Problem, all the most successful algorithms have been 63
based on this idea. All knapsack Problems belong to the family of NP-hard problems, meaning that it 64
is very unlikely that polynomial algorithms for these problems can be devised [1]. 65
 66
The Knapsack problem has been concentrated on for over a century with prior work dating as far back 67
as 1897. ―It is not known how the name Knapsack originated though the problem was referred to as 68
such in early work of mathematician Tobias Dantzig suggesting that the name could have existed in 69
folklore before mathematical problem has been fully defined [2]. 70
 71
Heuristic algorithms experienced in literature that can generally be named as population heuristics 72
include; ―genetic algorithms, hybrid genetic algorithms, mimetic algorithms, scatter-search 73
algorithms and bionomic algorithms. Among these, Genetic Algorithms have risen as a dominant 74
latest search paradigm [3]. 75
 76
Genetic Algorithms (GA) are PC algorithms that hunt down fine solutions to a problem from among 77
countless solutions. They are versatile heuristic search algorithm in view of the evolutionary thoughts 78
of natural selection and hereditary qualities. “These computational paradigms were inspired by the 79
mechanics of natural evolution, including survival of the fittest, reproduction, and mutation. This 80
algorithm is an intelligent exploitation of random search used in optimisation problems” [4] 81
 82
Bortfeldt and Gehring presented a hybrid genetic algorithm (GA) for the container packing problem 83
with boxes of unlike sizes and one container for stacking. Generated stowage plans include several 84
vertical layers each containing several boxes. Within the procedure, stowage plans were represented 85
by complex data structures closely related to the problem. To generate offspring, specific genetic 86
operators were used that are based on an integrated greedy heuristic [5] 87
 88
GAs often calls for the creation and assessment of lots of dissimilar children. However, GAs are 89
capable of generating high-quality solutions to many problems within reasonable computation times. 90
[6], [7]. [8], [9]. Additionally, while performing search in large state-space or multi-modal state-space, 91
or n-dimensional surface, a genetic algorithm offers significant benefits over many other typical 92
search optimisation techniques like linear programming, heuristic, depth-first, breath-first. 93
 94
Proposed in [10], simulated annealing maintain a temperature variable to create heating process. The 95
temperature is earlier set high and after that allows to gradually "cool" as the algorithm runs. While 96
this temperature variable is high the algorithm will be permitted, with more recurrence, to accept 97
solutions that are more awful than the present solution. This gives the algorithm the capacity to hop 98
out of any local optimums it discovers itself on early on in execution. As the temperature is decreased 99
so is the possibility of tolerating more awful solution, thus permitting the algorithm gradually focusing 100
on a zone of the search space in which ideally, a near ideal solution can be found. 101
 102
 103
Simoes and Costa [11] performed an empirical study and evaluated the exploits of the transposition 104
A-based Genetic Algorithm (GA) and the classical GA for solving the 0/1 knapsack problem. Obtained 105

results showed that, just like in the domain of the function optimization, transposition is always 106
superior to crossover. 107
 108
Eager about making use of a easy heuristic scheme (simple flip) for answering the knapsack 109
problems, [12] offered a study work on the application of usual zero-1 knapsack trouble with a single 110
limitation to determination of television ads at significant time such as prime time news, news 111
adjacencies, breaking news and peak times. 112
Martello et al [13] presented a new algorithm for the optimal solution of the 0-1 Knapsack problem, 113
which is particularly effective for large-size problems. The algorithm is based on determination of an 114
appropriate small subset of items and the solution of the corresponding "core problem": from this they 115
derived a heuristic solution for the original problem which, with high probability, can be proved to be 116
optimal. The algorithm incorporated a new method of computation of upper bounds and efficient 117
implementations of reduction procedures. 118
 119
Huttler and Mastrolilli [14] addressed the classical knapsack problem and a variant in which an upper 120
bound is imposed on the number of items that can be selected. It was shown that appropriate 121
combinations of rounding techniques yield novel and more powerful ways of rounding. Moreover, they 122
presented a linear-storage polynomial time approximation scheme (PTAS) and a fully polynomial time 123
approximation scheme (FPTAS) that compute an approximate solution, of any fixed accuracy, in 124
linear time. These linear complexity bounds give a substantial improvement of the best previously 125
known polynomial bounds. 126
 127
Hanafi and Freville [15] described a new approach to tabu search (TS) based on strategic oscillation 128
and surrogate constraint information that provides a balance between intensification and 129
diversification strategies. New rules needed to control the oscillation process are given for the 0 /1 130
multidimensional knapsack (0/1 MKP). Based on a portfolio of test problems from the literature, our 131
method obtains solutions whose quality is at least as good as the best solutions obtained by previous 132
methods, especially with large scale instances. These encouraging results confirm the efficiency of 133
the tunneling concept coupled with surrogate information when resource constraints are present. 134
Rinnooy et al. [16] proposed a class of generalized greedy algorithms is for the solution of the multi-135
knapsack problem. Items are selected according to decreasing ratios of their profit and a weighted 136
sum of their requirement coefficients. The solution obtained depended on the choice of the weights. A 137
geometrical representation of the method was given and the relation to the dual of the linear 138
programming relaxation of multi-knapsack is exploited. They investigated the complexity of computing 139
a set of weights that gives the maximum greedy solution value. Finally, the heuristics were subjected 140
to both a worst-case and a probabilistic performance analysis. 141
 142
Balachandar and Kannan [17] presented a heuristic to solve the 0/1 multi-constrained knapsack 143
problem (0/1 MKP) which is NP-hard. In this heuristic the dominance property of the constraints is 144
exploited to reduce the search space to find near optimal solutions of 0/1 MKP. This heuristic was 145
tested for 10 benchmark problems of sizes up to 105 and for seven classical problems of sizes up to 146
500, taken from the literature and the results were compared with optimum solutions. Space and 147
computational complexity of solving 0/1 MKP using this approach were also presented. The 148
encouraging results especially for relatively large size test problems indicate that this heuristic can 149
successfully be used for finding good solutions for highly constrained NP-hard problems. 150
Elhedhli [18] considered a class of nonlinear knapsack problems with applications in service systems 151
design and facility location problems with congestion. They provided two linearizations and their 152
respective solution approaches. The first is solved directly using a commercial solver. The second is a 153
piecewise linearization that is solved by a cutting plane method. 154
 155
Devyaterikova et al. [19] presented discrete production planning problem which may be formulated as 156
the multidimensional knapsack problem is considered, while resource quantities of the problem are 157
supposed to be given as intervals. An approach for solving this problem based on using its relaxation 158
set is suggested. Some L-class enumeration algorithms for the problem are described. Results of 159
computational experiments were presented. 160
Chen et al. [20] presented pipeline architectures for the dynamic programming algorithms for the 161
knapsack problems. They enabled them to achieve an optimal speedup using processor arrays, 162
queues, and memory modules. The processor arrays can be regarded as pipelines where the 163
dynamic programming algorithms are implemented through pipelining. 164
 165

 166
3. METHODOLOGY 167
 168
Because of their wide range of applicability, knapsack problems have known a large number of 169
variations such as: single and multiple-constrained knapsacks, knapsacks with disjunctive constraints, 170
multidimensional knapsacks, multiple choice knapsacks, single and multiple objective knapsacks, 171
integer, linear, non-linear knapsacks, deterministic and stochastic knapsacks, knapsacks with convex 172
/ concave objective functions, etc. 173
 174
This is a 0-1 knapsack problem, pure integer programming with single constraint which forms a very 175
important class of integer programming. 176
The 0-1 Knapsack Problem (KP) can be mathematically formulated through the following integer 177
linear programming [21]. 178
 179

Maximize P୨x୨
୬

୨ୀଵ
 (1) 180

 181

Subject to ൌ ൫w୨x୨൯
୬

୨ୀଵ
 c (2) 182

 x୨ ൌ 0 or 1, j ൌ 1, … , n 183
 184
Where, ܲ refers to the value, or worth of item j, ݔ refers to the item j, ݓ refers to the relative-weight 185
of item j, with respect to the knapsack and C refers to the capacity, or weight-constraint of the 186
knapsack. There exist j = 1…n items, and there is only one knapsack. 187
 188
The use of two major meta-heuristics approaches, Genetic algorithm and Simulated annealing which 189
have been used to solve large scale problems [22] will be considered in this paper. 190
 191
3.1 Simulated Annealing 192
Simulated annealing (SA) is a local search algorithm capable of escaping from local optima. Its case 193
of implementation, convergence properties and its capability of escaping from local optima has made 194
it a popular algorithm over the past decades. Simulated annealing is so named because of its analogy 195
to the process of physical annealing with solids in which a crystalline solid is heated and then allowed 196
to cool very slowly until it achieves stable state. i.e. its minimum lattice energy state and thus is free of 197
crystal effects. Simulated annealing mimics this type of thermodynamic behavior in searching for 198
global optima for discrete optimization problems (DOP) [23]. 199
 200
To formally describe simulated annealing algorithm for KP, some definitions are needed. Let Ω be the 201
solution space: define η(ω) to be the neighborhood function for w ∈ Ω. Simulated annealing starts with 202
an initial solution ω ∈ Ω. A neighborhood solution ω 1 ∈ η(ω) is then generated randomly in most 203
cases. Simulated annealing is based on the Metropolis acceptance criterion, which models how a 204
thermodynamic system moves from its current solution ω ∈ Ω to a candidate solution ߱݅ ∈ ሺ߱ሻ in 205ߟ
which the energy content is being minimized. The candidate solution ω 1 is accepted as the current 206
solution based on the acceptance probability. 207
In this survey, finite-time implementations of simulated annealing algorithm are considered, which can 208
no longer guarantee to find an optimal solution, but may result in faster executions without losing too 209
much on the solution quality. Simulated annealing algorithm with static cooling schedule [24] for KP is 210
outlined in pseudo-code. 211
 212
1 Select an initial solution ω =(ϰ1,….., ϰn)∈ Ω; an initial temperature t = t0; 213
2 control parameter value α; final temperature e; a repetition schedule, M that defines the number of 214

iterations executed at each temperature; 215
3 Incumbent solution ← fሺωሻ; 216
4 Repeat; 217
5 Set repetition counter m ൌ 0; 218
6 Repeat; 219
7 Select an integer i from the set ሼ1,2, … . , nሽ randomly: 220
8 If x୧ ൌ 0, pick up item i, i. e. set x୧ ൌ 1, obtain new solution ω1 then 221
9 while solution ω1 is infeasible, do 222

10 drop another item from ω randomly; denote the new solution as ω1 223
11 let Δ ൌ fሺω1ሻ െ fሺωሻ 224
12 while Δ 0 or Random (0,1) < e ୲⁄ do ω ← ω1 225
13 Else 226
14 drop item i and pick another item randomly, get new solution ω1 227
15 let Δ ൌ fሺω1ሻ െ fሺωሻ 228
16 while Δ 0 or Random ሺ0,1ሻ ൏ e ୲⁄ do ω ← ω1 229
17 End If 230
18 If incumbent solution ൏ ݂ሺωሻ, Incumbent solution ← fሺωሻ 231
19 m ൌ m 1; 232
20 Until m ൌ M 233
21 set t ൌ a ∗ t; 234
22 Until t ൏ ݁ 235
 236
A set of parameters needs to be specified that govern the convergence of the algorithm, i.e. initial 237
temperature ݐ, temperature control parameter ߙ, final temperature Ղ, and Markov chain length M, in 238
order to study the finite-time performance of simulated annealing algorithm. Here to should be the 239
maximal difference in cost between any two neighboring solutions [24]. 240
 241
The parameters used for the Simulated Annealing are: 242

Cooling factor: 0.98 243
Termination Temperature: 0.2 244
Initial Temperature: 100 245
Neighbor Sampling Size: 350 246

 247
3.2 Genetic Algorithm 248
A genetic algorithm (GA) can be described as an “intelligent” probabilistic search algorithm and is 249
based on the evolutionary process of biological organisms in nature. During the course of evolution, 250
natural populations evolve according to the principles of nature selection and “survival of the fittest.” 251
Individuals who are most successful in adapting to their environment will have a better chance of 252
surviving and reproducing, while individuals who are less fit will be eliminated. This means that the 253
genes from highly fit individuals will spread to an increasing number of individuals in each successive 254
generation. The combination of good characteristics from highly adapted parents may produce even 255
more fit offspring. In this way, species evolve to become increasingly better adapted to the 256
environment [25]. 257
 258
A GA simulates these processes by taking an initial population of individuals and applying genetic 259
operators in each reproduction. In optimization terms, each individual in the population is encoded 260
into a string or chromosome that represents a possible solution to a given problem. The fitness of an 261
individual is evaluated with respect to a given objective function. Highly fit individuals or solutions are 262
given opportunities to reproduce by exchanging pieces of their genetic information in a crossover 263
procedure with other highly fit individuals. This produces new “offspring” solutions (i.e. children) who 264
share some characteristics taken from both parents. Mutation is often applied after crossover by 265
altering some genes in the strings. The offspring can either replace the whole population 266
(generational approach) or replace fewer fit individuals (steady-state approach). This evaluation-267
selection-reproduction cycle is repeated until a satisfactory solution is found. 268
 269
The basic steps of a simple GA are shown below [26] 270

Step 1: Generate an initial population 271
 272
Step 2: Evaluate fitness of individuals in the population 273
The objective function value (∑ ݆݆ܺ

ୀଵ) equates to how good a solution is, that is, its fitness. 274
In general, an initial population is randomly generated in some way. 275
 276
Step 3: repeat 277

a. Select individuals from the population to be parents 278
In the GA world for the KP, parents will be chosen by binary tournament selection. 279
In binary tournament selection, two individuals are randomly selected from the 280
population. From these two, the individual with the best fitness is selected to be the 281
first parent 282

b. Recombine (mate) parents to produce children 283
In the GA world for the KP, a single child will be obtained from two parents by 284
uniform crossover. In uniform crossover each bit in the child solution is created by: 285
repeat for each bit in turn 286

choose one of the two parents at random 287
set the child bit equal to the bit in the chosen parent 288

In one-point crossover, a pint between two adjacent bits is randomly selected, “cut” 289
the parents into two segments and create two children by rejoining the segments. 290

c. Mutate the children Evaluate fitness of the children 291
Mutation corresponds to small changes that are stochastically applied to the 292
children 293
Mutation can be applied with a constant probability or with an adaptive probability 294
that changes over the course of the algorithm (perhaps in response to the number 295
of iterations that have passed or in response to population characteristics). 296

d. Replace some or all of the population by the children 297
until 298

 299
Step 4: you decide to stop whereupon report the best solution encountered 300

 301
The parameters used for the Genetic Algorithm are: 302

Population Size: 500 303
Recombination Rate:0.7 304
Mutation Rate: 0.005 305
Number of Crossover Points: 3 306

 307
3.3 Chi-Square 308
To ascertain whether the time taken and memory sued to obtain a solution is dependent or not on the 309
number of processes, the chi-square test is used. The chi-square test of independence is a statistical 310
test to determine if two or more classifications of the samples are independent or not. The 311
methodology of the chi-square test of independence between two qualitative statistic figure values is 312
divided into four steps. 313

1. The first step is the expression of the null and alternative hypothesis. 314
2. The second step is to determine the significance level (α). 315
3. The third step is to calculate the chi-square test statistic (χ2). 316
4. The fourth step is to compare the computed (χ2) with the critical value in the table for the 317

significance level (α) and then to make a statistical decision in regard to the null hypothesis. 318
The chi-square test is computed with the following equation [27] 319

 2

2
k

i i

i i

O E

E

 (3) 320

Where: Oi is the observed number in category i 321
Ei is the expected number of cases in each category 322
k is the total number of cells or categories after combining classes 323

The hypothesis about the distribution is rejected at the chosen significance level (α) if the critical value 324
is less than the test statistic defined as

2
, 1k p 325

Where: 326
p = number of parameters 327

In statistics, the p-value is a function of the observed sample results (a statistic) that is used for 328
testing a statistical hypothesis. Before the test is performed, a threshold value 0f 5% is chosen, called 329
the significance level of the test and denoted as α. 330
 331
 332
 333
4. ANALYSIS AND RESULTS 334
 335
Category A: The computer system with a total of 10 created processes, all with their system 336
information in figures. The computer memory can accommodate capacity of 50mb but the total 337
memory of the process is 56 with a combined process activity (number of times process is accessed 338
of 123 339

 340
Table 1: Results for Category A 341

GA SA

No. of Processes Used 9 9

Memory Used 46 46

Number of Times Process Is
Accessed

119 119

 342
From Table 1, it could be seen that all three algorithms provide the same output in terms of all the 343
parameters under consideration. This means that both DP, GA and SA 344
 345
Category B: The table below shows a computer system with a total of 50 created processes, all with 346
their system information in figures. The computer memory can accommodate capacity of 100mb. but 347
the total memory of the process is 281 with a combined process activity (number of times process is 348
accessed of 483 349
 350

Table 2: Results for Category B 351
GA SA

No. of Processes Used 25 23

Memory Used 100 100

Number of Times Process Is
Accessed

327 328

 352
From Table 2, GA provided a slight advantage of in terms of the number of process used. Apart from 353
that all three algorithms provided fairly the same result 354
 355
Category C: The table below shows a computer system with a total of 100 created processes, all with 356
their system information in figures. The computer memory can accommodate capacity of 300mb. but 357
the total memory of the process is 574 with a combined process activity (number of times process is 358
accessed of 1011 359
 360

Table 3: Results for Category C 361
GA SA

No. of Processes Used 61 62

Memory Used 300 300

Number of Times Process Is
Accessed

815 803

 362
Table 3 shows that DP provides a better result than the rest. All memory needed was utilized showing 363
efficient use of memory available. 364
 365
Category D: The table below shows a computer system with a total of 500 created processes, all with 366
their system information in figures. The computer memory can accommodate capacity of 1000mb. but 367
the total memory of the process is 2661 with a combined process activity (number of times process is 368
accessed of 5287 369

 370
Table 4: Results for Category D 371

GA SA

No. of Processes Used 258 252

Memory Used 1000 1000

Number of Times Process
Is Accessed

3551 3431

 372
Category E: The table below shows a computer system with a total of 1000 created processes, all 373
with their system information in figures. The computer memory can accommodate capacity of 374

5000mb. but the total memory of the process is 5626 with a combined process activity (number of 375
times process is accessed of 10480). 376
 377

Table 5: Results for Category E 378
GA SA

No. of Processes Used 915 916

Memory Used 5000 5000

Number of Times Process Is
Accessed

10299 10307

 379
GA and Sa provide fairly the same results in Table 4 and 5. 380
 381
The main criteria in evaluating the efficiency of an algorithm is time and space. Even though in terms 382
of results the three algorithms provided similar results, their efficiency will be determined based on the 383
time it took to produce the results and the amount of memory resource it took on the computer. 384

 385
Table 6: Results for based on Time Taken 386

TIME (ms)

No. of Process GA SA

10 436 60

50 323 52

100 385 87

500 1374 300

1000 2338 554

 387
 388

 389
Figure 1: Results for based on Time Taken 390

 391
From Table 6 and Figure 1, It is seen that GA took more time in giving an optimum out than SA for 392
larger number of processes. As the number of processes increases, time taken increases 393
exponentially for GA as compared to SA. 394
Also the GA also used more memory utilization for than SA from Table 7 and Figure 2. The GA 395
outperformed the Sa only when the number of processes 396
Using the chi-square test on Table 6, the null and alternate hypothesis are defined as follows 397
H0: Time taken is independent of Number of processes. 398
H1: Time taken is not independent of Number of processes. 399
 400
The chi-square statistic (χ2)= 18.7547. 401

0

500

1000

1500

2000

2500

10 50 100 5001000

Ti
m
e(
m
s)

No of Processes

TIME TAKEN

GA

SA

The p-value is .000878. 402
 403
Since the p-value of 0.000878 is less than the significance level of 0.05. we fail to accept(reject) the 404
null hypothesis meaning the result is significant. This implies that number of processes is dependent 405
on the time taken to obtain a solution 406
 407

Table 7: Results for based on Memory Taken 408
MEMORY (byte)

No. of Process GA SA

10 28880312 42511800

50 92815928 45555312

100 100774992 73927720

500 210273904 117057112

1000 233449048 210256440

 409
 410

 411
Figure 2: Results for based on Memory Taken 412

 413
Using the chi-square test on Table 7, the null and alternate hypothesis are also defined as follows 414
H0: Memory Used is independent of Number of processes. 415
H1: Memory Used is not independent of Number of processes. 416
 417
The chi-square statistic (χ2)= 22.8798 418
The p-value is .000134. 419
 420
Since the p-value of 0.000134 is less than the significance level of 0.05. we fail to accept(reject) the 421
null hypothesis meaning the result is significant. This implies that memory used to obtain a solution is 422
dependent on the number of processes. 423
 424
 425
5. CONCLUSION AND RECOMMENDATIONS 426
 427
This paper showed that memory optimization as well as knapsack problem can be successfully solved 428
using heuristic algorithms. In this paper, meta-heuristic algorithms i.e. simulated annealing and 429
genetic algorithm were testes compared for their efficiency in optimizing memory. From Figure 2, it 430
can be seen that with increase in number of processes, experiments with simulated annealing gives 431
better result than the Genetic Algorithm in terms of both time-taken to obtain a solution and memory 432
taken. From the analysis, it can be seen that for smaller number of processes the GA and SA 433
performance are identical but as the number of processes increases, SA performs better than GA. 434

0

50000000

100000000

150000000

200000000

250000000

10 50 100 500 1000

M
em

o
ry
(b
yt
es
)

No. of Processes

MEMORY TAKEN

GA SA

Therefore, it is concluded that, the most efficient algorithm in knapsack optimizing among the two for 435
large number of processes is Simulated Annealing. 436
Notwithstanding it extensive use, both SA and GA have their limitations. For SA, If the starting 437
temperature is very high, the search will be a random local search for a period of time i.e. accepting 438
all neighbors during the initial phase of the algorithm. Also, In the SA algorithm, the temperature is 439
decreased gradually. If the temperature is decreased slowly, better solutions are obtained but with a 440
more significant computation time. For GA, if reproduction fails to produce good chromosomes then 441
convergence in the right direction is not possible. 442
 443
 444
 445
 446

 447
REFERENCES 448

 449
[1] Pisinger, D. (1994). Core problems in knapsack algorithms. Operations Research 47, 570-575. 450
[2] Kellerer, H., Pferschy, U., Pisinger, D. (2004). Knapsack Problems. Springer, Berlin Heidelberg. 451
[3] Chu P.C and Beasley J. E. (1998), A genetic algorithm for multidimensional knapsack problem. 452

Journal Heuristics. 4:63-68. 453
[4] Sinapova, L. (2014). An Introduction to Algorithms. Simpson College, Department of Computer 454

Science 701 North C Street, Indianola IA 50125. 455
[5] Bortfeldt A, Gehring H. (2001). A hybrid genetic algorithm for the container loading problem [J]. 456

European Journal of Operational Research, 2001, 131(1):143-161. 457
[6] Beasley J. E., and Chu, P., C. (1996). A genetic Algorithm for the set covering problem. 458

European Journal of Operations Research 94:392-404 459
[7] Chu, P. C and Beasley J. E (1997). A genetic algorithm for generalized assignment problem. 460

Computer Operations Research 24: 17-23 461
[8] Chu P.C and Beasley J. E. (1998), A genetic algorithm for multidimensional knapsack problem. 462

Journal Heuristics. 4:63-68 463
[9] Chang, J.T., Meade, N., Beasley, J., E. and Sharaiha, Y.M.. (2000). Heuristics for cardinality 464

constrained portfolio optimization. Comp. Operasions. Research. 27: 1271-1302 465
[10] Kirkpatrick, S., Gelett, C. D. and Vecchi, M. P. (1983). Optimization by simulated annealing. 466

Science 220 621-630. 467
[11] Simoes, A, and Costa, E. (2001). Using Genetic Algorithm with Asexual Transposition. 468

Proceedings of the genetic and evolutional computation conference (pp 323-330) 469
[12] S.K. Amponsah, E.O. Oppong and E. Agyeman, (2011). Optimal Television Adverts Selection, 470

Case Study: Ghana Television (GTV). Research Journal of Information Technology , 3(1): 49-471
54. 472

[13] Martello S., Pisinger D., Toth P., (2000). New trends in exact algorithms for the 0–1 knapsack 473
problem 474

[14] Mastrolilli M., Huttler M., (2006). Hybrid rounding techniques for knapsack problems. 475
www.sciencedirect.com 476

[15] Hanafi S., Freville A., (1998). An efficient tabu search approach for the 0–1 multidimensional 477
knapsack problem. www.sciencedirect.com 478

[16] Rinnooy K, A.H. G. L., Stougie, C. Vercellis (1993). A class of generalized greedy algorithms for 479
the multi-knapsack problem. www.sciencedirect.co 480

[17] Balachandar R., Kannan K., (2008). A new polynomial time algorithm for 0–1 multiple knapsack 481
problem based on dominant principles. www.sciencedirect.com 482

[18] Elhedhli S., (2005). Exact solution of a class of nonlinear knapsack problems. 483
[19] Devyaterikova, M.V., A.A. Kolokolov, A.P. Kolosov (2009). L-class enumeration algorithms for a 484

discrete production planning problem with interval resource quantities 485
[20] Chen G., Maw-Sheng Chern, Jin-Hwang Jang (1990). Pipeline architectures for dynamic 486

programming algorithms. www.sciencedirect.com 487
[21] Hisatoshi S. (1975), A Generalized Knapsack Problem With Variable Coefficients, Mathematical 488

Programming 15 (1978) 162-176. North-Holland Publishing Company 489
[22] Asamoah D., Baidoo E., Oppong S., Optimizing Memory using Knapsack Algorithm", 490

International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.5, May 491
2017, Pages 34-42. 492

[23] Fubin Q., Rui D., (2007), Simulated Annealing for the 0/1 Multidimensional Knapsack Problem, 493
Numerical Mathematics, A Journal of Chinese Universities, issue 4, vol. 16: 320-327 494

[24] Oppong, O. E. (2009). Optimal resource Allocation Using Knapsack Problems: A case Study of 495
Television Advertisements at GTV. Master’s degree paper, KNUST. 496

[25] Djannaty F. and Doostdar S., (2008), A Hybrid Genetic Algorithm for the Multidimensional 497
Knapsack Problem, Int. J. Contemp. Math. Sciences, Vol. 3, no. 9, 443 – 456 498

[26] Carr J. (2014), An Introduction to Genetic Algorithms 499
[27] McHugh M. L. (2013). The chi-square test of independence. Biochemia medica, 23(2), 143-9. 500

